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Abstract—Over 34,000 age 0–2 ju-
venile sablefish (Anoplopoma fimbria) 
were tagged and released in southeast 
Alaska waters during 1985–2005. The 
data set resulting from this tagging 
study was unusual because of its 
time span (20 years) and because age 
could be reliably inferred from release 
length (i.e., tagged and released fish 
were of known age); thus, age-specific 
movement patterns could be examined. 
The depth- and area-related recovery 
patterns supported the concepts that 
sablefish move to deeper water with 
age and migrate counterclockwise 
in the Gulf of Alaska. Availability 
to the fishery increased rapidly for 
fish of younger ages, peaked at age 
5 to 6, and then gradually declined 
as sablefish moved deeper with age. 
Decreased availability with age may 
occur because of lower fishing effort 
in deep water and could have sub-
stantial implications for sablefish 
stock assessments because “dome-
shaped” availability inf luences the 
reliability of abundance estimates. 
The area-related recovery pattern was 
not affected by year-class strength; 
i.e., there was no significant density-
dependent relationship. 

The general migration pattern of 
sablefish (Anoplopoma fimbria) in the 
northeast Pacific Ocean was deduced 
in the 1980s from several tagging 
studies (Bracken, 1983; Beamish 
and McFarlane, 1988; Fujioka et al., 
1988;) and enlarged upon in further 
studies over the following two decades 
(Heifetz and Fujioka, 1991; Rutecki 
and Varosi, 1997; Kimura et al., 1998; 
Maloney, 2004). In southeast Alaska, 
juvenile sablefish that are spawned 
offshore appear in inshore waters in 
late summer or early fall and spend 
the first year or two of life in shallow 
coastal bays and inlets before moving 
into progressively deeper water. At 
the same time that they are moving 
into deeper water, many young sable-
fish move north and west on a migra-
tion path that takes them across the 
Gulf of Alaska to the Aleutian Islands 
and Bering Sea. Eventually, most will 
return to the eastern Gulf of Alaska 
as adults. 

The sablefish fishery in the Gulf of 
Alaska (GOA), eastern Bering Sea, 
and Aleutian Islands is managed by 
the National Marine Fisheries Ser-
vice (NMFS) in cooperation with the 
North Pacific Fishery Management 
Council. Sablefish in these areas are 
assumed to belong to one population 
(Kimura et al., 1998), for which a to-
tal allowable catch is calculated each 
year and apportioned among six man-
agement areas. The annual quotas 
for each area are based on the distri-
bution of biomass among the areas, 
which is estimated from longline sur-
veys and commercial catches (Heifetz 
et al., 1997). Because sablefish are 

known to be migratory, estimates of 
the rates of migration between ar-
eas could affect the apportionment 
of quotas among management areas 
(Heifetz et al., 1997). 

Migration rates between areas 
have been estimated from tag data 
by using fish-length classes in the 
modeling process (Heifetz and Fu-
jioka, 1991). Although f ish-length 
data are commonly available, actual 
age data are generally scarce. Age 
data are preferable to length data for 
estimating population age structure 
(Sigler, 1999), but sablefish are diffi-
cult to age, especially for ages great-
er than 5 or 6 years (Kimura and 
Lyons, 1991). Tagging of known-age 
juveniles before they leave coastal 
areas offers an opportunity to docu-
ment age-specific movements. Age 
0–2 (mostly age 1) sablefish have 
been tagged annually since 1985 in 
bays and inlets of southeast Alas-
ka. The objective of our study was 
to determine movement patterns of 
sablefish based on these known-age 
f ish, using a unique 20-year data 
set of age-specific mark-recapture 
data. Specifically, we determined 1) 
how the depth inhabited by sablefish 
changes with age; 2) how the area 
inhabited changes with age; 3) how 
availability to the primary fishery 
(longline) changes with age; and 4) 
whether there is a density-dependent 
effect of year-class strength on the 
extent of migration of young sable-
fish. Results of objectives 1 and 2 
largely confirmed the results of pre-
vious studies, whereas objectives 3 
and 4 were new. 
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author and do not necessarily reflect 
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Figure 1 
Recovery locations ( ) of sablefish (Anoplopoma fimbria) tagged and released as juveniles 
in southeast Alaska. St. John Baptist Bay was the most common release site. Vertical and 
horizontal bars are regulatory area boundaries. Gulf of Alaska is shown as GOA for the 
Western, Central, and Eastern areas. 
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Materials and methods 

Juvenile sablefish were captured, primarily with jigging 
gear (Rutecki and Varosi, 1997) in various bays and 
inlets of southeast Alaska, for tagging and release from 
1985 to 2005. A total of 74 sites were selected during 
that period, but most tagging after 1987 was undertaken 
in St. John Baptist Bay near Sitka, Alaska (Fig. 1), 
because it was easily accessible and juvenile sablefish 
were consistently found there. Bottom depth is about 30 
m and fish were caught on the bottom and throughout the 
water column. Release and recovery data for these fish 
are maintained in the NMFS Alaska Sablefish Tag Data-
base, which is described in detail by Fujioka et al. (1988). 

