2013 USGS Lidar: Norfolk (VA)
OCM Partners
Data Set
(DS)
| ID: 50134
| Published / External
Created: 2017-11-15
|
Last Modified: 2022-08-09
Project (PRJ) | ID: 49401
ID: 50134
Data Set (DS)
* Discovery• First Pass
» Metadata Rubric
Item Identification
* » Title | 2013 USGS Lidar: Norfolk (VA) |
---|---|
Short Name | va2013_usgs_norfolk_m4699_metadata |
* Status | Completed |
Creation Date | |
Revision Date | |
• Publication Date | 2014-11-15 |
* » Abstract |
Laser Mapping Specialist, Inc (LMSI) and The Atlantic Group (Atlantic) provided high accuracy, calibrated multiple return LiDAR for roughly 1,130 square miles around Norfolk, Virgina that either fully or partially cover the Virginia counties of Chesapeake, Hampton, James City, Newport News, Norfolk, Poquoson City, Portsmouth, Suffolk, Virginia Beach, Williamsburg, and York as well as the North Carolina counties of Camden and Currituck. The nominal point spacing for this project was no greater than 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 7-Noise, 9-Water, 10-Ignored Ground, 11-Withheld Points. OCM reclassified class 11 points to Class 15 - (as needed: Witheld Points). Dewberry produced 3D breaklines and combined these with the final LiDAR data to produce seamless hydro flattened DEMs for the 1,458 (1500 m x 1500 m) UTM tiles and the 1,400 (5000 ft x 5000ft) State Plane tiles that cover the project area. |
* Purpose |
The purpose of this LiDAR data was to produce high accuracy 3D elevation products, including tiled LiDAR in LAS 1.2 format, 3D breaklines, 3D buildings, 2D buildings, forest polygons, tree points, 1 m cell size first return digital surface models, 1 m cell size last return digital surface models, and 1 m cell size hydro flattened Digital Elevation Models (DEMs). |
Notes |
10778 |
Other Citation Details | |
• Supplemental Information |
A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4699/supplemental/va2013_usgs_norfolk_m4699.kmz A report for this dataset is available at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4699/supplemental/va2013_usgs_norfolk_m4699_surveyreport.pdf Breaklines are available for this project but they have not be assessed by NOAA, therefore are only available by request. |
DOI (Digital Object Identifier) | |
DOI Registration Authority | |
DOI Issue Date |
Keywords
Theme Keywords
Thesaurus | Keyword |
---|---|
ISO 19115 Topic Category | elevation |
None | Bare earth |
Temporal Keywords
Thesaurus | Keyword |
---|---|
* Spatial Keywords
Thesaurus | Keyword |
---|---|
Stratum Keywords
Thesaurus | Keyword |
---|---|
Instrument Keywords
Thesaurus | Keyword |
---|---|
Platform Keywords
Thesaurus | Keyword |
---|---|
Physical Location
• » Organization | Office for Coastal Management |
---|---|
• » City | Charleston |
• » State/Province | SC |
• Country | |
• » Location Description |
Data Set Information
* Data Set Scope Code | Data Set |
---|---|
• Data Set Type | |
• Maintenance Frequency | As Needed |
Maintenance Note | |
» Data Presentation Form | las |
• Entity Attribute Overview |
Lidar points in LAZ format (Classes 1,2,7,9,10,15) |
Entity Attribute Detail Citation |
none |
Entity Attribute Detail URL | |
Distribution Liability |
Any conclusions drawn from the analysis of this information are not the responsibility of USGS, The Atlantic Group, Dewberry, NOAA, the Office for Coastal Management or its partners. |
Data Set Credit |
Support Roles
* » Support Role | Data Steward |
---|---|
* » Date Effective From | 2014-11-15 |
Date Effective To | |
Organization | NOAA Office for Coastal Management (NOAA/OCM) |
Address |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address | coastal.info@noaa.gov |
Phone | (843) 740-1202 |
Fax | |
Mobile | |
URL | https://coast.noaa.gov |
Business Hours | |
Contact Instructions |
* » Support Role | Distributor |
---|---|
* » Date Effective From | 2014-11-15 |
Date Effective To | |
Organization | NOAA Office for Coastal Management (NOAA/OCM) |
Address |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address | coastal.info@noaa.gov |
Phone | (843) 740-1202 |
Fax | |
Mobile | |
URL | https://coast.noaa.gov |
Business Hours | |
Contact Instructions |
* » Support Role | Metadata Contact |
---|---|
* » Date Effective From | 2014-11-15 |
Date Effective To | |
Organization | NOAA Office for Coastal Management (NOAA/OCM) |
Address |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address | coastal.info@noaa.gov |
Phone | (843) 740-1202 |
Fax | |
Mobile | |
URL | https://coast.noaa.gov |
Business Hours | |
Contact Instructions |
* » Support Role | Point of Contact |
---|---|
* » Date Effective From | 2014-11-15 |
Date Effective To | |
Organization | NOAA Office for Coastal Management (NOAA/OCM) |
Address |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address | coastal.info@noaa.gov |
Phone | (843) 740-1202 |
Fax | |
Mobile | |
