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“We are on the verge of the sixth
extinction. Whether we avoid it or not
will depend on our actions”

— Species of plants and animals are becoming extinct at least 1000 times faster

than before humans arrived on the scene.

Nautilus survived 5 mass extinctions — It Is
up to us to ensure they survive this.

A main goal in our laboratory is to
enhance our understanding of their mari-
culture and biology to contribute to
conservation efforts.




Habitat loss Is one reason
Invasive species
Climate change
Anthropogenic effects
Overfishing

How Is Nautilus not on the vulnerable list?

What can we learn about pressures in
their ecology that can inform conservation
efforts? A combined approach.

— E.g., What is affecting Juvie survivial?

— E.qg., Is culturing even feasible?




LIBE lab: Synthetic Approach

e 1) Ecological hypotheses — based upon
natural history

o 2) Comparative approach

e 3) Laboratory and field study

* Focused study to understand basic biology:
reproduction, foraging, environmental exploration.

 Then test again in field.
 Internal and external validity




Synthetic Approach

e 1) Ecological hypotheses

o 2) Comparative approach

e 3) Laboratory and field study




Synthetic Results

 First evidence for learning in this
understudied, but important, group of
animals.

e Characterize innate behaviors.

e Characterize plastic behaviors.

 Comparative study: behavior
evolution.

* Mariculture: keeping animals healthy,
how foster breeding?




Live slow, die old — this Is the
“problem”.
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Abstract Cephalopods have been utilised in neurosci-
ence research for more than 100 years particularly because
of their phenotypic plasticity, complex and centralised
nervous system, tractability for studies of learning and
cellular mechanisms of memory (e.g. long-term potentia-
tion) and anatomical features facilitating physiological
studies (e.g. squid giant axon and synapse). On 1 January
2013, research using any of the about 700 extant species of
“live cephalopods™ became regulated within the European
Union by Directive 2010/63/EU on the “Protection of
Animals used for Scientific Purposes”, giving cephalopods
the same EU legal protection as previously afforded only to
vertebrates. The Directive has a number of implications,
particularly for neuroscience research. These include: (1)
projects will need justification, authorisation from local

Graziano Fiorito, Jennifer Basil, Frank Grasso, Michael Kuba, Nadav
Shashar and Paul Andrews have contributed equally to this work.

competent authorities, and be subject to review including a
harm-benefit assessment and adherence to the 3Rs princi-
ples (Replacement, Refinement and Reduction). (2) To
support project evaluation and compliance with the new
EU law, guidelines specific to cephalopods will need to be
developed, covering capture, transport, handling, housing,
care, maintenance, health monitoring, humane anaesthesia,
analgesia and euthanasia. (3) Objective criteria need to be
developed to identify signs of pain, suffering, distress and
lasting harm particularly in the context of their induction
by an experimental procedure. Despite diversity of views
existing on some of these topics, this paper reviews the
above topics and describes the approaches being taken by
the cephalopod research community (represented by the
authorship) to produce “guidelines” and the potential
contribution of neuroscience research to cephalopod
welfare.
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Chapter 10
Naurilus

Gregory J. Barord and Jennifer A. Basil

GJ Barord

Abstract Nautiluses are remmnants of an ancient lineage that dates back nearly
500 million years. Extant nautiluses still exhibit many traits characteristic of the
ancestral species. Nautilus culture systems should therefore take into account both
the similarities between nautiloids and modern coleoids and the differences. Nauti-
lus culture systems should be designed to maintain excellent water quality through
effective filtration to promote good health. Wautiluses and coleoids differ primar-
ily in their reproductive strategies. Whereas most coleoids are fast growing and
semelparous. nautiluses grow slowly. mature later. and are iteroparous. Therefore.
nautiluses may necessitate several years of care before becoming sexually mature.
Successtul reproduction and egg laying by a female yield only a maximum of ten
eggs which take up to 1 year to develop and hatch. Currently. nautilus hatchlings
have only been reared up to 1 year. The future of nautilus culture systems depends
upon a better understanding of both wild and captive reproduction. The success of
these culture systems would open up a brand new area of research utilizing different
age groups and generations to investigate current and novel questions.