Data criteria 

Recovered fish had to meet several criteria to be included 
in this study: recovery year had to be known, recovery 
depth and location had to be accurate, and the fish had 
to be at liberty for at least one year. Recovery year 
was necessary to calculate age at recapture. Accurate 
recovery depth and location were necessary to reliably 
assign recovery depth strata and areas. Only recover-
ies for which there were reported positions that were 
precise to within 10 minutes of latitude and longitude 
were used; this criterion was used to judge the reli-
ability of the recovery information. Some tag recoveries 
had accurate recovery location but no depth informa-
tion; these tag recoveries were included in the area 

analysis, but not the depth analysis. Recovery depths 
were classified into seven depth strata chosen to reflect 
general habitat type: 1–100 m (nearshore), 101–200 m 
(continental shelf), 201–300 m (shelf break), 301–500 m 
(upper continental slope), 501–700 m (middle slope), 
701–1000 m (lower slope), and >1000 m (deep water). 
Recovery locations were classified into seven areas: 
Aleutian Islands, Bering Sea, western Gulf of Alaska 
(western GOA), central Gulf of Alaska (central GOA), 
eastern Gulf of Alaska outside waters (eastern GOA 
outside), eastern Gulf of Alaska inside waters (eastern 
GOA inside), and British Columbia. For some analyses, 
inside and outside waters were pooled and referred to 
as eastern GOA. The minimum time at liberty of one 
year was imposed to exclude short-term movements and 
to focus on migration. 

Age at release was determined from fish size and 
time of year. Depending on the time of year, in most 
years and tagging areas, no more than two ages of 
fish, and usually only one, were present at the time 
of tagging. Ages were readily separable by means of 
non-overlapping length frequencies and by time of year. 
Age-0 fish enter into bays from the ocean in the fall of 
their first year of life, and they average 21–23 cm in 
length (Rutecki and Varosi, 1997). One-year-old fish in 
the middle of summer average 31–35 cm and 2-year-old 
fish average 40–45 cm. The number of years at liberty 
after release was calculated by subtracting the release 
year from the recovery year; adding this number to the 
release age supplied the recovery age. 



        307 Maloney and Sigler: Age-specific movement patterns of Anoplopoma f imbria 

Availability  to  the  fishery  by  age 

Sablefish  move  progressively  deeper  with  age,  and  as  
they  do  so,  become  available  to  the  main  commercial  
fishery  (longline),  which  operates  primarily  on  the  con-
tinental  slope.  The  fraction  of  the  total  population  avail-
able  by  age  to  the  commercial  fishery  was  estimated  by  
the  following  method.  The  initial  number  of  tagged  fish  
released  in  year  t  of  age  a  is  Nát.  A  fraction  of  the  tags, 
l  =  0.048  (Lenarz  and  Shaw,  1997),  are  immediately  lost  
or  the  fish  die  from  tagging,  such  that  a  short  time  after  
tagging,  some  smaller  number  of  tagged  fish  survive, 

N at = (1 – l) Na′ t .

The  year  following  tagging,  the  number  of  tagged  fish  
is 

N a+1,t+1 = N at exp(−(M + λsaFt  + H)) ,
where  M  =  0.1  (Sigler,  1999;  Hanselman  et  al.,  2006)  

is  the  instantaneous  rate  of  natural  mortal-
ity;  

 λ  =  a  calibration  parameter  (Heifetz  and  Fujioka,  
1991)  to  account  for  bias  in  assumed  values  
for  the  instantaneous  rates  of  annual  fishing  
mortality  (Ft);  

 sa  =  availability  (selectivity)  to  the  commercial 
fishery;  and 

 H  =  0.03  (Lenarz  and  Shaw,  1997)  is  the  instan-
taneous  rate  of  tag  shedding.  

The  Ft  values  were  estimated  independently  in  the  
Alaska  sablefish  stock  assessment  (Hanselman  et  al.,  
2006).  The  fishery  captures  a  number  of  the  tagged  
fish,  Cat,  where 

Cat = λsa Ft / (M + λsa  Ft + H)

(1 − exp(−(M + λsaFt  + H))) Naat. 

The  relationship  between  availability  and  age  was  rep-
resented  by  the  exponential-logistic  function  (Thompson,  
1994;  Sigler,  1999) 

  =
γsa  1 /  

 / (1 − γ )( (1 − γ )  γ )
exp(β γ (α  − a)) / (1  + exp (β(α  − a)) )).