URL | https://coast.noaa.gov |
Business Hours | |
Contact Instructions |
* » Support Role | |
---|---|
* » Date Effective From | |
Date Effective To | |
* » Contact | |
* Contact Instructions |
* » Support Role | |
---|---|
* » Date Effective From | |
Date Effective To | |
* » Contact | |
* Contact Instructions |
* » Support Role | |
---|---|
* » Date Effective From | |
Date Effective To | |
* » Contact | |
* Contact Instructions |
Extents
Currentness Reference | Ground Condition |
---|
Extent Group 1
Extent Description |
---|
Extent Group 1 / Geographic Area 1
* » W° Bound | -76.759887 |
---|---|
* » E° Bound | -75.860149 |
* » N° Bound | 37.382867 |
* » S° Bound | 36.522422 |
* » Description |
Extent Group 1 / Vertical Extent
EPSG Code | |
---|---|
Vertical Minimum | |
Vertical Maximum |
Extent Group 1 / Time Frame 1
* » Time Frame Type | Range |
---|---|
* » Start | 2013-03-21 |
End | 2013-04-05 |
Alternate Start As Of Info | |
Alternate End As Of Info | |
Description |
Spatial Information
Spatial Resolution
Angular Distance | |
---|---|
Angular Distance Units | |
Horizontal Distance | |
Horizontal Distance Units | |
Vertical Distance | |
Vertical Distance Units | |
Equivalent Scale Denominator | |
Level of Detail Description |
Spatial Representation
Grid Representation Used? | |
---|---|
Vector Representation Used? | Yes |
Text / Table Representation Used? | |
TIN Representation Used? | |
Stereo Model Representation Used? | |
Video Representation Used? |
Grid Representation
Dimension Count | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cell Geometry | |||||||||||||
Transformation Parameter Available? | |||||||||||||
Axis Dimension |
|||||||||||||
|
|||||||||||||
Axis Dimension |
|||||||||||||
|
Vector Representation
Topology Level | |
---|---|
Complex Object Present? | |
Complex Object Count | |
Composite Object Present? | |
Composite Object Count | |
Curve Object Present? | |
Curve Object Count | |
Point Object Present? | |
Point Object Count | |
Solid Object Present? | |
Solid Object Count | |
Surface Object Present? | |
Surface Object Count |
Reference Systems
Reference System
EPSG Code | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Horizontal Resolution |
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Vertical Resolution |
|||||||||||||||||||||||||||||
|
Access Information
Data License | |
---|---|
Data License URL | |
Data License Statement | |
* » Security Class | Unclassified |
* Security Classification System | |
Security Handling Description | |
• Data Access Policy | |
» Data Access Procedure |
This data can be obtained on-line at the following URL: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=4699; |
• » Data Access Constraints |
None |
• Data Use Constraints |
Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. These data depict the heights at the time of the survey and are only accurate for that time. |
Metadata Access Constraints | |
Metadata Use Constraints |
Distribution Information
Start Date | |
---|---|
» Download URL | https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=4699 |
Distributor | |
File Name | Customized Download |
Description |
Create custom data files by choosing data area, product type, map projection, file format, datum, etc. |
File Date/Time | |
File Type (Deprecated) | |
Distribution Format | |
File Size | |
Application Version | |
Compression | |
Review Status |
Start Date | |
---|---|
» Download URL | https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4699/index.html |
Distributor | |
File Name | Bulk Download |
Description |
Simple download of data files. |
File Date/Time | |
File Type (Deprecated) | |
Distribution Format | |
File Size | |
Application Version | |
Compression | |
Review Status |
Start Date | |
---|---|
End Date | |
» Download URL | |
Distributor | |
File Name | |
Description | |
File Date/Time | |
File Type | |
FGDC Content Type | |
File Size | |
Application Version | |
Compression | |
Review Status |
Start Date | |
---|---|
End Date | |
» Download URL | |
Distributor | |
File Name | |
Description | |
File Date/Time | |
File Type | |
FGDC Content Type | |
File Size | |
Application Version | |
Compression | |
Review Status |
Start Date | |
---|---|
End Date | |
» Download URL | |
Distributor | |
File Name | |
Description | |
File Date/Time | |
File Type | |
FGDC Content Type | |
File Size | |
Application Version | |
Compression | |
Review Status |
Archive Information
Location | |
---|---|
File Identifier | |
File Name | |
URL | |
Description | |
DOI | |
Archive Date | |
Archive Update Frequency |
Location | |
---|---|
File Identifier | |
File Name | |
URL | |
Description | |
DOI | |
Archive Date | |
Archive Update Frequency |
Location | |
---|---|
File Identifier | |
File Name | |
URL | |
Description | |
DOI | |
Archive Date | |
Archive Update Frequency |
URLs
