Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

1.2. Summary description of the data:
Earth Eye collected LiDAR data for approximately 4,589 square kilometers that partially cover the Connecticut counties of Hartford, Tolland, Windham, Middlesex and New London. The nominal pulse spacing for this project was no greater than 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 7-Noise, 9-Water. Dewberry produced 3D breaklines and combined these with the final LiDAR data to produce seamless hydro flattened DEMs for the 4,840 tiles (1000 m x 1000 m) that cover the project area.

1.3. Is this a one-time data collection, or an ongoing series of measurements?
One-time data collection

1.4. Actual or planned temporal coverage of the data:
2010-11-03 to 2010-12-11

1.5. Actual or planned geographic coverage of the data:
W: -72.645174, E: -71.787609, N: 42.034505, S: 41.296986

1.6. Type(s) of data:
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.) las

1.7. Data collection method(s):
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:
1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:
NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:
Metadata Contact

2.3. Affiliation or facility:
NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:
coastal.info@noaa.gov

2.5. Phone number:
(843) 740-1202

3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:
Data Steward

4. Resources
Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible
(describe or provide URL of description):
Process Steps:
Data Management Plan

- 2011-12-01 00:00:00 - Data for the U.S. Corp of Engineers High Resolution LiDAR Data Acquisition & Processing for Portions of Connecticut project was acquired by Earth Eye, LLC. The project area included approximately 1,741 contiguous square miles for portions of Connecticut including a buffer of 200 meters. LiDAR sensor data were collected with an Leica ALS60 sn146 LIDAR System. No imagery was requested or delivered. The data was delivered in the UTM coordinate system, meters, zone 18, horizontal datum NAD83, vertical datum NGVD88, Geoid 09. Deliverables for the project included a raw (unclassified) calibrated LiDAR point cloud, survey control, and a final control report. The calibration process considered all errors inherent with the equipment including errors in GPS, IMU, and sensor specific parameters. Adjustments were made to achieve a flight line to flight line data match (relative calibration) and subsequently adjusted to control for absolute accuracy. Process steps to achieve this are as follows: Rigorous LiDAR calibration: all sources of error such as the sensor's ranging and torsion parameters, atmospheric variables, GPS conditions, and IMU offsets were analyzed and removed to the highest level possible. This method addresses all errors, both vertical and horizontal in nature. Ranging, atmospheric variables, and GPS conditions affect the vertical position of the surface, whereas IMU offsets and torsion parameters affect the data horizontally. The horizontal accuracy is proven through repeatability: when the position of features remains constant no matter what direction the plane was flying and no matter where the feature is positioned within the swath, relative horizontal accuracy is achieved. Absolute horizontal accuracy is achieved through the use of differential GPS with base lines shorter than 25 miles. The base station is set at a temporary monument that is 'tied-in' to the CORS network. The same position is used for every lift, ensuring that any errors in its position will affect all data equally and can therefore be removed equally. Vertical accuracy is achieved through the adjustment to ground control survey points within the finished product. Although the base station has absolute vertical accuracy, adjustments to sensor parameters introduces vertical error that must be normalized in the final (mean) adjustment. The minimum expected horizontal accuracy was tested during the boresight process to meet or exceed the National Standard for Spatial Data Accuracy (NSSDA) for a Horizontal accuracy of 1 meter RMSE or better and a Vertical Accuracy of RMSE(z) = 9.25 cm.

- 2012-01-01 00:00:00 - Earth Eye delivered LiDAR swaths to Dewberry that were calibrated and projected to project specifications. Dewberry processed the data using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine removes any obvious outliers from the dataset following which the ground layer is extracted from the point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model. This surface model is generated using three main parameters:
building size, iteration angle and iteration distance. The initial model is based on
low points being selected by a “roaming window” with the assumption is that these
are the ground points. The size of this roaming window is determined by the
building size parameter. The low points are triangulated and the remaining points
are evaluated and subsequently added to the model if they meet the iteration angle
and distance constraints. This process is repeated until no additional points are
added within iterations. A second critical parameter is the maximum terrain angle
constraint, which determines the maximum terrain angle allowed within the
classification model. Dewberry utilizes a variety of software suites for data
processing. After the initial ground classification, each tile was imported into
Terrascan and a surface model was created to examine the ground classification.
Dewberry analysts visually reviewed the ground surface model and corrected
errors in the ground classification such as vegetation, buildings, and bridges that
were present following the initial processing. Dewberry analysts employ 3D
visualization techniques to view the point cloud at multiple angles and in profile to
ensure that non-ground points are removed from the ground classification. After
the ground classification corrections were completed, the dataset was processed
through a water classification routine that utilizes breaklines compiled by
Dewberry to automatically classify hydro features. The water classification routine
selects ground points within the breakline polygons and re-classifies them as class 9,
water. The data was classified as follows: Class 1 = Unclassified. This class includes
vegetation, buildings, noise etc. Class 2 = Ground Class 7= Noise Class 9 = Water The
LAS header information was verified to contain the following: Class (Integer) GPS
Week Time (0.0001 seconds) Easting (0.01 foot) Northing (0.01 foot) Elevation (0.01
foot) Echo Number (Integer 1 to 4) Echo (Integer 1 to 4) Intensity (8 bit integer)
Flight Line (Integer) Scan Angle (Integer degree)
- 2013-11-01 00:00:00 - The NOAA Office for Coastal Management (OCM) received
topographic files in LAS V1.2 format. The files contained lidar elevation
measurements, intensity values, scan angle values, return information, flightline
information, and adjusted standard GPS time. The data were received in UTM Zone
18N, NAD83 coordinates and were vertically referenced to NAVD88 using the
Geoid09 model. The vertical units of the data were meters. OCM performed the
following processing for data storage and Digital Coast provisioning purposes: 1.
The topographic las files were converted from orthometric (NAVD88) heights to
ellipsoidal heights using Geoid09. 2. The topographic las files were converted from a
Projected Coordinate System (UTM Zone 18N) to a Geographic Coordinate System (NAD83). 3. The topographic las files’ horizontal units were converted from meters
to decimal degrees.

5.1.1. If data at different stages of the workflow, or products derived from these
data, are subject to a separate data management plan, provide reference to other
plan:

5.2. Quality control procedures employed (describe or provide URL of description):
6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?

No

6.1.1. If metadata are non-existent or non-compliant, please explain:

- Missing/invalid information:
 - 1.7. Data collection method(s)
 - 3.1. Responsible Party for Data Management
 - 4.1. Have resources for management of these data been identified?
 - 4.2. Approximate percentage of the budget for these data devoted to data management
 - 5.2. Quality control procedures employed
 - 7.1. Do these data comply with the Data Access directive?
 - 7.1.1. If data are not available or has limitations, has a Waiver been filed?
 - 7.1.2. If there are limitations to data access, describe how data are protected
 - 7.4. Approximate delay between data collection and dissemination
 - 8.1. Actual or planned long-term data archive location
 - 8.3. Approximate delay between data collection and submission to an archive facility
 - 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/49655

6.4. Process for producing and maintaining metadata

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by
security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:
NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2598

7.3. Data access methods or services offered:
This data can be obtained on-line at the following URL:

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2598

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:
Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)

8.1.1. If World Data Center or Other, specify:
8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:

8.2. Data storage facility prior to being sent to an archive facility (if any):
Office for Coastal Management - Charleston, SC

8.3. Approximate delay between data collection and submission to an archive facility:

8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.