The  exponential-logistic  function  is  flexible,  allowing  
both  asymptotic  availability  when  availability  increases  
with  age  to  an  asymptote,  and  dome-shaped  availability  
when  availability  increases  with  age  to  a  maximum  and  
then  decreases  for  older  fish.  The  exponential-logistic  
function  automatically  scales  maximum  availability  to  
1.0  and  reduces  to  asymptotic  availability  as  the  param-
eter  γ  approaches  zero.  When  γ  =  0,  the  parameter  α  is  
the  age  of  50%  availability  and  the  slope  of  the  curve  
equals  ¼  β  at  a  =  α.  When  γ  >  0,  then  α  and  β  lose  bio-
logical  meaning  because  α  no  longer  represents  the  age  

at  50%  availability,  and  γ  is  a  parameter  that  allows  
availability  to  decrease  (and  form  the  “dome-shape”)  
for  older  ages  The  fishery  switched  from  open  access  
to  individual  fishing  quotas  (IFQ)  in  1995.  This  switch  
has  been  shown  to  affect  availability  of  the  fish  to  the  
fishery  (Sigler  and  Lunsford,  2001).  Thus,  we  estimated  
availability  parameters,  α,  β,  and  γ,  as  well  as  the  fishing  
mortality  calibration  parameter,  λ,  separately  for  each  
time  period  (1984–94,  1995–2005).  We  assumed  that  the  
estimated  availability  curves  represent  the  commercial  
longline  fishery  because  most  tags  (93%)  were  recovered  
by  longline  or  other  fixed  gear  types.  

Not  all  tagged  fish  caught  in  the  sablefish  fishery  
are  reported  (Heifetz  and  Maloney,  2001).  The  number  
of  tags  reported,  R,  is  related  to  the  number  of  tagged  
fish  caught,  Cat,  where  Rat  =  wt  Cat  and  wt  is  the  report-
ing  rate.  Heifetz  and  Maloney  (2001)  estimated  annual  
reporting  rates  for  1980–98  and  subsequent  reporting  
rates  were  estimated  of  0.43  for  1999–2001  and  0.52  for  
2002–05,  which  we  applied  in  our  analysis. 

The  model  parameters  (α,  β,  γ,  and  λ  for  1984–94  
and  1995–2005)  were  estimated  by  maximum  likeli-
hood.  The  observed  number  of  tag  recoveries  in  any  
year-cohort  grouping  was  small  (mean  of  6,  range  of  0  
to  27);  therefore  the  expected  number  of  tag  recoveries,  
Q,  could  be  approximated  by  the  Poisson  distribution  
(Hilborn,  1990).  The  negative  log-likelihood  (–logeL)  for 
all  observed  recoveries  was 

− log e L(Q at Ra t )

= ∑ ∑ ( Qa t − Ra t log e(Qa t ) + log e(Ra t !) ,a t 
))

which  was  minimized  to  find  the  most  likely  set  of  
parameter  estimates.  We  examined  model  fit  using  devi-
ance  (McCullagh  and  Nelder,  1983),  which  for  any  obser-
vation  of  tag  recoveries  is 

deviance( a, t ) = −2 { log e L(Q at Ra t ) − log e L( Rat Rat }} 
(Heifetz  and  Fujioka,  1991).  We  applied  the  likeli-
hood  ratio  test  for  nested  models  (Hilborn  and  Mangel,  
1997)  to  determine  whether  model  fit  was  significantly  
improved  by  assuming  separate  parameter  sets  for  the  
open  access  and  IFQ  fisheries.  We  estimated  the  95%  
confidence  intervals  of  the  parameters  from  their  likeli-
hood  profiles  (Hilborn  and  Mangel,  1997). 

Density-dependent  effect  on  migration 

Migration  may  be  affected  by  abundance  if  sablefish  
tend  to  disperse  when  abundant.  We  tested  for  a  den-
sity-dependent  effect  by  examining  whether  recovery  
patterns  by  area  were  influenced  by  cohort  abundance  
(recruitment  strength).  Recruitment  strength  is  esti-
mated  through  age-structured  population  modeling  
(Hanselman  et  al.,  2006)  and  is  expressed  as  the  number  
of  fish  at  age  2  (in  millions).  We  tested  by  linear  regres-
sion  whether  more  recoveries  occurred  in  western  areas  
for  stronger  year  classes,  hypothesizing  that  more  mem-



   

         
   

        
          

            
        

         
          

        
         

         
         

         
           
          
        

         
           

        
         

Table 1 
Total numbers of juvenile sablefish (Anoplopoma fimbria) released and recovered in southeast Alaska, 1985–2005, by release age 
(age 0, age 1, and age 2). Also shown are numbers of recoveries of fish with known recovery year, with accurate recovery location 
and accurate recovery depth, for fish at liberty longer than one year. 