URL | https://coast.noaa.gov/dataviewer |
---|---|
Name | |
URL Type | Online Resource |
File Resource Format | |
Description |
URL | https://coast.noaa.gov |
---|---|
Name | |
URL Type | Online Resource |
File Resource Format | |
Description |
URL | https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4699/supplemental/va2013_usgs_norfolk_m4699.kmz |
---|---|
Name | Browse Graphic |
URL Type | Browse Graphic |
File Resource Format | kmz |
Description |
This graphic shows the coverage of the 2013 USGS Norfolk, VA lidar collection. |
URL | |
---|---|
Name | |
URL Type | |
File Resource Format | |
Description |
URL | |
---|---|
Name | |
URL Type | |
File Resource Format | |
Description |
URL | |
---|---|
Name | |
URL Type | |
File Resource Format | |
Description |
Activity Log
Activity Time | 2017-03-20 |
---|---|
Activity Type | |
Responsible Party | |
Description |
Date that the source FGDC record was last modified. |
Activity Time | 2017-11-14 |
---|---|
Activity Type | |
Responsible Party | |
Description |
Converted from FGDC Content Standards for Digital Geospatial Metadata (version FGDC-STD-001-1998) using 'fgdc_to_inport_xml.pl' script. Contact Tyler Christensen (NOS) for details. |
Activity Time | 2018-02-08 |
---|---|
Activity Type | |
Responsible Party | |
Description |
Partial upload of Positional Accuracy fields only. |
Activity Time | 2018-03-13 |
---|---|
Activity Type | |
Responsible Party | |
Description |
Partial upload to move data access links to Distribution Info. |
Activity Time | |
---|---|
Activity Type | |
Responsible Party | |
Description |
Activity Time | |
---|---|
Activity Type | |
Responsible Party | |
Description |
Activity Time | |
---|---|
Activity Type | |
Responsible Party | |
Description |
Issues
Issue Date | |
---|---|
Author | |
Issue |
Issue Date | |
---|---|
Author | |
Issue |
Issue Date | |
---|---|
Author | |
Issue |
Technical Environment
Description |
|
---|
Data Quality
Representativeness | |
---|---|
Accuracy | |
Analytical Accuracy | |
Horizontal Positional Accuracy |
Lidar source compiled to meet 1 meter horizontal accuracy. |
Vertical Positional Accuracy |
The vertical accuracy of the LiDAR was tested by Dewberry with 100 independent survey checkpoints. The survey checkpoints were evenly distributed throughout the project area and were located in areas of bare earth and open terrain (20), tall weeds and crops (20), forested and fully grown (20), brush and small trees (20), and urban (20). The vertical accuracy is tested by comparing survey checkpoints to a triangulated irregular network (TIN) that is created from the LiDAR points. Checkpoints are always compared to interpolated surfaces created from the LiDAR point cloud because it is unlikely that a survey checkpoint will be located at the location of a discrete LiDAR point. Checkpoints in open terrain were used to compute the Fundamental Vertical Accuracy (FVA). Project specifications required a FVA of 0.181 m based on a RMSEz (0.0925 m) x 1.9600. All checkpoints were used to compute the Consolidated Vertical Accuracy (CVA). Project specifications required a CVA of 0.269 m based on the 95th percentile. Supplemental Vertical Accuracy (SVA) was computed on each individual land cover category other than open terrain. Target specifications for SVA are 0.269 m based on the 95th percentile. NDEP and ASPRS testing methodologies allow individual SVA's to fail as long as the mandatory CVA passes project specifications. Based on the vertical accuracy testing conducted by Dewberry, using NSSDA and FEMA methodology, vertical accuracy at the 95% confidence level (called Accuracyz) is computed by the formula RMSEz x 1.9600. The dataset for the Norfolk, VA LiDAR project satisfies the criteria: Lidar dataset tested 0.129 m vertical accuracy at 95% confidence level in open terrain, based on RMSEz (0.066 m) x 1.9600. Consolidated Vertical Accuracy (CVA) Based on the vertical accuracy testing conducted by Dewberry, using NDEP and ASPRS methodology, consolidated vertical accuracy (CVA) is computed using the 95th percentile method. The dataset for the Norfolk, VA LiDAR project satisfies the criteria: Lidar dataset tested 0.194 m consolidated vertical accuracy at 95th percentile in all land cover categories combined. Supplemental Vertical Accuracy Lidar dataset tested 0.198 m supplemental vertical accuracy at 95th percentile in the grass weeds and crops land cover category. Lidar dataset tested 0.163 m supplemental vertical accuracy at 95th percentile in the forested and fully grown land cover category. Lidar dataset tested 0.196 m supplemental vertical accuracy at 95th percentile in the brush lands and trees land cover category. Lidar dataset tested 0.196 m supplemental vertical accuracy at 95th percentile in the urban land cover category. |
Quantitation Limits | |
Bias | |
Comparability | |
Completeness Measure | |
