Please provide the following information, and submit to the NOAA DM Plan Repository.

Reference to Master DM Plan (if applicable)

As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.

URL of higher-level DM Plan (if any) as submitted to DM Plan Repository:

1. General Description of Data to be Managed

1.1. Name of the Data, data collection Project, or data-producing Program:

2017 USGS Topobathy Lidar: Everglades National Park, FL

1.2. Summary description of the data:

Product: These lidar data are processed Classified LAS 1.4 files, formatted to individual 1000 m x 1000 m tiles; used to create intensity images, 2D breaklines and Topobathy DEMs as necessary.

Geographic Extent: Florida Everglades National Park covering approximately 1,211 square miles.

Dataset Description: Florida Everglades National Park 2018 Lidar project called for the Planning, Acquisition, processing and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011), Universal Transverse Mercator, meters and vertical datum of NAVD88 (GEOID12B), meters. Lidar data was delivered as processed Classified LAS 1.4 files, formatted to individual 1000 m x 1000 m tiles, as tiled Intensity Imagery, and as tiled bare earth topobathy DEMs; all tiled to the same 1000 m x 1000 m schema.

Ground Conditions: Lidar was collected in early to mid 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Dewberry established a total of 47 ground control points that were used to calibrate the lidar to known ground locations established throughout the Florida Everglades National Park project area. An additional 120 independent accuracy checkpoints, 61 in Bare Earth and Urban landcovers (61 NVA points), 59 in Tall Grass and Brushland/Low Trees categories (59 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

This metadata record reflects the data that are available from the NOAA Digital Coast Data Access Viewer (DAV). The NOAA Office for Coastal Management (OCM) downloaded 3320 laz point data files from these USGS sites:

https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/FL_Everglades_NP_LiDAR_2017_D16/FL_Everglades_N_2017/LAZ/

https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/FL_Everglades_NP_LiDAR_2017_D16/FL_Everglades_S_2017/LAZ/

The data were processed to the NOAA Digital Coast Data Access Viewer (DAV) to make the data available for bulk and custom downloads.

1.3. Is this a one-time data collection, or an ongoing series of measurements?

One-time data collection

1.4. Actual or planned temporal coverage of the data:

2017-04-19 to 2017-06-12

1.5. Actual or planned geographic coverage of the data:

W: -81.167515, E: -80.436127, N: 25.764331, S: 25.14161

1.6. Type(s) of data:

(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.) Model (digital)

1.7. Data collection method(s):

(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)

1.8. If data are from a NOAA Observing System of Record, indicate name of system:

1.8.1. If data are from another observing system, please specify:

2. Point of Contact for this Data Management Plan (author or maintainer)

2.1. Name:

NOAA Office for Coastal Management (NOAA/OCM)

2.2. Title:

Metadata Contact

2.3. Affiliation or facility:

NOAA Office for Coastal Management (NOAA/OCM)

2.4. E-mail address:

coastal.info@noaa.gov

2.5. Phone number:

(843) 740-1202

3. Responsible Party for Data Management

Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.

3.1. Name:

3.2. Title:

Data Steward

4. Resources

Programs must identify resources within their own budget for managing the data they produce.

4.1. Have resources for management of these data been identified?

Yes

4.2. Approximate percentage of the budget for these data devoted to data management (specify percentage or "unknown"):

Unknown

5. Data Lineage and Quality

NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.

5.1. Processing workflow of the data from collection or acquisition to making it publicly accessible

(describe or provide URL of description):

Lineage Statement:

Data were collected and processed by Dewberry and were made available on the USGS rockyweb site. The data were downloaded from the USGS rockyweb site by the NOAA Office for Coastal Management (OCM) where the data were processed to make it available for custom download from the NOAA Digital Coast Data Access Viewer (DAV) and bulk download from AWS S3.

Process Steps:

- 2017-01-01 00:00:00 - The boresight for each lift was done individually as the solution may change slightly from lift to lift. The following steps describe the Raw Data Processing and Boresight process: 1) Technicians processed the raw data to LAS format flight lines using the final GPS/IMU solution. This LAS data set was used as source data for boresight. 2) Technicians first used commercial software to calculate initial boresight adjustment angles based on sample areas selected in the lift. These areas cover calibration flight lines collected in the lift, cross tie and production flight lines. These areas are well distributed in the lift coverage and cover multiple terrain types that are necessary for boresight angle calculation. The technician then analyzed the results and made any necessary additional adjustment until it is acceptable for the selected areas. 3) Once the boresight angle calculation was completed for the selected areas, the adjusted settings were applied to all of the

flight lines of the lift and checked for consistency. The technicians utilized commercial and proprietary software packages to analyze how well flight line overlaps match for the entire lift and adjusted as necessary until the results met the project specifications. 4) Once all lifts were completed with individual boresight adjustment, the technicians checked and corrected the vertical misalignment of all flight lines and also the matching between data and ground truth. The relative accuracy was less than or equal to 6 cm within individual swaths and less than or equal to 8 cm RMSEz or within swath overlap (between adjacent swaths). 5) The technicians ran a final vertical accuracy check of the boresighted flight lines against the surveyed check points after the z correction to ensure the requirement of NVA = 19.6 cm 95% Confidence Level (Required Accuracy) was met. Point classification was performed according to USGS Lidar Base Specification 1.2, and 2D breaklines were collected for water features. Topobathy DEMs were exported from the classified point cloud.