    Total Total Accurate Accurate 
Year Age 0 Age 1 Age 2 releases recoveries recovery location recovery depth 

1985 0 6168 0 6168 853 

1986 0 240 936 1176 68 2 1 

1987 0 7916 0 7916 314 8 7 

1988 1762 2142 1 3905 153 26 20 

1989 0 530 1 531 35 47 41 

1990 0 0 0 0 0 65 53 

1991 789 2580 1 3370 154 56 39 

1992 0 1658 0 1658 68 57 47 

1993 0 568 26 594 48 66 59 

1994 0 1190 8 1198 44 31 27 

1995 0 986 0 986 75 50 42 

1996 0 1735 0 1735 62 46 42 

1997 0 58 0 58 4 59 55 

1998 0 1174 0 1174 37 43 38 

1999 0 859 5 864 41 61 56 

2000 0 559 178 737 41 40 31 

2001 0 105 1 106 3 41 34 

2002 0 471 2 473 8 37 29 

2003 766 0 0 766 0 56 49 

2004 0 290 1 291 0 40 34 

2005 0 610 0 610 3 29 26 

Totals 3317 29,839 1160 34,316 2011 860 730 
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bers of strong year classes would move westward if 
cohort density affected migration. 

Results 

Over 34,000 juvenile sablefish were tagged and released 
in southeast Alaska from 1985 to 2005 (Table 1). Most 
(87%) were tagged and released at age 1. A total of 2011 
sablefish tagged as juveniles were recovered, most by 
the commercial fishery and a few by research vessels. 
Of these 2011 recoveries, 860 fish had a known recovery 
year, accurate recovery information, and were at liberty 
for at least one year, thus qualifying for area-based 
analyses; 730 fish also had known recovery depth and 
qualified for depth-based analyses (Table 1). Of the 860 
fish recovered, most (85%) were caught by longline, 8% 
by pots, 6% by bottom trawl, and the remainder (1%) by 
jig, purse seine, sport fishing gear, or by unknown gear. 
The largest percentage (45%) of recoveries occurred in 
the eastern Gulf of Alaska (Table 2). Large percentages 
of tagged fish also were recovered in the central Gulf of 
Alaska (30%) and farther westward (18%). About half 
(51%) of recoveries occurred at depths 501–700 m and 

nearly all (93%) recoveries occurred at depths from 201 
to 1000 m. 

Sablefish tagged as juveniles in southeast Alaska 
were recovered as far west as 177°E along the Aleutian 
Islands, as far north as 60°N in the eastern Bering 
Sea, and as far south as 48.5°N off Vancouver Island 
(Fig. 1). Most recoveries were located along the upper 
continental slope or in cross-shelf gullies such as Spen-
cer and Seward Gullies. Having originated in coastal 
bays, these fish had to cross the continental shelf to 
reach these areas. Fish recovered in Chatham Strait 
may have moved there by way of inland waters or may 
have migrated first to outer coastal waters before mov-
ing into the strait. 

Recovery locations by depth and area 

Generally, young fish were more common at shallower 
depths and older fish were more common at greater 
depths. In depths shallower than 200 m, the most 
common ages of tagged juvenile sablefish recoveries 
were 3 and 4 years, and in depths greater than 200 m, 
the most common ages were 5–8 years (Fig. 2). Median 
recovery age increased with depth from shallow (2 years) 



        

Table 2 
Recovery area and depth strata (m) for recovered sablefish (Anoplopoma fimbria) tagged as juveniles, number of fish for which 
depth was unknown, and total number of tagged fish captured in the recovery area. Proportion of recoveries at depth (bottom 
row) excludes recoveries with unknown depth. Proportion of recoveries by recovery area (rightmost column) includes recoveries 
with unknown depth. GOA = Gulf of Alaska. 

 Depth strata (m) 

Recovery area 1–100 101–200 201–300 301–500 501–700 701–1000 >1000 Unknown Total Proportion 

Bering Sea       4 9 4   1 18 0.02 

Aleutian Islands   3  5 39 7  8 62 0.07 

Western GOA   4 6 19 28 7  10 74 0.09 

Central GOA   25 43 48 90 19 2 28 255 0.30 

Eastern GOA 2 12 8 67 177 45 1 75 387 0.45 

British Columbia    6 11 26 12 1 8 64 0.07 

Total 2 44 63 154 369 94 4 130 860 

Proportion 0.00 0.06 0.09 0.21 0.51 0.13 0.01  730 
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to deep (5–6 years). Only two 2-year-old 
sablefish that had traveled <6 km from 
their release location in St. John Bap-
tist Bay were recovered in nearshore 
waters (<100 m water depth); no fish 
older than 2 years were recovered in 
nearshore waters. Only one sablefish 
older than 13 years was found in depths 
<300 m and most were found deeper 
than 500 m. 

