Office of Science
and Technology
Marine
Recreational Information
Program

MRIP Data User Seminar: Statistical Methods and Procedures

November 30, 2021 John Foster

Overview

Survey Design and Statistical Methods

- Surveys and Estimates Schematic
- Access Point Angler Intercept Survey (APAIS)
- Fishing Effort Survey (FES)
- For-Hire Survey (FHS)
- Catch and Effort Estimation

Component Estimates

Catch Rates (CPUE)

Effort Components:
Area Fished Proportions FES Coverage Adjustment

FHS Coverage Adjustment

Private Boat, Shore OnFrame Effort

Charter Boat, Headboat OnFrame Effort

Primary
Estimates
Total Effort

Access Point Angler Intercept Survey (APAIS)

APAIS Overview

- In-person interviews of anglers intercepted at public fishing access sites
- Anglers interviewed at the end of their fishing trips

- Samplers record detailed trip characteristic and catch information including individual fish length and weight measurements

APAIS

- Resource Links
- Design
- Sample Weighting
- Weighted Estimation Components

APAIS Resource Links

- Survey Design and Statistical Methods

APAIS Section 2

- Site Register
- APAIS At-a-Glance
- Outreach Information

NOAA
FISHERIES

APAIS Design

- Complex Probability-Based Design
- Sample Frame
- Stratification
- Multi-stage Clustering
- Sample Selection using Probability Proportional to Size

APAIS Design: Sample Frame

- List Fishing Access Sites
- Calendar
- 6-hour Time Intervals
- Primary Stage Unit
- 1 or 2 Sites (Site-Cluster)
- Date
- Time Interval

APAIS Design: Stratification

- Space
- State, Sub-state regions
- Time
- Month
- Kind-of-Day (weekday, weekend)
- Interval (day, night)
- Fishing Access Site Group
- Grouping sites by predominant mode or other trip characteristics
- Shore, Private Boat, Charter Boat, Offshore

APAIS Design: Multi-stage Clustering

APAIS Design: Sample Selection

- Primary Stage Units (PSU): Site cluster-day-time interval
- PSUs selected using a probability proportional to size (PPS) approach
- Chance of being selected is related to the expected amount of fishing activity or fishing pressure

Expected Number of Angler Trips	Size Measure
1-4 Angler Trips	0.5
$5-8$	2.5
$9-12$	9
$13-19$	13
$20-29$	20
$30-49$	30
$50-79$	50
$80+$	80

APAIS Design: Sample Selection

- Estimates of expected fishing pressure continually updated by regional and state agency partners that conduct APAIS field sampling
- For every site, pressures provided separately for each combination of month, kind-of-day, 6-hour time interval, mode of fishing
- All fishing pressures and other site characteristics available in Public Fishing Access Site Register

APAIS Sample Weighting

- Design aspects that impact the probability or chance of including an angler-trip in the APAIS sample must be accounted for in the sample weights and sample weights must be used in estimation
- Sample weight is the inverse (reciprocal) of the probability that a trip is included in the sample (e.g., a trip has a 10% chance of being interviewed, sample weight is $1 / 10 \%=1 / 0.10=10$)
- APAIS has multiple stages of sampling, each stage has a separate inclusion probability and corresponding sample weight
- Final APAIS sample weight for each interviewed trip is the product of the individual weights associated with each separate stage

APAIS Sample Weighting

1. Primary Stage Unit (PSU):

Site Cluster-Day-Time Interval

2. Secondary SU: Sample Duration

(time spent sampling at each site in a cluster)
3. Tertiary SU: Angler Trips (trips sampled from all trips observed)

$$
w_{1}=1 / \pi_{p s u}
$$

$$
w_{2}=\frac{6 \text { hours (total time of sample interval) }}{\begin{array}{c}
\text { sample duration } \\
\text { (time spent sampling) }
\end{array}}
$$

all trips observed (sampled + only counted)

$$
w_{3}=\frac{\text { (sampled }+ \text { only cou }}{\text { trips sampled }}
$$