Precision | |
Analytical Precision | |
Field Precision | |
Sensitivity | |
Detection Limit | |
Completeness Report |
A visual qualitative assessment was performed to ensure data completeness and bare earth data cleanliness. No void or missing data and data passes vertical accuracy specifications. |
Conceptual Consistency |
Data covers the tile scheme provided for the project area. |
» Quality Control Procedures Employed |
Data Management
» Have Resources for Management of these Data Been Identified? | |
---|---|
» Approximate Percentage of Budget for these Data Devoted to Data Management | |
» Do these Data Comply with the Data Access Directive? | |
» Is Access to the Data Limited Based on an Approved Waiver? | |
» If Distributor (Data Hosting Service) is Needed, Please Indicate | |
» Approximate Delay Between Data Collection and Dissemination | |
» If Delay is Longer than Latency of Automated Processing, Indicate Under What Authority Data Access is Delayed |
|
» Actual or Planned Long-Term Data Archive Location | |
» If World Data Center or Other, Specify | |
» If To Be Determined, Unable to Archive, or No Archiving Intended, Explain |
|
» Approximate Delay Between Data Collection and Archiving | |
» How Will the Data Be Protected from Accidental or Malicious Modification or Deletion Prior to Receipt by the Archive? |
|
Lineage
» Lineage Statement |
---|
Sources
Citation Title | |
---|---|
Contact Role Type | |
Contact Type | |
Contact Name | |
Publish Date | |
Extent Type | |
Extent Start Date/Time | |
Extent End Date/Time | |
Citation URL | |
Citation URL Name | |
Citation URL Description | |
Scale Denominator |
Citation Title | |
---|---|
Contact Role Type | |
Contact Type | |
Contact Name | |
Publish Date | |
Extent Type | |
Extent Start Date/Time | |
Extent End Date/Time | |
Citation URL | |
Citation URL Name | |
Citation URL Description | |
Scale Denominator |
Citation Title | |
---|---|
Contact Role Type | |
Contact Type | |
Contact Name | |
Publish Date | |
Extent Type | |
Extent Start Date/Time | |
Extent End Date/Time | |
Citation URL | |
Citation URL Name | |
Citation URL Description | |
Scale Denominator |
Process Steps
Process Step Number | 1 |
---|---|
» Description |
The Atlantic Group (Atlantic) and Laser Mapping Specialist, Inc (LMSI) completed LiDAR data acquisition and data calibration for the USGS Norfolk, VA LiDAR project area. The project area included approximately 1,130 contiguous square miles for portions of Virginia and North Carolina. Dewberry elected to subcontract the LiDAR Acquisition and Calibration activities to The Atlantic Group (Atlantic) and Laser Mapping Specialist Inc (LMSI). Atlantic and LMSI were responsible for providing LiDAR acquisition, calibration and delivery of LiDAR data files to Dewberry. Dewberry received high accuracy, calibrated multiple return swath data from Atlantic on May 21, 2013 and from LMSI on June 5, 2013. Atlantic operated a Cessna T-210 (Tail Number N732JE) outfitted with a LEICA ALS70-HP LiDAR system during the collection of the Southern portion of the study area. LIDAR acquisition began on March 25, 2013 and was completed on April 5, 2013. The flight plan was flown as planned with no modifications. There were no unusual occurrences during the acquisition and the sensor performed within specifications. There were 65 flight lines required to complete the project. Atlantic planned 64 passes for the Southern portion of the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, Atlantic followed FEMAs Appendix A guidelines for flight planning and, at a minimum, includes the following criteria: A digital flight line layout using LEICA MISSION PRO flight design software for direct integration into the aircraft flight navigation system. Planned flight lines; flight line numbers; and coverage area. LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables. Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally, Atlantic Group will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission. Atlantic monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. Atlantic accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition. Within 72-hours prior to the planned day(s) of acquisition, Atlantic closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis. Atlantic LiDAR sensors are calibrated at a designated site located at the Lawrence County Airport in Courtland, Alabama and are periodically checked and adjusted to minimize corrections at project sites. |
Process Date/Time | 2013-03-01 00:00:00 |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | 2 |
---|---|
» Description |
