Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:
2017 OLC Lidar: Baker County, OR

1.2. Summary description of the data:
Geographic Extent: OLC Baker County 3DEP 2017 defined project area (DPA) extends approximately 224,286 acres; the buffered project area (BPA) covers approximately 229,671 acres.

Dataset Description: The OLC Baker County 3DEP 2017 LiDAR project called for the Planning, Acquisition, processing and derivative products of LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program LiDAR Base Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD83 (2011), meters and vertical datum of NAVD88 Geoid 12B, meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to individual 0.075 USGS quadrangle tiles, and corresponding hydroconditioned Bare Earth DEMs tiled to 7.5 USGS quadrangle schema, and Breaklines in ESRI File-Geodatabase format.

Ground Conditions: LiDAR was collected while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, QSI established a total of 34 QA control points and 637 control points that were used to calibrate the LIDAR to known ground locations established throughout the OLC Baker County 3DEP 2017 project area.

1.3. Is this a one-time data collection, or an ongoing series of measurements?
One-time data collection

1.4. Actual or planned temporal coverage of the data:
2017-09-26 to 2017-09-30

1.5. Actual or planned geographic coverage of the data:
W: -117.55254, E: -116.843571, N: 44.997606, S: 44.285409

1.6. Type(s) of data:
1.7. **Data collection method(s):**
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. **If data are from a NOAA Observing System of Record, indicate name of system:**

1.8.1. **If data are from another observing system, please specify:**

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. **Name:**
NOAA Office for Coastal Management (NOAA/OCM)

2.2. **Title:**
Metadata Contact

2.3. **Affiliation or facility:**
NOAA Office for Coastal Management (NOAA/OCM)

2.4. **E-mail address:**
coastal.info@noaa.gov

2.5. **Phone number:**
(843) 740-1202

3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. **Name:**

3.2. **Title:**
Data Steward

4. Resources
Programs must identify resources within their own budget for managing the data they produce.

4.1. **Have resources for management of these data been identified?**
Yes

4.2. **Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):**
5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

*(describe or provide URL of description):

Process Steps:

- 2017-10-01 00:00:00 - Lidar Pre-Processing: Airborne GPS and IMU data were merged to develop a Single Best Estimate (SBET) of the lidar system trajectory for each lift. Lidar ranging data were initially calibrated using previous best parameters for this instrument and aircraft. Relative calibration was evaluated using advanced plane-matching analysis and parameter corrections derived. This was repeated iteratively until residual errors between overlapping swaths, across all project lifts, was reduced to acceptable levels. Data were then block adjusted to match surveyed calibration control. Raw data NVA were checked using independently surveyed checkpoints. Swath overage points were identified and tagged within each swath file.

- 2017-10-01 00:00:00 - Lidar Post-Processing: The calibrated and controlled lidar swaths were processed using automatic point classification routines in proprietary software. These routines operate against the entire collection (all swaths, all lifts), eliminating character differences between files. Data were then distributed as virtual tiles to experienced lidar analysts for localized automatic classification, manual editing, and peer-based QC checks. Supervisory QC monitoring of work in progress and completed editing ensured consistency of classification character and adherence to project requirements across the entire project area. All classification tags are stored in the original swath files. After completion of classification and final QC approval, the NVA for the project is calculated. Sample areas for each land cover type present in the project area were extracted and forwarded to the U.S. Geological Survey, for Vegetated Vertical Accuracy (VVA) accuracy tests. Upon acceptance, the complete classified lidar swath files were delivered to the U.S. Geological Survey.

