Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:
2018 USGS Lidar: Matagorda Bay, TX

1.2. Summary description of the data:
Geographic Extent: The entire project area covers 705 square miles in coastal Texas along Matagorda Bay.

Dataset Description: This TX_Matagorda Bay_2018_D18 project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at an aggregate nominal pulse spacing (ANPS) of 1.0 meters (4ppsm). Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011), Universal Transverse Mercator zone 14N, meters and vertical datum of NAVD88 (GEOID12B), meters. Lidar data was delivered as processed Classified LAS 1.4 files, formatted to 1500 m x 1500 m tiles, as tiled Intensity Imagery, and as tilled bare earth DEMs; all tiled to the same 1500 m x 1500 m schema.

Ground Conditions: Lidar data was collected from January 24 through January 29, 2019 while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Terrasurv, Inc. established a total of 12 ground control points that were used to calibrate the lidar to known ground locations established throughout the entire project area. An additional 80 independent accuracy checkpoints, 45 NVA points and 35 VVA points, were used to assess the vertical accuracy of the data. One additional NVA checkpoint collected by Terrasurv in 2018 was used to assess the vertical accuracy of the raw point cloud data along with the 45 NVA points collected in 2019. These checkpoints were not used to calibrate or post process the data.

NOAA's OCM retrieved the data from the USGS RockyFTP website. Data were in UTM zones 14 & 15N and had the following classificaitons; 1 - Never Classified, 2 - Ground, 3 - Low Vegetation, 4 - Medium Vegetation, 5 - High Vegetation, 6 - Building, 7 - Low Noise, 9 - Water, 10 - Ignored Ground, 14 - Culvert, 17 - Bridge Deck. All files and classifications were processed to the Digital Coast. Derived products may be retrieved from the USGS National Map.
1.3. Is this a one-time data collection, or an ongoing series of measurements?
 One-time data collection

1.4. Actual or planned temporal coverage of the data:

1.5. Actual or planned geographic coverage of the data:
 W: -96.392059, E: -95.936004, N: 29.141899, S: 28.358147

1.6. Type(s) of data:
 (e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
 Model (digital)

1.7. Data collection method(s):
 (e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy,
 research vessel, autonomous underwater vehicle, animal tagging, manual surveys,
 enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

 1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

 2.1. Name:
 NOAA Office for Coastal Management (NOAA/OCM)

 2.2. Title:
 Metadata Contact

 2.3. Affiliation or facility:
 NOAA Office for Coastal Management (NOAA/OCM)

 2.4. E-mail address:
 coastal.info@noaa.gov

 2.5. Phone number:
 (843) 740-1202

3. Responsible Party for Data Management
 Program Managers, or their designee, shall be responsible for assuring the proper management of
 the data produced by their Program. Please indicate the responsible party below.