All surveys were performed to Federal Geodetic Control Subcommittee (FGCS) FGCS guidelines. Atlantic Group maximized existing NGS control and the ALDOT CORS stations to provide the control network, designed with proper redundancies, session occupation times, and time between sessions according to the applicable NOS technical standards. GPS observations were conducted using Federal Geodetic Control Committee (FGCC) approved dual frequency GPS receivers. A minimum of two fixed-height tripods were used as ground base stations running at a one (1.0) second epoch collection rate during every mission, typically at a minimum of four hours. The control locations are planned to ensure a 28km baseline distance from the furthest flight line distance. All mission collections were conducted with a PDOP of 3.2 or lower. Also, the KP index is considered prior to mission collection and no collection occurred when the KP index was at or above 4. Airborn GPS Kinematic LEICA IPAS TC was used to post process the airborne solutions for the mission. IGS08 (EPOCH 2013.1011) coordinates from the OPUS solutions was used in the post processing. Generation and Calibration of Laser Points (raw data) Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database. On a project level, a supplementary coverage check is carried out to ensure no data voids are present. The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met. Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement. Deliverables for the project included a raw (unclassified) calibrated LiDAR point cloud, survey control, and a final control report. Overall the LiDAR data products collected by Atlantic meet or exceed the requirements set out in the Statement of Work. The quality control requirements of Atlantics quality management program were adhered to throughout the acquisition stage fo this project to ensure product quality. For this project the specifications used are as follow: Relative accuracy <= 6cm RMSEZ within individual swaths and <=8 cm RMSEZ or within swath overlap (between adjacent swaths). UTM coordinate system, meters, zone 18, horizontal datum NAD83, vertical datum NAVD88, Geoid 12A |
Process Date/Time | 2013-03-01 00:00:00 |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | 3 |
---|---|
» Description |
The Atlantic Group (Atlantic) and Laser Mapping Specialist, Inc (LMSI) completed LiDAR data acquisition and data calibration for the USGS Norfolk, VA LiDAR project area. The project area included approximately 1,130 contiguous square miles for portions of Virginia and North Carolina. Dewberry elected to subcontract the LiDAR Acquisition and Calibration activities to The Atlantic Group (Atlantic) and Laser Mapping Specialist Inc (LMSI). Atlantic and LMSI were responsible for providing LiDAR acquisition, calibration and delivery of LiDAR data files to Dewberry. Dewberry received high accuracy, calibrated multiple return swath data from Atlantic on May 21, 2013 and from LMSI on June 5, 2013. LMSI planned 90 passes for the Northern portion of the project area as a series of parallel flight lines with cross flightlines for the purposes of quality control. The flight plan included zigzag flight line collection as a result of the inherent IMU drift associated with all IMU systems. In order to reduce any margin for error in the flight plan, LMSI followed FEMAs Appendix A guidelines for flight planning and, at a minimum, includes the following criteria: A digital flight line layout using ALTM-NAV flight management software for direct integration into the aircraft flight navigation system. Planned flight lines; flight line numbers; and coverage area. LiDAR coverage extended by a predetermined margin beyond all project borders to ensure necessary over-edge coverage appropriate for specific task order deliverables. Local restrictions related to air space and any controlled areas have been investigated so that required permissions can be obtained in a timely manner with respect to schedule. Additionally LMSI will file our flight plans as required by local Air Traffic Control (ATC) prior to each mission. LMSI monitored weather and atmospheric conditions and conducted LiDAR missions only when no conditions exist below the sensor that will affect the collection of data. These conditions include leaf-off for hardwoods, no snow, rain, fog, smoke, mist and low clouds. LiDAR systems are active sensors, not requiring light, thus missions may be conducted during night hours when weather restrictions do not prevent collection. LMSI accesses reliable weather sites and indicators (webcams) to establish the highest probability for successful collection in order to position our sensor to maximize successful data acquisition. Within 72-hours prior to the planned day(s) of acquisition, LMSI closely monitored the weather, checking all sources for forecasts at least twice daily. As soon as weather conditions were conducive to acquisition, our aircraft mobilized to the project site to begin data collection. Once on site, the acquisition team took responsibility for weather analysis. |
