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Abstract

The goal of this project is to use the Geospatial Preference Modeling to predict Atlantic Bluefin Tuna behavior.
This will form a foundation for the development of the Atlantic Bluefin Tuna Avoidance System for the North
Atlantic Pelagic Long Line (PLL) fleet. We have collected non-aggregated real-time catch data from PLL
vessels and examined environmental preferences of the Atlantic Bluefin Tuna.  The data is used to develop an
integrated depiction of the Atlantic Bluefin Tuna “hotspots” based on movement patterns, biological state, and
oceanographic conditions.

Introduction

Atlantic Bluefin Tuna (ABFT) is regarded by many as
one of the most highly-stressed populations in the
ocean. Stringent management measures have been put
in place at the international level to ensure the survival
of this species, but incidental by-catch of ABFT in non-
ABFT targeting fisheries still occurs. In the US, this
most frequently occurs in the Pelagic Long Line (PLL)
Fisheries of the North Atlantic and Gulf of Mexico,
which targets Swordfish.

Fisheries managers face difficult decisions on how to
reduce bycatch of ABFT while minimizing, to the
extent practical, adverse social and economic impacts
of management measures. Driving this difficulty is a
relatively limited understanding of the ABFT behavior,

which is largely due to the assumptions made from the
current data available which is aggregated. More
precise data is needed to better understand the ABFT
behavior and movements.

GeoEye, Inc. and the University of Massachusetts
Large Pelagics Research Center have constructed a
Geospatial Preference Model (GSP) that predicts the
movements of ABFT. The model incorporates historical
by-catch, as well as behavioral and environmental data
across the Area of Interest (AOI) under consideration
– the Florida East Coast (FEC) region. An
environmental model was built with oceanographic and
other “factor” data sets. The model is trained with
“event” data, which is the fish bycatch provided by
the PLL vessels. The model analyzes this information
to develop a pattern or “geospatial signature” (hot
spots) of the ABFT preference and movements. This
information can be used by the fishing industry to
reduce the bycatch of the ABFT.

Research for this technical report was undertaken with
funding from the National Marine Fisheries Servcice,
Office of Sustainable Fisheries, Bycatch Reduction
Engineering Program (BREP).
The views expressed herein are the author’s and do
not necessarily reflect the views of NOAA or any of its
sub-agencies.
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Objectives

These are the following objectives that have been set
for the Atlantic Bluefin tuna avoidance system:

1. Build an effective geospatial preference model
for predicting the location of ABFT habitats.

2. Employ enhanced reporting measures to
collect real-time pelagic longline (PLL) catch
data and incorporate it into the model for daily
production of hot spot maps.

3. Automate the modeling process to produce
timely, predictive hot spot maps of ABFT
movements.

Methods

General Overview

Atlantic bluefin tuna (ABFT) (Thunnus thynnus)
disperse widely throughout the North Atlantic. Unlike
many other highly migratory species, they have a
broader horizontal and vertical range (Mather et al.,
1995; Galuardi et al., 2010) thermal tolerance (e.g.,
Carey et al., 1971), and greater plasticity in their life
history, spawning areas, and inter-annual migration
patterns than currently recognized (Fromentin and
Powers, 2010; Chapman et al., 2011). A number of
assumptions exist for the presumed western stock about
stock mixing (Lutcavage et al., 1999; Block et al.,
2005), geographic extent (Sibert et al., 2006), age of
maturity (Goldstein et al., 2007) and likelihood of
additional spawning grounds (Mather et al., 1995;
Lutcavage et al., 1999;Galuardi et al., 2010). Some of
these assumptions may require revision to be consistent
with observations.

There is a growing body of fishery independent
information on ABFT movements, trophic relationships
and habitat utilization from electronic tag studies and
biological sampling. This information should help
improve management options, and help pelagic
longline (PLL) fleets reduce non-target catch.
Currently, however, such information is not utilized in
this capacity. The Geo-Eye team will offer a total
analysis of both fisheries dependent and independent
data currently available. We will also employ enhanced

reporting methods and state-of-the-art tagging
technology to collect new data of each variety to be
used in the development of a GSP model capable of
predicting ABFT movements and behavior.
The area of interest for this experiment will be the
Florida East Coast (FEC) PLL fishery.

Dispersal patterns portrayed by PSAT datasets (e.g.
Galuardi et. al, 2010) document when and where ABFT
could potentially overlap with the FEC or other PLL
fleets as they travel to and from feeding and spawning
areas. Habitat utilization and oceanographic analysis
from PSAT tags offer different information than catches
or logbook data. Dispersal and depth patterns generally
portray three dimensions of where bluefin tuna are –
not just when and where they bite. Having an
understanding of whether tunas are feeding, spawning
or migrating through fishing areas in addition to catch
data is useful for understanding patterns in availability
or vulnerability to capture (Brill and Lutcavage, 2001).