$$
w_{F}=w_{1} * w_{2} * w_{3}
$$

APAIS Weighted Estimation Components

- Catch rate, CPUE, mean catch per trip
- Area fished proportions (Ocean >3mi - EEZ, Ocean <=3mi STS, Inland)
- FES coverage adjustment - instate resident trip proportion
- FHS coverage adjustment - on-frame vessel trip proportion

$$
\hat{\wedge}=\frac{\sum w_{F i} y_{i}}{\sum w_{F i}} \quad \hat{P}_{a}=\frac{\sum w_{F i} I_{a i}}{\sum w_{F i}} \quad \hat{P}_{s}=\frac{\sum w_{F i} I_{s i}}{\sum w_{F i}} \quad \hat{P}_{f}=\frac{\sum w_{F i} I_{f i}}{\sum w_{F i}}
$$

APAIS Weighted Estimation Components

- Estimation Domains
- Catch Rates by Species and Catch Type (e.g., landed catch, released catch)
- Sub-region, State, Year, 2-month Wave, Fishing Mode, Area Fished
- Area fished proportions
- Sub-region, State, Year, 2-month Wave, Fishing Mode (Private boat, Shore)
- FES coverage adjustment
- Sub-region, State, Year, 2-month Wave, Fishing Mode (Private boat, Shore)
- FHS coverage adjustment - on-frame vessel trip proportion
- Sub-region, State, Year, 2-month Wave, Fishing Mode (Charter boat, Headboat)

Fishing Effort Survey (FES)

FES Overview

- Self-administered household mail survey that includes household and individual person-level questions
- Sample frame: a comprehensive directory of residential addresses from the USPS
- Used to estimate in-state private boat and shore mode effort estimates for resident anglers

FES

- Resource Links
- Design
- Sample Weighting
- Estimation

FES Resource Links

- Survey Design and Statistical Methods

FES Section 2

- Annual Reports
- FES At-a-Glance
- Outreach Information

NOAA
FISHERIES

FES Design

- Probability-Based Design
- Sample Frame
- Stratification \& Sample Selection
- Data Collection

FES Design: Sample Frame

- United States Postal Service Delivery Sequence File
- $\quad>95 \%$ of Residential Households
- State Saltwater Fishing License Databases
- Primary Stage Unit:
- Residential Household

FES Design: Stratification and Sample Selection

- Space
- State
- Sub-state regions
(Coastal, Non-Coastal)
- State Saltwater Fishing License

Match Status

- Time

- Year
- 62-Month Waves
- Samples selected using equal selection probabilities within strata

FES Design: Data Collection

- Generally follows Dillman Approach for Mail Surveys
- Mailings administered near the end of each 2-month wave

FES Sample Weighting

- Household Sample Base Weight
- Non-response adjustment

$$
w_{B R}=w_{B} / \text { response } \text { rate }_{R}
$$

- Ratio adjustments
- Demographic Control Totals from U.S. Census Bureau
- Raking Ratio, Post-stratification

$$
w_{B}=1 / \pi_{p s u}=N_{h} / n_{h}
$$

$$
w_{B R P}=w_{B R} * \frac{C}{\hat{C}}
$$

FES Effort Estimation

- Estimate effort as weighted sum of trips reported by sampled households

$$
\hat{T}=\sum w_{B R P} t_{i}
$$

- Estimation Domains
- State
- Year, 2-month Wave (Jan/Feb, Mar/Apr,...)
- Fishing Mode
- Private Boat

■ Shore

- State resident in-state fishing effort

For-Hire Survey (FHS)

FHS Overview

- List-frame telephone survey of captains and operators of for-hire vessels
- Vessels selected for weekly reporting of for-hire trips
- Used to estimate charter boat and headboat effort estimates by state, year, 2-month wave, and area fished

FHS Resource Links

- Survey Design and Statistical Methods

FHS Section 2

- FHS At-a-Glance
- Outreach Information

Catch and Effort Estimation

Catch and Effort Estimation

- Resource Links
- Catch and Effort Estimation Example
- Variance Estimation and Percent Standard Error (PSE)