Keywords Nauwutilus culture - Nauwutilus husbandry - Nawrilies reproduction - Nawrilies
disease - Cephalopod culture

10.1 Background

The nautilid lineage may have existed for more than 500 million years (Ward 1987:
Hanlon and Messenger 1996: Strugnell and Lindgren 2007) though the most re-
cent estimation is 416—480 million years (Kroger et al. 2011). Today. nautiluses are
grouped under two different genera., Nawutilus and Allonawurilits (Ward and Saunders
1997). Throughout the chapter, “nautiluses™ will refer to all species of nautiluses
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Housing System, Brooklyn

e 700 gallon system: three cylindrical holding tanks (1.5 m tall, 1 m
diameter), a 50 gallon sump holding biological filtration, a chilling
unit, ultraviolet filtration, and two protein sKigaaes




fishes

Buoyancy




Chemosensors Eyes: 470nm
ektobenthic: live slow, live long
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Chemosensors
Vert




MIRhinophore: distance
Tentacles: both




100

Distance from source (em)

Height

Heading angle (degrees)

B
Flow
Normal vertical profile |
i i i I | 1 i i 3
140 ¢
a—ily D
1204
100 ¢
S0¢
60¢ I ]
4ﬂ | I l
201  Nommal
i i i i i I i i i I
0 100 200

Distance from source (cm)



Scavenging: can they detect
and find food In substrate?

...what kind of foods?




Yes!

« Whatis
INn benthic
substrate?

Versus live prey?




Use of hyponome Iin scavenging




FiInding mates

Nautiloidshttp://scrippsblogs.ucsd.edu/onboard/2013/09/05/breakfast-with-a-newborn-nautilus

Odor release/Arm Y-Maze Barrier
Start Box Water Outlet

Direction of Flow

Detect Conspecifics

Detect Males/Females

Different response of
males and females

Female/Female avoidance?

MRS L EERa o y . o SRS
Mating pair of Nautilus belauensis. Photo by Mark Norman. - See more at:
http://taxondiversity.fieldofscience.com/2011/01/nautilaceae.html#sthash.riyJYKVi.dpuf

Egg wash experiments? Nautiluses, octopuses? Juvies critical




Further laboratory research
* Egg viabllity in laboratory
 Reproductive behavior

 Predator detection — odor, combine
with reef study (avoidance tactics?)

Prey-choice experiments

Field — silt samples from natural
habitat







Robyn Crook, 2005




/s respond to vibration (N =

8.9% decrease




_éut/'/us respond to a range of source
Sintensities and source velocities (70-100hz).

=== Animals respond more strongly when the

= vibratory stimulus is nearby.

e Animals respond more strongly when source
Intensity or source velocity increases.




Divergence -- anatomy

e Coleoids

 Nautiloids




Divergence — history of complexity
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Divergence — ecological
guestions

Live fast, die young

shell for protection

less prime deeper water
slow, smellers and gropers
all solitary, nocturnal




Divergence -- brains




Homology: Cell bodies, neurites, neuropil, nonspiking

cer-buc.
ik

Convergence: neural networks and plasticity

Neural networks that learn

>40 lobes

Not identical scale




Parametric variation

A. Cephalopod Phylogenetic B. Difference Froth Octopus
Relationships VL% InFF% OL %

OCTOPUS —
ARGONAUT 0.00 +335.29 +167.29

o w’ VAMPYRO-
e  TEUTHIS +130.00 -34.12 +345.18

Teuthida (a)

[dioss

SEPIA +95.83 -83.53 +66.94

LOLIGO +71.67 -87.06 +295.29

(After Strugnell et al., 2004 and Lindgren et al., 2005) (Calculated from Maddock and Young, 1987)




An old brain
Live slow, die old — time to learn

Neale Monks

1 radiograph of a live Nautilus/showing organization of shell
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An old ecology

An associative problem

oceanic
coastal (neritic)
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Figure 4. Long term vertical movements of four Nautilus individuals.
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Dunstan AJ, Ward PD, Marshall NJ (2011) Vertical Distribution and Migration Patterns of Nautilus pompilius. PLoS ONE 6(2):
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Figure 3. Vertical movements of tagged Nautilus with temperature/depth profile.
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Synthetic Approach

e First experimental evidence for
learning in this understudied, but
Important, group of animals.

e Characterized innate behaviors.
e Characterize plastic behaviors.

e Based on problems animals must
solve In the field.




