Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

2006 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Eastern Washington and River Corridors

1.2. Summary description of the data:

Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data in eastern Washington, eastern Oregon, and southern Canada in October and November, 2006 for the Puget Sound LiDAR Consortium.

The survey areas cover portions of the lower Okanogan River in Washington, the Methow River in Washington, Lake Roosevelt in Washington, the Wenatchee River in Washington, and the John Day River in Oregon. The upper Okanogan River area, in Canada, was excluded from this project the data does not lie in borders of the United States.

The total delivered acreage for the study areas shown above is >26,000 acres greater than the original amount, due to buffering of the original study areas and flight planning optimization.

Collection dates for the project areas:

----- Lower Okanogan (WA) 20060506 ----- Methow (WA) 20061108-20061109 ----- Lake Roosevelt (WA) 20061016-20061020 & 20061029-20061101 ----- John Day River (OR) 20061005-20061007 ----- Wenatchee (WA) 20061012-20061013 & 20061025-20061028

1.3. Is this a one-time data collection, or an ongoing series of measurements?

One-time data collection
1.4. Actual or planned temporal coverage of the data:
2006-05-06 to 2006-11-09

1.5. Actual or planned geographic coverage of the data:
W: -120.9646779, E: -117.7205329, N: 48.9570696, S: 44.43660155

1.6. Type(s) of data:
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)

1.7. Data collection method(s):
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy,
research vessel, autonomous underwater vehicle, animal tagging, manual surveys,
enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:
NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:
Metadata Contact

2.3. Affiliation or facility:
NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:
coastal.info@noaa.gov

2.5. Phone number:
(843) 740-1202

3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:
Data Steward

4. Resources
Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible
(describe or provide URL of description):

Process Steps:
- Acquisition. The LiDAR surveys utilized two different laser systems - the Leica ALS50 Phase II and the Optech 3100. Flight parameters were different for each system, resulting in different native pulse densities (the number of pulses emitted by the LiDAR system from the aircraft). Some types of surfaces (e.g., dense vegetation or water) may return fewer pulses than the laser originally emitted. Therefore, the delivered density can be less than the native density and lightly variable according to distributions of terrain, land cover and water bodies. All study areas were surveyed with opposing flight line side-lap of =50% (=100% overlap) to reduce laser shadowing and increase surface laser painting. Both laser systems allow up to four range measurements per pulse, and all discernable laser returns were processed for the output dataset.
- 1. Flight lines and data were reviewed to ensure complete coverage of the study area and positional accuracy of the laser points. 2. Laser point return coordinates were computed using ALS Post Processor software, IPAS Pro GPS/INS software, and Waypoint GPS, based on independent data from the LiDAR system, IMU, and aircraft. 3. The raw LiDAR file was assembled into flight lines per return with each point having an associated x, y, and z coordinate. 4. Visual inspection of swath to swath laser point consistencies within the study area were used to perform manual refinements of system alignment. 5. Custom algorithms were designed to evaluate points between adjacent flight lines. Automated system alignment was computed based upon randomly selected swath to swath accuracy measurements that consider elevation, slope, and intensities. Specifically, refinement in the combination of system pitch, roll and yaw offset parameters optimize internal consistency. 6. Noise (e.g., pits and birds) was filtered using ALS postprocessing software, based on known elevation ranges and included the removal of any cycle slips. 7. Using TerraScan and Microstation, ground classifications utilized custom settings appropriate to the study area. 8. The corrected and filtered return points were compared to the RTK ground survey points collected to verify the vertical and horizontal accuracies. 9. Points were output as laser points, TINed and GRIDed.
The NOAA Office for Coastal Management (OCM) downloaded topographic files in text format from PSLC's website. The files contained lidar easting, northing, elevation, intensity, return number, class, scan angle and GPS time measurements. Lake Roosevelt, John Day River and Lower Okanogan data was received in UTM Zone 10 (in meters); Wenatchee and Methow data were received in UTM Zone 11 (in meters); all datasets were vertically referenced to NAVD88 using the Geoid03 model. The vertical units of the data were meters. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The All-Return ASCII txt files were parsed to LAS files. 2. The All-Return ASCII files were converted from txt format to las format using LASTools’ txt2las tool and reclassified to fit the OCM class list, N=1 (unclassified), G=2 (ground). 3. Bad elevations were removed the las files. 4. The las files were converted from a Projected Coordinate System (UTM Zone 10/11) to a Geographic Coordinate system (NAD83).

5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?
No

6.1.1. If metadata are non-existent or non-compliant, please explain:
Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive
facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

6.2. Name of organization or facility providing metadata hosting:
NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:
https://www.fisheries.noaa.gov/inport/item/50153

6.4. Process for producing and maintaining metadata
(describe or provide URL of description):
Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:
NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2596
https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/2596

7.3. Data access methods or services offered:
This data can be obtained on-line at the following URL:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2596

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)

8.1.1. If World Data Center or Other, specify:

8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:

8.2. Data storage facility prior to being sent to an archive facility (if any):
Office for Coastal Management - Charleston, SC

8.3. Approximate delay between data collection and submission to an archive facility:

8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.