- 2018-05-15 00:00:00 - LAS Point Classification: The point classification is performed as described below. The bare earth surface is then manually reviewed to ensure correct classification on the Class 2 (Ground) and Class 40 (Submerged Topography/ Bathymetry) points. After the bare-earth surface is finalized, it is then used to generate all hydro-breaklines through heads-up digitization. All ground (ASPRS Class 2) lidar data inside of the Inland Water Void breaklines were then classified to water (ASPRS Class 9) using TerraScan macro functionality. Refraction correction was performed on all data within the Land/Water Interface breaklines. All ground (ASPRS Class 2) lidar data were then classified to submerged topography/bathymetry (ASPRS Class 40), and water surface (ASPRS Class 41) were classified using Terrascan macro functionality on both Green sensor and Near Infrared sensor data within the Land/Water Interface breaklines. Submerged topography/bathymetry (ASPRS Class 40) were then classified to water column/ no bottom found (ASPRS Class 45) within the Topobathy Void breaklines. All overlap data was processed through automated functionality provided by TerraScan to classify the overlapping flight line data to approved classes by USGS. The overlap data was classified using standard LAS overlap bit. These classes were created through automated processes only and were not verified for classification accuracy. Due to software limitations within TerraScan, these classes were used to trip the withheld bit within various software packages. These processes were reviewed and accepted by USGS through numerous conference calls and pilot study areas. All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper us used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for both the All Point Cloud Data and the Bare Earth. Dewberry proprietary software was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information. - 2023-09-07 00:00:00 - The NOAA Office for Coastal Management (OCM) downloaded 3320 laz point data files from these USGS sites: https://rockyweb.usgs.gov/vdelivery/ Datasets/Staged/Elevation/LPC/Projects/FL_Everglades_NP_LiDAR_2017_D16/

FL Everglades N 2017/LAZ/ https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/ Elevation/LPC/Projects/FL_Everglades_NP_LiDAR_2017_D16/FL_Everglades_S_2017/ LAZ/ In the Everglades_S folder, file 17RMJ900210 was found to be corrupt. USGS was notified of the issue. For a workaround, this same file was also included in the https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/ FL Everglades NP LiDAR 2017 D16/FL Everglades S Hydroflattened 2017/LAZ/ folder. Comparison between the two files indicated that the files were exactly the same. The file in the Hydroflattened folder however, was not corrupt. This noncorrupt file from the Hydroflattened folder was downloaded and used for processing. USGS confirmed this solution. The data were in UTM Zone 17N (NAD83 2011), meters coordinates and NAVD88 (Geoid12B) elevations in meters. The data were classified as: 1 - Unclassified, 2 - Ground, 7 - Low Noise, 9 - Water, 17 - Bridge Decks, 18 - High Noise, 40 - Bathymetric Bottom, 41 - Water Surface, 45 - No bathymetric bottom found (water column). OCM processed all classifications of points to the Digital Coast Data Access Viewer (DAV). Classes available on the DAV are: 1, 2, 7, 9, 17, 18, 40, 41, 45. OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. Internal OCM scripts were run to check the number of points by classification and by flight ID and the gps, elevation, and intensity ranges. 2. Internal OCM scripts were run on the laz files to: a. Convert from orthometric (NAVD88) elevations to NAD83 (2011) ellipsoid elevations using the Geoid12B model b. Convert the laz files from UTM Zone 17N (NAD83 2011), meters coordinates to geographic coordinates c. Assign the geokeys, sort the data by gps time and zip the data to database and AWS S3.

5.1.1. If data at different stages of the workflow, or products derived from these data, are subject to a separate data management plan, provide reference to other plan:

5.2. Quality control procedures employed (describe or provide URL of description):

6. Data Documentation

The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.

6.1. Does metadata comply with EDMC Data Documentation directive? $$\operatorname{No}$$

6.1.1. If metadata are non-existent or non-compliant, please explain:

Missing/invalid information:

- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?

- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility

6.2. Name of organization or facility providing metadata hosting:

NMFS Office of Science and Technology

6.2.1. If service is needed for metadata hosting, please indicate:

6.3. URL of metadata folder or data catalog, if known:

https://www.fisheries.noaa.gov/inport/item/69618

6.4. Process for producing and maintaining metadata

(describe or provide URL of description):

Metadata produced and maintained in accordance with the NOAA Data Documentation Procedural Directive: https://nosc.noaa.gov/EDMC/DAARWG/docs/EDMC_PD-Data_Documentation_v1.pdf

7. Data Access

NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.

7.1. Do these data comply with the Data Access directive?

Yes

7.1.1. If the data are not to be made available to the public at all, or with limitations, has a Waiver (Appendix A of Data Access directive) been filed?

7.1.2. If there are limitations to public data access, describe how data are protected from unauthorized access or disclosure:

7.2. Name of organization of facility providing data access:

NOAA Office for Coastal Management (NOAA/OCM)

7.2.1. If data hosting service is needed, please indicate:

7.2.2. URL of data access service, if known:

https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9818/details/9818 https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/9818/index.html

7.3. Data access methods or services offered:

Data is available online for bulk and custom downloads.

7.4. Approximate delay between data collection and dissemination:

7.4.1. If delay is longer than latency of automated processing, indicate under what authority data access is delayed:

8. Data Preservation and Protection

The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.

8.1. Actual or planned long-term data archive location:

(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended) NCEI_CO

- 8.1.1. If World Data Center or Other, specify:
- 8.1.2. If To Be Determined, Unable to Archive or No Archiving Intended, explain:
- **8.2. Data storage facility prior to being sent to an archive facility (if any):**Office for Coastal Management Charleston, SC
- 8.3. Approximate delay between data collection and submission to an archive facility:
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?

Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection

Data is backed up to tape and to cloud storage.

9. Additional Line Office or Staff Office Questions

Line and Staff Offices may extend this template by inserting additional questions in this section.