LPRC scientists have examined annual dispersal
patterns of ABFT from foraging grounds in New
England and Canada to presumed spawning grounds
and back (e.g., Wilson et. al., 2005; Sibert et. al., 2006;
Galuardi et. al., 2010; Galuardi and Lutcavage, 2012).
For example, Bluefin tuna has been tracked from
Canadian feeding grounds by quarter in 2005-06
(Galuardi et al., 2010). In all but summer, adult bluefin
tracks overlap with areas currently fished by the Florida
PLL fleet. A few tracks of juvenile ABFT also indicate
habitat utilization in the region (Galuardi and
Lutcavage, 2012). In April- May, 2012, LPRC obtained
ABFT gonads, otoliths and genetic samples in order to
characterize the biological status of fish in that region
(roughly, 28 °N 78 °W). Catch data from the Marine
Stewardship Council (MSC) certification of the
Dayboat Seafood Company (DBS) also documents
ABFT bycatch results in winter months (MRAG
Americas, 2011), consistent with tagging results. These
observations indicate that the FEC will provide a
suitable area of study for the purposes of this research.

The GeoEye team conducted research with the LPRC
and vessels in the DBS fleet (primary FEC PLL fleet)
to examine real-time catch patterns and GSP of ABFT
over nine months in the FEC region. Data collected
used to build the GSP.
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Non-aggregated real-time catch data from PLL vessels:

Accuracy and privacy concerns have driven traditional
fishery catch data to be analyzed and reported in an
aggregated fashion. Day Boat Seafood (DBS) LLC’s
cooperation helps eliminate the accuracy issue for this
project. Combining real-time monitoring of PLL
catches for all species with PSAT and associated
environmental factor data will provide the ideal
resolution of ISS data to validate the GSP model.

GeoEye’s Osprey handheld reporting device will help
improve the quality of the data. Osprey transmits a real-
time message with a GPS position, date, time, species
caught, and size category back to a GeoEye hosted
catch database using Inmarsat’s Isat M2M network.
GeoEye currently provides the tracking and reporting
service described here to fisheries in The Republic of
the Maldives, Trinidad and Tobago, Ghana and the
Republic of the Seychelles.  The Osprey is currently
under consideration by a number of other government
and multinational fisheries management organizations.

Catch data validation was provided through 100%
observer coverage on each data collection trip. Since
DBS is an MSC Certified organization, their rate of
observer coverage is higher than average for the North
Atlantic PLL fleet. This means NMFS will already have
observers on the DBS vessels regularly throughout the
year. While DBS is aware that the vessel selection
process in the NOAA Observer Program is intended to
be random, the company welcomes a higher percentage
of regular observer coverage during the research period.

ABFT behavioral data:

Fish Tag Project for Fishery Independent Data
Collection and Analysis

Twelve electronic tags (Wildlife Computers) will also
be deployed during the longline trips during April to
June, which is the known spawning period of bluefin
tuna in the Gulf of Mexico. Data will be analyzed and
corrected for error by the LRPC team.

This combination of fisheries dependent and
independent data will provide an unprecedented
opportunity to observe bluefin tuna movement and
longline gear interaction simultaneously and to
highlight preference factors for ABFT ISS that may

previously have been unknown to the fisheries and
management communities. This represents a significant
advancement beyond current usage of electronic tag
data to inform range prediction management systems
(e.g., Hobday et al., 2011).

Near-Real-Time Environmental Data Production and
Delivery

Environmental data taken into consideration include,
but are not limited to, satellite data such as sea surface
temperature, chlorophyll concentration, sea surface
height anomaly, ocean currents, subsurface temperature
layers, thermocline depth, and salinity. For more than
16 years, GeoEye has been providing a near-real-time
operational oceanography service that offers this suite
of variables, in addition to weather information.  All
data sets must be properly formatted and individually
registered for ingestion into the modeling process.

Geospatial Signature

The primary tool used in development of the ABFT
GSP is an application called Signature Analyst (SA).
SA is a spatial decision support system that attempts
to describe the relationship between Intelligent Site
Selection (ISS) event locations and a set of
environmental factors using Geospatial Preference
(GSP) models. By attempting to model in the decision
space of the actors, the GSP models can provide
significant improvement over standard spatial modeling
techniques.