Environmental learning
How and what do they learn?

Profile

1. speed
2. retention

3. content
Content
4. sensory stimuli
5. spatial information
6. flexibility
/. memory space
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Adaptive Associations

bioluminescence-guided foraging

e Learning
— CS+ (light)
US (odor)
CS-

10 training trials
e ISl =1s,
e ITI=10 min

CR: tentacle extension

e Memory
— 3 min, 30min,
— 1hr, 6hr, 12hr, 24hr
— ~single unrewarded light pulse




classical conditioning: ecological
problem
-_

Mirror

Tank
Surround
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Depth), AQiFiRis
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CR - Tentacle Extension
Response

e Natural (odor)
 Arousal — retractable tentacles extend
e Percentage body length




Tentacle Extension

Mean TER inall bins, across retention intervals

Results
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Memory for associations

A biphasic memory curve

Memory Curves Over Time

CS-
= CS+

baseline

Time (hours)

Consolidation (mechanism, location)




In context

e similar to cuttlefish (Sepia)
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Agin et al, 2006 Developmental study of multiple memory stages in the cuttlefish, Sepia
officinalis




Spatial Ecology
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Spatial orientation: Do they

learn and remember cues?

<——Blind

| —Escape hole
VWater level

Maze platform
Start

- curtain
- 5 trials, 5 min each
- 10 min ‘reward’
- Retention testing
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Memory lasts: for weeks!
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Spatial navigation in a complex

environment:
Environmental cues: local and global

Single, proximal

Local, global




Spatial. maze

|_—Escape hole

Water level




Training

Testing

Geo:
Single
cue

Ego:
Route
memory

Geo:
Multiple
Intra-
maze




. Egocentric - Route memory (RM)

Navigation tested in the absence of visual
cues

. Egocentric - Route memory (RM-DS)

Navigation tested in the absence of visual
cues and with a novel start position

. Geocentric - Single, proximate cue (SP)

A high-contrast visual cue ‘beacon’ signals the
exit location

. Geocentric - Multiple intra-maze cues (MI)

Tests navigation based on a fixed geometric
array of cues, none immediately signalling the
exit

. Geocentric - Proximate vs. distant
intramaze cues (P-D)

Tests preference for a proximate cue vs. multiple | [

distant cues

F. Geocentric - Local vs. global cues (L-G)

Tests the relative contribution of intra- vs. extra-
maze cues

Beacon located

at exit

at exit

Beacon located

=

—

at exit

Three distant
landmarks
around edge;
exit unmarked

All Intramaze
landmarks
present

Three distant
landmarks
around edge;
exit unmarked

Beacon shifted
90° CW

Start position
shifted 90° CW

Proximate and
distant
landmarks in
conflict

Maze rotated
180° with
respect to
experiment
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Vertic Ecology
Adept Iin vertical spatial maze
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Fig. 10.4 Verucal movements of a tagged Nautilus

belauensis followed over a six-day |'n'1'ir d 1in Palau. Note the

sudden descent (arrow) one night at the onset of a full

moon (from Ward et al., 198

Hanlon and Messenger, 1996




Vertic Ecology
Spatial vertical learning
1) 3-D “reef”

2) Configurations
A) B/W 1
B) B/IW 2
C)W/B 2

3) Exploration
- habituation




Vertical 3D: learn and remember
Habituation: proximity and activity
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Proximity Increases

Proportion of time spent in proximity to reef
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Spatial learning and memory in Nautiluses

Other cephalopods use spatial memory in their natural habitat (octopuses,
cuttlefishes). Nautilus is a deep-water solitary species that must make daily
migrations up and down coral-reef slopes. Memory for foraging sites and
hiding places may be critical to a solitary animal with little in the way of
defenses.

We tested spatial learning in a modified Morris-maze'® where animals on a
shallow platform sought an escape-hole into deep, dark water.

100cm

Training and testing
configuration




Stage 2, Path integration, cue geometry, salience
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Stage 2, Path integration, cue geometry, salience

Hypothesis tested

Beacon-based homing (BBH)

A single landmark located proximate
to the escape potint.

Dead Reckoning

Nawvigation tested m the absence of
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Stage 2, Path integration, cue geometry, salience

. Routes
Training Testing
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Learnlng ecologclcal reflections

Ecological AssociationST |learn'to associategcologically relevant stimuli —
bieluminescent carrion matched with odor? Nowtest in field.