The most common areas of recovery 
were the central GOA and the east-
ern GOA, which together accounted for 
75% of all recoveries (Table 2). There 
were more than twice as many recov-
eries in outside waters as in inside 
waters of the eastern GOA. The most 
common ages of recovered fish in all 
areas except eastern GOA and British 
Columbia were 5 to 7 years (Fig. 3). In 
eastern GOA the most common ages 
at recovery were 3 to 6 years, and in 
British Columbia 6 to 9 years. Fish 
of all ages from 3–10 years old were 
recovered in all areas except the Ber-
ing Sea, where no fish younger than 4 
years old were recovered. The Bering 
Sea had the fewest recoveries (only 18) 
and the smallest range of ages (4–10 
years, except for one recovery of a 19-year-old fish). 
Most fish 2 years old and most fish older than 12 years 
were recovered in the eastern GOA (Fig. 3). Most recov-
eries in western areas (Bering Sea, Aleutian Islands, 
western Gulf of Alaska) were 12 years old or less. The 
large number of recoveries that occurred in the central 
Gulf of Alaska (30%) and farther west (18%) indicated 
that nearly half of the population had moved westward 
from the eastern Gulf of Alaska (Table 2). 

Figure 2 
Tag recoveries from sablefish (Anoplopoma fimbria) tagged as juveniles, 
by age (years) and depth (m) for all areas pooled. The size of the circles 
is proportional to the number of recoveries and represents a range from 
1 to 57 recoveries. The symbol (×) represents the median age (years). 
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Movement by age 

Age-specific movement patterns were discernible even 
though multiple ages were found within areas and depths. 
By ages 3 and 4 years, most fish had moved offshore into 
>100 m water depth (Fig. 2). Some had moved to the 
inside waters of the eastern GOA or directly south into 
the waters off British Columbia, but most were found 
in eastern GOA outside waters or in the central GOA 
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Figure 3 
Tag recoveries from sablefish (Anoplopoma fimbria) tagged as juveniles, by age 
and area. The size of the circles is proportional to the number of recoveries and 
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represents a range from 1 to 43 recoveries. GOA=Gulf of Alaska. 
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(Fig. 3). By ages 5 and 6 years, many fish had reached 
the western areas. Age 5 was the most common age of 
recovery for the western GOA and Aleutian Islands, 
and age 6 for the Bering Sea. Some fish aged 7–9 years 
remained in the western areas, but most had begun 
a return to the east. In the central GOA and eastern 
GOA outside waters, the 7–9-year-olds were mostly 
found in the 501–700 m depth range and were some 
of the most numerous fish. Fish aged 6–9 years were 
the most commonly recovered in the waters off British 
Columbia and may also have been fish returned from a 
westward migration (Fig. 4). A few fish may have come 
from eastern GOA inside waters (Chatham Strait), but 
Maloney and Heifetz (1997) found that this area has a 
high proportion of non-migrating fish. The most common 
depth stratum for fish recovered in British Columbia was 
the 501–700 m stratum. 

Availability to the fishery by age 

The model of availability at age fit the observed pat-
tern of tag recoveries well. Deviances were scattered 
symmetrically around zero for most ages (Fig. 5). Only 
for ages 2 and 13 were there noticeable biases. The full 
model that assumed separate selectivity functions for 
the open access and IFQ fisheries significantly improved 
model fit, compared to a single selectivity function (Like-
lihood ratio test, χ2=220.1, df=3, P<0.001). The assump-
tion of separate calibration coefficients rather than a 
single calibration coefficient also significantly improved 
f it (likelihood ratio test, χ2=189.7, df=1, P<0.001). 
Including parameters to allow availability to decrease 

for older ages (γ for 1985–94 and 1995–2005) signifi-
cantly improved fit compared to a reduced model with 
asymptotic availability (likelihood ratio test, χ2=686.7, 
df =2, P<0.001). 

Juvenile sablefish first became available to the com-
mercial fishery at age 2. Availability rapidly increased 
such that by age 5, nearly all sablefish were avail-
able to the commercial fishery (Fig. 6). Both the age 
at 50% availability and the age at 100% availability 
values were one year greater (older) in the IFQ fishery 
than in the open access fishery (4 years versus 3 years 
and 6 years versus 5 years, respectively). Availability 
decreased for older ages, such that by 15 years, avail-
ability was 50% for the open access fishery and 20% 
for the IFQ fishery. The degree of dome shape was 
sensitive to the assumed value of M; for example, by 
15 years, availability for the open access fishery was 
70% for M = 0.12 compared to 50% for the assumed 
value of M = 0.10. 