- 2017-10-01 00:00:00 - Classified LAS Processing: The bare earth surface is then manually reviewed to ensure correct classification on the Class 2 (Ground) points. After the bare-earth surface is finalized, it is then used to generate all hydro-breaklines through heads-up digitization. All ground (ASPRS Class 2) LiDAR data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (ASPRS Class 9) using TerraScan macro functionality. A buffer of 0.35 meters was also used around each hydro-flattened feature to classify these ground (ASPRS Class 2) points to Ignored ground (ASPRS Class 10). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) points were reclassified to the correct classification after the automated classification was completed. All overlap data was processed through
automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes by USGS. The overlap data was classified to Class 18 (High Noise) and Class 129 (Overlap Ground). These classes were created through automated processes only and were not verified for classification accuracy. Due to software limitations within TerraScan, these classes were used to trip the withheld bit within various software packages. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. ArcMap was used as a final check of the bare earth dataset. QSI proprietary software was then used to create the deliverable industry-standard LAS files. QSI proprietary software was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information.

- 2017-10-01 00:00:00 - Hydro Flattening Breakline Processing: Class 2 LiDAR was used to create a bare earth surface model. Proprietary software utilized rasters created within Bentley Microstation to auto-generate breaklines of inland streams and rivers with a 30 meter nominal width which were then manually inspected and digitized. Breaklines for Lakes with surface area greater than 2 acres were generated using heads-up digitization. Elevation values were assigned to all Inland Ponds and Lakes within ESRI ArcMap; Inland Pond and Lake Islands, Inland Stream and River Islands were assigned elevation values from within ESRI ArcMap.

All ground (ASPRS Class 2) LiDAR data inside of the collected inland breaklines were then classified to water (ASPR Class 9) using TerraScan macro functionality. A buffer of 0.35 meters was also used around each hydro-flattened stream. These points were moved from ground (ASPR Class 2) to Ignored Ground (ASPR Class 10). The breakline files were then translated to ESRI File-Geodatabase format using ESRI conversion tools.

- 2017-10-01 00:00:00 - Hydro Flattened Raster DEM Process: Class 2 LiDAR in conjunction with the hydro breaklines were used to create a hydro-flattened DEM. Using automated scripting routines within Bentley Microstation, ascii files were created for each tile. The ascii files are then mosaicked together in ArcMap and reviewed for surface anomalies.

- The NOAA Office for Coastal Management (OCM) received 1,838 laz files from the Oregon Lidar Consortium/ DOGAMI. The data were in UTM Zone 11N (NAD83 2011) coordinates in meters and NAVD88 (Geoid12b) elevations in meters. The data were classified as: 1 - Unclassified, 2 - Ground, 7 - Low Noise, 9 - Water, 10 - Ignored Ground, 17 - Bridge Decks, 18 - High Noise. OCM processed all classifications of points to the Digital Coast Data Access Viewer (DAV). Classes available on the DAV are: 1, 2, 3, 7, 9, 10, 17, 18. OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. An internal OCM script was run to check the number of points by classification and by flight ID and the GPS and intensity ranges. 2. Internal OCM scripts were run on the laz files to convert from orthometric (NAVD88) elevations to ellipsoid elevations using the Geoid12b model, to convert from UTM Zone 11N (NAD83 2011) coordinates in meters to geographic coordinates, to assign the geokeys, to sort the data by GPS time and zip the data to
database and to http.

5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive?

No

6.1.1. If metadata are non-existent or non-compliant, please explain:

Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/58983

6.4. Process for producing and maintaining metadata

(describe or provide URL of description):

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance,
recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?
Yes

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:
NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:
https://coast.noaa.gov/dataviewer/#/lidar/search?where:ID=9043
https://coast.noaa.gov/htdata/lidar3_z/geoid18/data/9043

7.3. Data access methods or services offered:
Data is available online for bulk or custom downloads

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
NCEI-CO

8.1.1. If World Data Center or Other, specify:

8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:
8.2. **Data storage facility prior to being sent to an archive facility (if any):**
 Office for Coastal Management - Charleston, SC

8.3. **Approximate delay between data collection and submission to an archive facility:**

8.4. **How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?**
 Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
 Data is backed up to tape and to cloud storage.

9. **Additional Line Office or Staff Office Questions**
 Line and Staff Offices may extend this template by inserting additional questions in this section.