Spatial Problems In nature: Both beacon-based homing and cue-geometry navigation are
plausible in the natural environment

Vertic: Nautiluses learn and remember the 3-d configuration of an artificial coral reef, like
complex cue arrays in their coral-reef environment. Now test in field.

Beacons: Animals learn and remember BEACONS, suggesting that this was a highly salient
cue. Currently testing in a vertical array and in field

Dead Reckoning: At first, animals did not appear to search systematically for the exit and

mostly failed to complete the test trial. With more training, they do express dead reckoning.
— We further test for DR on smaller time scales, and also in a vertical array.

Distant Cues: Animals were able to decode a familiar array when they were in a particular
vantage point (snap-shot hypothesis?). These cues override shifted beacon.

Global Cues: When maze shifted relative to room, animals use global cues, overriding distant
cues.

Ongoing: We now test whether dead reckoning is an underlying parallel memory module
running concurrently with the use of beacons and/or cues.

EGG cues? Versus nautiluses, octopuses, fish.
Culturing
Acknowledgements...




1) Comparative cognition
2) Comparative sensory ecology
3) Comparative field studies

generate hypotheses about cognitive
adaptations.

4) Care and Culture
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Phylogenetic history behavioral and
CNS complexity

 Comparative evidence points to evolutionary
scenario:
— Brain and behavioral complexity likely existed in the

nautiloid lineage long before the parametric “cognitive
radiation” in coleoids.

— Nautiloids are critical lineage in these continuing
comparative studies.
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Trial

Trial

Training: animals learn the route to the exit, and time

taken to escape decreases.

Testing: Time taken increases dramatically.

Percentage of total time spent in each quadrant. In
BH, animals spend more time in Q4 when the beacon is
shifted there during testing. In Fftests there is no clearly
preferred quadrant. In Geo animals spend more time in
Q4 where they start, but little in Q2. Route maps of each
animal are shown for trials 4 and 5.



Behavioural Index scores in control {(CS-) and conditioned {CS+) animals at each retention interval

A- Mean behavioural index scores at each retention interval
L* Y L=

Ll - -
« A: Graph shows mean behavioural index scores

# *
for control (C5-) and conditioned (CS+) animals
at each retention interval. n=6 for all groups.
Index scores are significantly different at 3

l l minutes and 30 minutes, indicating presence of
STM in conditioned animals. There is no

2. evidence of memory at 1 hour. At 6 hours and

12 hours post-training, scores are significantly
different, indicating LTM in conditioned animals.

= By 24 hours there is no evidence of LTM

2 persistence.
=, =Y

C.
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Condition
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Memory Curves
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Baseline

v
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B. Mean behavioural index scores across time perods. C. Hypothetical memory curves and baseline response
level, superimposed over the same points. Curves indicate the probable duration of short- and long-term memory
{(STM and LTM, respectively). Error bars are £ 1 SE ofthe mean. * denotes a significant difference between CS+

and CS- groups.




Results

5-s ‘bin’ after light exposure
showed differential responses
as a function of time

Mean TER at 3 mins

Similar trends in ventilation
data

Mean TER at 1 hr

E

Mean TER at 12 hr

Mean TER at 30 mins

%
1n l =

D

Mean TER at 6 hr

o

Mean TER at 24 hr
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Modern Cephalopod Relationships

Nautilus monophyletic: fewer chromasomes, longer 18sDNA

Morphological Characters

Strugnell, Bonnaud




Modern Cephalopods

Shell loss and retention:locomotion

of

e young
[;:?.

Live fast,

shell for protection

less prime deeper water
slow, smellers and gropers
tolerate high pressures
avoidance of nekton

all solitary, nocturnal




Detection at a distance, but tracking?
Conspecifics, SW y
vibration sensitivity e %

7”2

5

4




Despite these differences:
they all have big brains
(some bigger than others)
...and they use them.

% Nautiluses: classical conditioning of light t
B spatial memory up to 3 weeks.
s A ~but no vertical lobe

Phylogenetic history: canalization due to telec
Ecological adaptations and constrants: locom
CNS: Networks that use, learn, and remembe



fishes

Buoyancy