Density-dependent effect on migration 

We tested whether year-class strength affected the pro-
portion of recoveries in the western areas, hypothesizing 
that a density-dependent effect would cause more recov-
eries in western areas for strong year classes. There was 
no significant relationship (regression, df=14, P=0.18) 
because about 20% of recoveries occurred in western 
areas, regardless of year-class strength (Fig. 7). In the 
regression, the proportion was transformed by arcsin squar-
eroot, as is recommended to normalize data expressed 
as proportions (Zar, 1984). 
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Figure 4 
Tag recoveries from sablefish (Anoplopoma fimbria) tagged as juveniles in 
(A) eastern Gulf of Alaska (GOA) outside waters and (B) central GOA, by 
age (years), depth (m), and area. The size of the circles is proportional to 
the number of recoveries and represents a range from (A) 1 to 15 recoveries 
and (B) 1 to 16 recoveries. 
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Discussion 

Movement by depth and area with age 

Sablefish spend 1–2 years nearshore before moving onto 
the continental shelf where they reside as adults and 
spawn. In this study, the most common ages in the shal-
lower depths were 3–4 years and in the deeper depths 
5–8 years, indicating that sablefish are younger on the 
continental shelf than on the continental slope. This 
result confirmed other sablefish age data that indicated 
that fewer sablefish older than 10 years are found on the 
continental shelf than on the continental slope (Sigler et 
al., 1997). Concurrent with the offshore movement with 
age, many young fish from the eastern areas (British 
Columbia, eastern GOA) moved in a northerly and west-
erly direction through the central GOA to the western 
areas (western GOA, Bering Sea, and Aleutian Islands). 

The simultaneous depth and area movements resulted in 
a general age distribution of younger fish in shallower 
water in the east, mid-age fish in middle depths in the 
west, and older fish in deeper waters on the return from 
western to eastern areas. 

Age pattern variability was high; there was a sub-
stantial overlap of ages within and between depths 
and areas. For example, fish of ages 2–13 years were 
recovered in 101–200 m and fish aged 2–20 years were 
caught in 501–700 m. Likewise, fish of all ages from 3 
to 10 years were recovered in all areas except the Ber-
ing Sea where the youngest fish recovered was 4 years 
old. However, the separation of ages by depth, although 
incomplete, was quite pronounced within some areas, 
most notably the eastern GOA outside and the central 
GOA (Fig. 4). In both of these areas the distribution of 
younger fish in shallower water and older fish in deeper 
water was evident and, taken together with the general 
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Scatterplot representing the fit of observed and predicted availability of 
sablefish (Anoplopoma fimbria) to the fishery by age. Deviance is a function 
of the difference between observed and predicted values; a smaller deviance 
indicates a better fit of the exponential-logistic model to the observation. 
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Figure 6 
Estimated availability (fraction of the total population) of sablefish (Ano-
plopoma fimbria) to the fishery by age (years) for the open-access (1985–94, 
–––––) and individual fishing quota (IFQ) (1995–2005, ----) fisheries. Param-
eter estimates and 95% confidence intervals for 1985–94 are α = 1.50 (1.26, 
1.87), β = 3.33 (3.04, 3.69), γ = 0.050 (0.023, 0.092), and λ = 0.23 (0.22, 0.25) 
and for 1995–2005 are α = 1.14 (1.05, 1.24), β = 4.76 (4.53, 5.01), γ = 0.18 
(0.15, 0.21), and λ = 0.38 (0.36, 0.39). 

age distribution by area, corroborat-
ed the counterclockwise pattern of 
sablefish migration in the northeast 
Pacific Ocean. 

Availability to the fishery by age 

The pattern of movement from shal-
low to deep water with age (Fig. 2) 
results in increased availability to 
the fishery as sablefish grow older 
(Fig. 6). Estimates of availability at 
age have shown that about half of 
sablefish are available to the fish-
ery by age 3 or 4, depending on the 
fishery management system, and 
that most are available by age 5 or 
6. The later availability of fish (at 
ages 5 or 6) under the IFQ manage-
ment system (compared to earlier 
availability of younger fish under the 
open access system) also was also 
found to be the case in an analysis of 
length-frequency data from the two 
fisheries, and this pattern of avail-
ability was likely created because the 
crowding of fishing vessels during 
the open access fishery pushed fish-
ermen into areas and depths where 
there were smaller fish (Sigler and 
Lunsford, 2001). The IFQ fishery, 
with a longer season and fewer ves-
sels, reduced crowding so that fish-
ermen were able to avoid shallower 
depths with smaller, younger fish. 