Estimation Resource Links

- Survey Design and Statistical Methods

Total Catch and Effort Estimation Section 6

$$
\widehat{Y}_{d}=\widehat{y}_{d} \times \widehat{T}_{T \ldots}
$$

- Estimation Methods Overview

$$
V\left(\widehat{Y}_{d}\right)=\widehat{\hat{y}}_{d}^{2} V\left(\widehat{T}_{T \ldots}\right)+\left(\widehat{T}_{T \ldots}\right)^{2} V\left(\hat{y}_{d}\right)-V\left(\widehat{T}_{T \ldots}\right) V\left(\hat{y}_{d}\right)
$$

- Survey Statistics Overview

$$
\widehat{Y}_{D}=\sum_{w=1} \widehat{Y}_{d l}
$$

- Applied Survey Data Analysis (Textbook)

$$
V\left(\widehat{Y}_{D}\right)=\sum_{w=1} V\left(\widehat{Y}_{d l}\right)
$$

- SAS ${ }^{\circledR}$ PROC Surveymeans

Catch and Effort Estimation Example

- New Jersey Wave 4 (Jul/Aug) 2019
- Private Boat (PR)
- PR Summer Flounder Landings (No.)
- $\mathrm{n}=857$ APAIS PR Intercepts

Area Fished	PR Effort (No. Angler Trips)	PR Summer Flounder Landings (No. Fish)
All	1,590,161	609,019
Ocean - STS	287,957	129,534
Ocean - EEZ	562,778	273,132
Inland	739,426	206,354

Primary
Estimates

$$
\begin{aligned}
& \text { Total PR Landings } \\
& \text { by Area }
\end{aligned}
$$

FES

Private Boat

On-Frame
Landings
Rates by Area (LPUE)

Effort

Private Boat Total Effort

APAIS Components

- New Jersey Wave 4 (Jul/Aug), 2019, Private Boat Mode
- $n=857$ APAIS PR Intercepts

Component	Value	Raw Count	Raw Proportion	Weighted Count	Weighted Proportion
FES Coverage Adjustment	NJ Resident Angler	660	0.770128	54,338	$\mathbf{0 . 7 0 8 0 6 1}$
	Out-of-State Angler	197	0.229872	22,404	0.291939
Area Fished Proportions	Ocean STS (<=3mi)	189	0.220537	13,897	$\mathbf{0 . 1 8 1 0 8 7}$
	Ocean EEZ (>3mi)	320	0.373396	27,160	$\mathbf{0 . 3 5 3 9 1 2}$
	Inland	348	0.406068	35,685	$\mathbf{0 . 4 6 5 0 0 1}$

APAIS Components

- New Jersey Wave 4 (Jul/Aug), 2019, Private Boat Mode
- $\mathrm{n}=857$ APAIS PR Intercepts

Component	Area	Raw Landings Count	Raw Trip Count	Raw LPUE	Weighted Landings Count	Weighted Trip Count	Weighted LPUE
LPUE by Area	O-STS (<=3mi)	86	189	0.455	6251.4242	13,897	0.44984
	O-EEZ (>3mi)	123	320	0.384	13182	27,160	0.4853
	Inland	77	348	0.221	9958.8215	35,685	0.27907

Variance Estimation

- Sampling error - measure of uncertainty about a point estimate related to variability in the population characteristic being estimated, sample size and other design factors
- Variances for MRIP estimation components estimated using Linearization (Taylor Series approximation) - a standard approach for complex survey designs
- Variances for MRIP catch and effort estimates generally estimated using Goodman's Formula for the Variance of Products

Percent Standard Error (PSE)

- Coefficient of Variation on the percent scale

> Square Root of Variance (aka Standard Error)

- $\operatorname{PSE}=100^{*}$
Point Estimate
- Relative measure of uncertainty, useful for comparing precision of estimates with very different magnitudes
- 30\%, 50\%
- MRIP Survey and Data Standards (Standard 7)

Office of Science
and Technology
Marine
Recreational Information
Program

MRIP Data User Seminar: Statistical Methods and Procedures

November 30, 2021 John Foster