 3.1. Name:
3.2. Title:
Data Steward

4. Resources
Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?
Yes

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):
Unknown

5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible
(describe or provide URL of description):
Process Steps:
- 2019-02-15 00:00:00 - Flight status was communicated during data collection. All acquired lidar data went through a preliminary review to assure that complete coverage had been obtained and that there were no gaps between flight lines before the flight crew left the project site. Once back in the office, the data was run through a complete iteration of processing to ensure that it is complete, uncorrupted, and that the entire project area has been covered without gaps between flight lines. There are essentially three steps to this processing: 1) GPS/IMU Processing - Airborne GPS and IMU data was processed using the airport GPS base station data. The following GPS base station was utilized: Fugro (FGI_8003, TXPV, TXBC, FUSAL_100, temp_LBX). 2) Raw Lidar Data Processing - Technicians processed the raw data to LAS format flight lines with full resolution output before performing QC. A starting configuration file is used in this process, which contains the latest calibration parameters for the sensor. The technicians also generated flight line trajectories for each of the flight lines during this process. 3) Verification of Coverage and Data Quality - Technicians checked trajectory files to ensure completeness of acquisition for the flight lines, calibration lines, and cross flight lines. The intensity images were generated for the entire lift at the required 0.5 meter ANPS. Visual checks of the intensity images against the project boundary were performed to ensure full coverage to the 100 meter buffer beyond the project boundary. The intensity histogram was analyzed to ensure the quality of the intensity values. The technician also thoroughly reviewed the data for any gaps in project area. The technician generated a sample TIN surface to ensure no anomalies were present in the data. Turbulence was inspected for each flight line; if any adverse quality issues were discovered, the flight line was rejected and re-flown. The technician also evaluated the achieved post spacing against project specified 1.0
meter ANPS as well as making sure there is no clustering in point distribution. - 2019-03-30 00:00:00 - The boresight for each lift was done individually as the solution may change slightly from lift to lift. The following steps describe the Raw Data Processing and Boresight process: 1) Technicians processed the raw data to LAS format flight lines using the final GPS/IMU solution. This LAS data set was used as source data for boresight. 2) Technicians first used Fugro proprietary and commercial software to calculate initial boresight adjustment angles based on sample areas within the lift. These areas cover calibration flight lines collected in the lift, cross tie and production flight lines. These areas are well distributed in the lift coverage and cover multiple terrain types that are necessary for boresight angle calculation. The technician then analyzed the results and made any necessary additional adjustment until it is acceptable for the selected areas. 3) Once the boresight angle calculation was completed for the selected areas, the adjusted settings were applied to all of the flight lines of the lift and checked for consistency. The technicians utilized commercial and proprietary software packages to analyze the matching between flight line overlaps for the entire lift and adjusted as necessary until the results met the project specifications. 4) Once all lifts were completed with individual boresight adjustment, the technicians checked and corrected the vertical misalignment of all flight lines and also the matching between data and ground truth. The relative accuracy was 6 cm within individual swaths (smooth surface repeatability) and 8 cm RMSD within swath overlap (between adjacent swaths) with a maximum difference of ± 16 cm. 5) The technicians ran a final vertical accuracy check of the boresighted flight lines against the surveyed check points after the z correction to ensure the requirement of RMSEz (non-vegetated) 10 cm, NVA 19.6 cm 95% Confidence Level was met. - 2019-03-30 00:00:00 - Once boresighting was complete for the project, the project was first set up for automatic classification. The lidar data was cut to production tiles. The low noise points, high noise points and ground points were classified automatically in this process. Fugro utilized commercial software, as well as proprietary, in-house developed software for automatic filtering. The parameters used in the process were customized for each terrain type to obtain optimum results. Once the automated filtering was completed, the files were run through a visual inspection to ensure that the filtering was not too aggressive or not aggressive enough. In cases where the filtering was too aggressive and important terrain were filtered out, the data was either run through a different filter within local area or was corrected during the manual filtering process. Bridge deck points were classified as well during the interactive editing process. Interactive editing was completed in visualization software that provides manual and automatic point classification tools. Fugro utilized commercial and proprietary software for this process. All manually inspected tiles went through a peer review to ensure proper editing and consistency. After the manual editing and peer review, all tiles went through another final automated classification routine. This process ensures only the required classifications are used in the final product (all points classified into any temporary classes during manual editing will be re-classified into the project
specified classifications). Once manual inspection, QC and final autofilter is complete for the lidar tiles, the LAS data was packaged to the project specified tiling scheme, clipped to project boundary including the 100 meter buffer and formatted to LAS v1.4. It was also re-projected to UTM Zone 14 north; NAD83 (2011), meters; NAVD88 (GEOID12B), meters. The file header was formatted to meet the project specification with File Source ID assigned. This Classified Point Cloud product was used for the generation of derived products. This product was delivered in fully compliant LAS v1.4, Point Record Format 6 with Adjusted Standard GPS Time at a precision sufficient to allow unique timestamps for each pulse. Correct and properly formatted georeference information as Open Geospatial Consortium (OGC) well known text (WKT) was assigned in all LAS file headers. Each tile has unique File Source ID assigned. The Point Source ID matches to the flight line ID in the flight trajectory files. Intensity values are included for each point, normalized to 16-bit. The following classifications are included: Class 1 – Processed, but unclassified; Class 2 – Bare earth ground; Class 3, Low Vegetation; Class 4, Medium Vegetation; Class 5, High Vegetation; Class 6, Building; Class 7 – Low Noise; Class 9 – Water; Class 10 – Ignored Ground; Class 14, Culverts; Class 17 – Bridge Decks; and Class 18 – High Noise. The classified point cloud data was delivered in tiles without overlap using the project tiling scheme.

- NOAA’s OCM retrieved the data from the USGS RockyFTP website. Data were in UTM zones 14 & 15N and had the following classifications; 1 - Never Classified, 2 - Ground, 3 - Low Vegetation, 4 - Medium Vegetation, 5 - High Vegetation, 6 - Building, 7 - Low Noise, 9 - Water, 10 - Ignored Ground, 14 - Culvert, 17 - Bridge Deck. All files and classifications were processed to the Digital Coast. Derived products may be retrieved from the USGS National Map. OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. An internal OCM script was run to check the number of points by classification and by flight ID and the gps and intensity ranges. 2. Internal OCM scripts were run on the laz files to convert from orthometric (NAVD88) elevations to ellipsoid elevations using the Geoid12b model, to convert from UTM 14 & 15, NAD83 (2011), meters coordinates to geographic coordinates, to assign the geokeys, to sort the data by gps time and zip the data to database and to http.

5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
6.1. Does metadata comply with EDMC Data Documentation directive?
No

6.1.1. If metadata are non-existent or non-compliant, please explain:
- Missing/invalid information:
 - 1.7. Data collection method(s)
 - 3.1. Responsible Party for Data Management
 - 5.2. Quality control procedures employed
 - 7.1. If data are not available or has limitations, has a Waiver been filed?
 - 7.4. Approximate delay between data collection and dissemination
 - 8.3. Approximate delay between data collection and submission to an archive facility

6.2. Name of organization or facility providing metadata hosting:
NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:
https://www.fisheries.noaa.gov/inport/item/58921

6.4. Process for producing and maintaining metadata
(describe or provide URL of description):
Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?
Yes

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:
7.2. Name of organization of facility providing data access:
NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9029

7.3. Data access methods or services offered:
Data is available online for bulk or custom downloads

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
NCEI_CO

8.1.1. If World Data Center or Other, specify:

8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:

8.2. Data storage facility prior to being sent to an archive facility (if any):
Office for Coastal Management - Charleston, SC

8.3. Approximate delay between data collection and submission to an archive facility:

8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
Data is backed up to tape and to cloud storage.

9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.