SA incorporates a modeling methodology for events
occurring within a geographic space. Actors with
complex decision-making capabilities initiate these
events. While the actors make spatial decisions (site
selection), they use more than just spatial coordinates.
They decide based upon a complex combination of the
attributes and features of one location compared those
of all other available locations. Spatial coordinates
providing an index to map a particular site to its
corresponding feature set. GSP modeling refers to the
methodological framework specifically designed to
understand the decision making process of the actors
as well as predict where future events may occur.
GSP models treat the events as coming from an ISS
process, a special class of point process arising from
spatial decision-making. The methodology attempts to
incorporate the actors’ preferences by including the
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features that are thought to influence (or are associated
with the features that influence) the ISS process. In
this case, those features will include near-real-time
environmental data, such as AVHRR, MODIS, and
other remotely-sensed information.

Feature Space Preference Models

Methods dealing with general point processes have
been developed around environmental phenomena,
which assume a smooth spatial dependence model and
the lack of discontinuities (Dueker and Kjerne, 1989).
These methods perform well for modeling spatial
phenomena that have smooth spatial autocorrelation
such as sea surface temperature, forest composition,
water table depth, and pollution spreading. However,
when these techniques have been applied to the social
sciences (and ISS processes in particular), the results
are not as promising (Lavigne-1999).

Feature space preference (FSP) models (Brown,
Dalton, and Hoyle-2004) address this problem by
directly considering the decision making process of the
actors. The purpose of this modeling effort was to gain
insight into the actors’ selection preferences by
observing sites that were selected previously. By
looking at the decision space as a set of environmental
variables rather than a set of geographic coordinates, a
closer fit to the true selection criteria was derived and
more accurate models were created.

Model Training using Event Data

In the context of this application, event data includes
both fish catch and tagging data. Data sources include
the Marine Stewardship Council’s (MSC) certification
study for the Day Boat Seafodd Company and the
LPRC’s archive of tag data. The LPRC team will
provide validation for historical fisheries data they have
obtained.

Projects within SA will be setup to manage the temporal
aspects of the environment and the event data to account
for signature changes that occur due to seasonal
migration of ABFT. This means the model will have to
run over a long period of historical data to observe
performance and generate initial conclusions. Different
combinations of data may yield alternative results at
different times of year. The FSP process eliminates
human bias towards the relevance of a certain factor

data set over another. Thus, hotspots models for
different seasons can be derived. A number of
performance metrics are provided by SA throughout
the modeling process. This feedback will help shape
conclusions, project reporting and next steps.

Results

Over-All Catch Summary

Geoeye analysts performed preliminary analysis of
catch data reported between 12/31/2013 – 3/30/2014.
The following 7 boats had historical fishing data that
was included in the analysis:  Dayboat2, Erica Lyn,
Joshua Nicole, Kelly Ann, Provider, Swordfin and
Vitamin C.

Fishing was conducted primarily off the Florida coast,
with data from a single boat (Swordfin) recording
fishing and catch data off the Turks and Caicos Islands.
The graphic below depicts the areas of catch
concentrations:
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A total of 2,460 fish were caught in the three month
period.  Of the fish caught, 24% (591) were
Swordfish, and less than 1% (15) was bluefin tuna.
Approximately 75% of all catches were not
swordfish or bluefin tuna.

The graphics below depicts the percentage and total
number of fish caught:
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Conclusions

The focus area of analysis was the area identified as
“Fishing Area 1”, off of the coast of Florida.  Within
this 14,748 nm2 area, there were 329 swordfish and
14 bluefin tuna catches.  The catches represent “Event”
data that can be measured against the environmental
conditions on the same day to better distinguish optimal
fishing conditions.

Te frequency of catches dictate the number of days the
analyst must normalize environmental conditions to
most accurately reflect conditions at the time of catch.
Thus far in the study period and within “Fishing Area
1,” the catch frequency of species of interest is as
follows:

A verage Sw ordfish  B luefin  Tuna 
D ays betw een being caught 0.2 5.5 
C atch per day over 3  m onths 3.7 .16 
N um ber per catch  6.7 1.6 
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Nearly seven swordfih are caught each
day while less than two bluefin tuna are
caught every five and a half days.  This
rate of frequency suggests that
environmental data for modeling
bluefin tuna may have to be normalized
over a longer period of time than
swordfish to have enough “event” data
to measure against the model.  Future
data collection and analysis will
ultimately dictate a conclusive decision
to the environmental data normalization
process.

Osprey trackers. The widget ingests Osprey data with
location, date, catch type, and related information.
Currently it supports user interaction to select time
ranges, areas of interest, fish type, and operations to
be performed on the data.  Ultimately, the end state of
the Fish Finder widget will include capabilities that
allow for reduction of bycatch of Bluefin tuna.

Delivery Mechanism

Monocle-3 is an extensible web map interface
supporting applications that can communicate with the
map, the vector products they create, and amongst other
widgets.

Fish Finder, part of the Monocle-3 development, is a
widget for performing analysis on bycatch reduction
data collected by the Digital Globe Marine Services
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