Unlike previous analyses, where 
availability was assumed not to de-
crease with age (e.g., Sigler, 1999), 
our analysis of known-age tag re-
coveries showed that sablefish avail-
ability decreases with age. An al-
ternate explanation is that tag loss 
increased with time. However, dou-
ble-tagging experiments have shown 
that the rate of tag loss is constant 
with time (Beamish and McFarlane, 
1988; Lenarz and Shaw, 1997). De-
creased availability with age may 
occur because of reduced fishing ef-
fort for older age fish. Fishing ef-
fort is concentrated at intermediate 
depths (e.g., half of the recoveries 
occurred at depths 501–700 m [Table 
2]) but fish exit these depths as they 
age and move deeper. In addition, 
older fish were less available for IFQ 
management compared to open ac-
cess management, which also may 
have been due to reduced crowding 
of fishing grounds during IFQ man-
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Figure 7 
Scatterplot of proportion of sablefish (Anoplopoma fimbria) tag recoveries in 
western areas (Bering Sea, Aleutian Islands, Western Gulf of Alaska) versus 
year-class strength (number at age 2 in millions; Hanselman et al., 2006). 
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agement; for example, recoveries at 
depths >700 m were fewer during 
IFQ management (16% of recoveries 
during 2003–05) than during open 
access management (25% during 
1992–94). This result has poten-
tially substantial implications for 
a stock assessment because “dome-
shaped” availability influences the 
reliability of abundance estimates 
(Bence et al., 1993; Sigler, 1999). A 
logical next step for other research-
ers to understand these effects is 
to complete a migratory catch-age 
analysis (e.g., Quinn et al., 1990) 
that melds sablefish migration (Heif-
etz and Fujioka, 1991) and age-
structured (Sigler, 1999; Hanselman 
et al., 2006) analyses. 

Density-dependent effect 
on migration 

Migration is a prominent feature 
in the life history of many fishes. 
Well-known examples of migratory 
fish are Pacific salmon (Oncorhyn-
chus spp.) that return to their natal stream to spawn 
(Burgner, 1991; Heard, 1991) and Pacif ic herring 
(Clupea harengus) that consistently follow routes from 
spawning to feeding grounds (Hourston, 1982; Wheeler 
and Winters, 1984; Corten, 2002). Presumably the 
energy expended during migration is compensated for 
by other benefits. Demonstrated benefits include the 
ability to take advantage of seasonally available prey 
(Walters et al., 1986; Livingston, 1993) and avoidance 
of predation (Carlson, 1980). Benefits of migration for 
sablefish are not immediately obvious because they 
are opportunistic feeders and have no need to pursue 
specific prey, and their rapid growth rate in early 
life quickly lessens their vulnerability as prey. Nev-
ertheless, a substantial proportion of the population 
migrates each year (Heifetz and Fujioka, 1991; Kimura 
et al., 1998). 

Sablefish are characterized by great variability in 
year-class strength; and occasional strong year classes 
dominate the fishery for several years in a row (Sigler, 
1999; Hanselman et al., 2006). A higher proportion of 
a strong year class may migrate and young fish may 
move farther and faster in order to occupy less crowded 
areas (density-dependent habitat selection; e.g., Mac-
Call, 1990). Beamish and McFarlane (1988) noted dif-
fering rates of sablefish movement out of release areas 
from 1977 to 1985 and theorized that increased den-
sity resulting from recruitment of the large 1977 year 
class may have contributed to an increased rate of 
movement. However, we found no significant effect of 
year-class strength on the proportion of recoveries in 
the western areas, and therefore cohort density does 
not appear to affect the proportion of a cohort that will 

migrate. Although we tested a long time series, this 
time series does not span the full range of observed 
recruitment variability. Some earlier year classes were 
substantially stronger (e.g., the exceptional 1977 year 
class was 44% larger than the strongest year class 
(1984) that we tested). Migration may be stronger for 
year classes of such magnitude. Further, movement 
rates may be affected by total abundance—a possibility 
that could be tested in a sablefish migratory catch-age 
analysis such as we suggested earlier. 

Observed sablefish abundance trends by area during 
the last 25 years can be explained by their counter-
clockwise migration pattern. Overall sablefish abun-
dance peaked in the late 1980s and then decreased. 
The western areas of Bering Sea, Aleutian Islands, 
and western GOA decreased quickest, as migrating fish 
matured and turned eastward (Fig. 8). Abundance 
declined more slowly in the eastern GOA, presumably 
because fish that migrated westward returned to the 
eastern GOA. The abundance decline in the central 
GOA was intermediate, probably because migrating 
fish pass through in both directions (westward and 
eastward). This pattern of abundance changes (faster 
in western areas, slower in central and eastern GOA) 
supports the conclusion that the eastern GOA and the 
eastern part of the central GOA are the center of the 
range for Alaska sablefish (Bracken, 1983; Beamish 
and McFarlane, 1988; Sigler et al., 2001). 