Process Date/Time | 2013-03-01 00:00:00 |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | 4 |
---|---|
» Description |
All airborne GPS trajectories were processed and checked on site. All trajectories were very high quality with forward/revers separation between 2cm-5cm. The initial step of calibration is to verify availability and status of all needed GPS and Laser data against field notes and compile any data if not complete. If a calibration error greater than specification is observed within the mission, the roll, pitch and scanner scale corrections that need to be applied are calculated. The missions with the new calibration values are regenerated and validated internally once again to ensure quality. Data collected by the LiDAR unit is reviewed for completeness, acceptable density and to make sure all data is captured without errors or corrupted values. In addition, all GPS, aircraft trajectory, mission information, and ground control files are reviewed and logged into a database. On a project level, a supplementary coverage check is carried out to ensure no data voids unreported by Field Operations are present. The initial points for each mission calibration are inspected for flight line errors, flight line overlap, slivers or gaps in the data, point data minimums, or issues with the LiDAR unit or GPS. Roll, pitch and scanner scale are optimized during the calibration process until the relative accuracy is met. Relative accuracy and internal quality are checked using at least 3 regularly spaced QC blocks in which points from all lines are loaded and inspected. Vertical differences between ground surfaces of each line are displayed. Color scale is adjusted so that errors greater than the specifications are flagged. Cross sections are visually inspected across each block to validate point to point, flight line to flight line and mission to mission agreement. Deliverables for the project included a raw (unclassified) calibrated LiDAR point cloud, survey control, and a final control report. Overall the LiDAR data products collected by LMSI meet or exceed the requirements set out in the Statement of Work. The quality control requirements of LMSIs quality management program were adhered to throughout the acquisition stage fo this project to ensure product quality. For this project the specifications used are as follow: Relative accuracy <= 6cm RMSEZ within individual swaths and <=8 cm RMSEZ or within swath overlap (between adjacent swaths). UTM coordinate system, meters, zone 18, horizontal datum NAD83, vertical datum NAVD88, Geoid 12A |
Process Date/Time | 2013-03-01 00:00:00 |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | 5 |
---|---|
» Description |
Dewberry utilizes a variety of software suites for inventory management, classification, and data processing. All LiDAR related processes begin by importing the data into the GeoCue task management software. The swath data is tiled according to project specifications (1,500 m x 1,500 m). The tiled data is then opened in Terrascan where Dewberry uses proprietary ground classification routines to remove any non-ground points and generate an accurate ground surface. Before the actual ground routine is run points with scan angles greater than plus or minus 19 degrees are classified to class 11, withheld. Due to these higher scan angles these points have the potential to introduce issues into the ground and are therefore not used in the final ground surface. The ground routine consists of three main parameters (building size, iteration angle, and iteration distance); by adjusting these parameters and running several iterations of this routine an initial ground surface is developed. The building size parameter sets a roaming window size. Each tile is loaded with neighboring points from adjacent tiles and the routine classifies the data section by section based on this roaming window size. The second most important parameter is the maximum terrain angle, which sets the highest allowed terrain angle within the model. Once the ground routine has been completed a manual quality control routine is done using hillshades, cross-sections, and profiles within the Terrasolid software suite. After this QC step, a peer review and supervisor manual inspection is completed on a percentage of the classified tiles based on the project size and variability of the terrain. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by Dewberry to automatically classify hydrographic features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. During this water classification routine, points that are within 1 meter of the hydrographic features are moved to class 10, an ignored ground due to breakline proximity. In addition to classes 1, 2, 9, 10, and 11, there is a Class 7, noise points . This class was used for both low and high noise points.
