Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:
2010 USGS Lidar: Nome Creek, Alaska

1.2. Summary description of the data:
The NOAA Office for Coastal Management (OCM) downloaded this lidar data from the USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/LPC/Projects/AK_NomeCreek_2010/ and processed the data to be available on the Digital Coast Data Access Viewer (DAV). NOAA Office for Coastal Management processed all classifications of points to the Digital Coast Data Access Viewer (DAV). Classes available on the DAV are: 1 (Unclassified/Unknown. Data from overlapping flightlines that were not used for generating elevation/surface models are marked with the withheld flag (bit 7 of the classification word), 2 (Ground), 7 (Noise).

The U.S. Geological Survey (USGS) has a requirement for high resolution digital elevation models (DEM) and LiDAR returns needed for mapping canopy heights. The vertical accuracy shall be less than 30 cm vertical RMSEz. This data will be used in the USGS Nome Creek project on the intensive site in Nome Creek.

The Nome Creek LiDAR project was carried out to provide high accuracy processed LiDAR data suitable for the approximately 90 square miles of the project area.

1.3. Is this a one-time data collection, or an ongoing series of measurements?
One-time data collection

1.4. Actual or planned temporal coverage of the data:
2010-10-05

1.5. Actual or planned geographic coverage of the data:
W: -147.244659, E: -146.861693, N: 65.425426, S: 65.283584

1.6. Type(s) of data: (e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
digital point data

1.7. Data collection method(s):
1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:
NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:
Metadata Contact

2.3. Affiliation or facility:
NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:
coastal.info@noaa.gov

2.5. Phone number:
(843) 740-1202

3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:
Data Steward

4. Resources
Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"): 

5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality,
objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible
(describe or provide URL of description):

Process Steps:

- 2010-11-16 00:00:00 - The LiDAR data was captured using AERO-METRIC’s twin-engine, fixed wing aircraft equipped with a LiDAR system. The LiDAR system includes a differential GPS unit and inertial measurement system to provide superior accuracy. Acquisition parameters: 1. Scanner - Optech ALTM Gemini 2. Flight Height - 3800m above mean terrain 3. Scan Angle - 14 degrees 4. Sidelap - 50% for both areas 5. Nominal Post Spacing - 2.095 meters GPS and IMU processing parameters: 1. Processing Programs and version - Applanix - POSGPS and POSProc, versions 4.4 2. Maximum baseline length - Not greater than 40km. 3. IMU processing monitored for consistency and smoothness - Yes. Point Cloud Processing:

1. Program and version - Optech LMS 2. Horizontal Datum - NAD83(CORS96) 3. Horizontal Coordinates - Universal Transverse Mercator, Zone 6, in Meters. 4. Vertical Datum - NAVD88 5. Geoid Model used to reduce ellipsoid heights to orthometric elevations - NGS Geoid06. LiDAR Processing: 1. Processing Programs and versions - TerraSolid TerraScan (version 009.004), TerraModeler (version 009.001 and TerraMatch (version 009.001) and Intergraph MicroStation (version.08.01.02.15). 2. Point Cloud data is imported to TerraScan in a Microstation V8 (V) CAD environment on a specified 5000 foot by 5000 foot tiling scheme. 3. Analyze the data for overall completeness and consistency. This is to ensure that there are no voids in the data collection. 4. Inspect for calibration errors in the dataset using the TerraMatch software. This is accomplished by sampling the data collected across all flight lines and classifying the individual lines to ground. The software will use the ground-classified lines to compute corrections (Heading, Pitch, Roll, and Scale). 5. Orientation corrections (i.e. Calibration corrections) are then applied (if needed) to the entire dataset. 6. Automatic ground classification is performed using algorithms with customized parameters to best fit the project area. Several areas of varying relief and planimetric features were inspected to verify the final ground surface. 7. Design Alaska, INC. provided Quality Assurance and Quality Control (QAQC) data for this project. Design Alaska captured QA/QC points in ‘open terrain’ land cover category that were used to test the accuracy of the LiDAR ground surface. TerraScan’s Output Control Report (OCR) was used to compare the QAQC data to the LiDAR data. This routine searches the LiDAR dataset by X and Y coordinate, finds the closest LiDAR point and compares the vertical (Z) values to the known data collected in the field. Based on the QAQC data, a bias adjustment was determined, and the results were applied to the LiDAR data. A final OCR was performed with a resulting RMSE of 0.10m. 8. Once the automatic processing and the testing of LiDAR is complete, AERO-METRIC meticulously reviews the generated bare-earth surface data to ensure that proper classification was achieved as part of a Quality Control process. 9. Final deliverables are generated and output to a 1000m by 1000m tiling scheme in accordance with client specifications.
- 2018-05-17 00:00:00 - The NOAA Office for Coastal Management (OCM) downloaded 267 laz files from the USGS rockyftp site. The files contained elevation and intensity measurements for the Nome Creek, Alaska project area. The data were in UTM Zone 6 coordinates and NAVD88 (Geoid06) elevations in meters. The data were classified as: 1 - Unclassified, 2 - Ground, 7 - Noise. The NOAA Office for Coastal Management processed all classifications of points to the Digital Coast Data Access Viewer (DAV). Classes available on the DAV are: 1, 2, 7. OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. The LAStools software scripts lasinfo and lasvalidate were run on the laz files to check for errors. 2. An internal OCM script was run to check the number of points by classification and by flight ID and the gps and intensity ranges. 3. Internal OCM scripts were run on the laz files to convert from orthometric (NAVD88) elevations to ellipsoid elevations using the Geoid06 model, to convert from UTM Zone 6 coordinates to geographic coordinates, to assign the geokeys, to sort the data by gps time and zip the data to database and to http.

5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?

No

6.1.1. If metadata are non-existent or non-compliant, please explain:

Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive
- How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

6.2. Name of organization or facility providing metadata hosting:
NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:
https://www.fisheries.noaa.gov/inport/item/52686

6.4. Process for producing and maintaining metadata
(describe or provide URL of description):
Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:
NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=8531
https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/8531

7.3. Data access methods or services offered:
Data is available online for custom and bulk downloads.

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)

8.1.1. If World Data Center or Other, specify:

8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:

8.2. Data storage facility prior to being sent to an archive facility (if any):
Office for Coastal Management - Charleston, SC

8.3. Approximate delay between data collection and submission to an archive facility:

8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.