The fully classified dataset is then processed through Dewberry's comprehensive quality control program. The data was classified as follows: Class 1 = Unclassified. This class includes vegetation, buildings, noise etc. Class 2 = Ground Class 7= Noise Class 9 = Water Class 10=Ignored Class 11=Withheld Points The LAS header information was verified to contain the following: Class (Integer) Adjusted GPS Time (0.0001 seconds) Easting (0.003 m) Northing (0.003 m) Elevation (0.003 m) Echo Number (Integer 1 to 4) Echo (Integer 1 to 4) Intensity (8 bit integer) Flight Line (Integer) Scan Angle (Integer degree) |
Process Date/Time | 2013-04-01 00:00:00 |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | 6 |
---|---|
» Description |
The NOAA Office for Coastal Management (OCM) received the topographic lidar files in LAS format from USGS. The files contained lidar easting, northing, elevation, intensity, return number, etc. The data was received in State Plane Virginia South 4502 NAD83 NADCON (US ft) and NAVD88 (US ft). OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The files were reviewed and erroneous elevations were removed. 2. Class 11 points (Witheld Points) were reclassified to Class 15 (as needed) to fit OCM DAV class scheme. |
Process Date/Time | 2014-09-24 00:00:00 |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | |
---|---|
» Description | |
Process Date/Time | |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | |
---|---|
» Description | |
Process Date/Time | |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Process Step Number | |
---|---|
» Description | |
Process Date/Time | |
Process Contact | |
Phone (Voice) | |
Email Address | |
Source |
Acquisition Information
Instruments
Instrument Unavailable Reason |
---|
Identifier | |
---|---|
Docucomp UUID | |
Instrument / Gear | |
Instrument Type | |
Description |
Identifier | |
---|---|
Docucomp UUID | |
Instrument / Gear | |
Instrument Type | |
Description |
Identifier | |
---|---|
Docucomp UUID | |
Instrument / Gear | |
Instrument Type | |
Description |
Platforms
Platform Unavailable Reason |
---|
Identifier | |||||||
---|---|---|---|---|---|---|---|
Docucomp UUID | |||||||
Description | |||||||
Mounted Instruments |
|||||||
|
Identifier | |||||||
---|---|---|---|---|---|---|---|
Docucomp UUID | |||||||
Description | |||||||
Mounted Instruments |
|||||||
|
Identifier | |||||||
---|---|---|---|---|---|---|---|
Docucomp UUID | |||||||
Description | |||||||
Mounted Instruments |
|||||||
|
FAQs
Date | |
---|---|
Author | |
Question | |
Answer |
Child Items
Rubric scores updated every 15m
Score | Type | Title |
---|---|---|
Related Items
Item Type | Relationship Type | Title |
---|---|---|
Catalog Details
Catalog Item ID | 50134 |
---|---|
Metadata Record Created By | Anne Ball |
Metadata Record Created | 2017-11-15 15:24+0000 |
Metadata Record Last Modified By | SysAdmin InPortAdmin |
» Metadata Record Last Modified | 2022-08-09 17:11+0000 |
Metadata Record Published | 2022-03-16 |
Owner Org | OCMP |
Metadata Publication Status | Published Externally |
Do Not Publish? | N |
Metadata Workflow State | Published / External |
Metadata Last Review Date | 2022-03-16 |
Metadata Review Frequency | 1 Year |
Metadata Next Review Date | 2023-03-16 |
Tags |
---|