Currents and sablefish migration 

Prevailing currents may play an important role in deter-
mining the direction of migration for most young sable-
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Figure 8 
Relative abundance (weight) from sablefish (Anoplopoma fimbria) longline sur-
veys, 1979–2004: Japan-U.S. cooperative longline survey ( ) and U.S. (domestic) 
longline survey ( ) (Hanselman et al., 2006). The values for the U.S. survey were 
adjusted to account for the higher efficiency of the U.S. survey gear. 
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fish. From the time they first venture out of coastal bays 
onto the continental shelf of northern British Columbia 
or the eastern GOA, young fish are subject to northward 
or westward flowing currents. Driven by fresh water 
runoff, the Alaska Coastal Current (ACC) flows north-
westward close to shore toward the head of the Gulf of 
Alaska (Royer, 1981). From Icy Bay at about 137°W the 
ACC flows 1500 km to Unimak Pass at the eastern end 
of the Aleutian Island chain (Stabeno et al., 2004). This 
inshore current is likely the initial route of most young 
sablefish leaving nursery areas in southeast Alaska. As 
the fish move westward, cross-shelf gullies and canyons 
provide avenues of deeper water leading to the shelf 
break and the upper continental slope, along which runs 
the westward-flowing Alaskan Stream. The potential 
ease of transit from the Alaska Coastal Current on the 
shelf to the Alaskan Stream on the upper slope may help 

to explain the considerable overlap in fish ages that we 
found within and between depths. 

The direction of migratory movement by young sable-
fish may be influenced by prevailing current direction, 
but the return of adult sablefish along the continental 
slope to the eastern areas of the GOA is presumably 
made against the westward-f lowing Alaskan Stream 
and from a lower density area to a higher one. Reed 
and Schumacher (1987) believed that velocities of the 
Alaskan Stream are low in water deeper than 300 
m, and most of the fish travel within a 500–700 m 
depth when returning; therefore swimming against 
the current would not pose a problem for adult fish. 
The return of most adults to the eastern GOA serves 
to maintain the center of the population there and 
likely increases the chance of successful spawning in 
that area. 
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One factor that may make the eastern GOA and 
British Columbia spawning grounds more favorable is 
that spawning depths in these areas are closer to the 
coast than those farther west because of the narrow 
continental shelf in much of the eastern GOA. Also, the 
prevailing north-flowing Alaska Current in the eastern 
GOA may carry pelagic larvae and young fish closer 
inshore for easier access to coastal nursery areas. In 
the central and western GOA, spawning depths are 
farther offshore, increasing predation risk for larvae, 
and there is no prevailing northerly current to trans-
port larvae shoreward. Instead, the Alaskan Stream, 
up to 100 km wide, f lows westward along the shelf 
break, more or less perpendicular to the route that 
offshore-spawned larval and juvenile sablefish must 
travel to reach inshore nursery grounds. Tokranov 
(2002) believes this current is the source of periodic 
occurrences of juvenile sablefish off Kamchatka and the 
Kuril Islands. Winter current direction and sablefish 
recruitment success are related, and above-average 
recruitment is more likely in years with northerly drift 
(59%) than for years with an easterly or southerly drift 
(25%) (Sigler et al., 2001). 

All the sablefish in this study originated in the east-
ern GOA, but young-of-the-year sablefish have been 
caught in small numbers on various cruises in the Ber-
ing Sea, Aleutian Islands, western and central GOA, as 
well as the eastern GOA from 1955 to 1999 (Kendall 
and Matarese, 1987; Sigler et al., 2001). These observa-
tions indicate the likelihood of some direct recruitment 
into each of these areas, in addition to recruitment 
resulting from migration. Spawners contributing to 
each area may be migrants returning to the eastern 
GOA, adult fish that are resident in the area, or adult 
fish in an adjoining upstream area whose larvae are 
caught up in the prevailing currents and are carried 
westward. Although most fish in our study older than 
12 years were recovered in eastern GOA outside wa-
ters, older fish (13 to 21 years) also were recovered in 
each of the other areas, indicating that they may have 
become resident in the new area at some point during 
migration. 

Our study corroborated much that is already known 
or suspected about sablefish migration in Alaska waters. 
In addition, our data on age by depth and area have 
refined our knowledge of sablefish movements. Further 
studies to locate sablefish nursery grounds throughout 
the GOA and in the Bering Sea and Aleutian Islands 
and to tag juveniles on these grounds as was done in 
the eastern GOA for our study would determine whether 
these movement patterns observed in the present study 
are similar to movement patterns of sablefish originat-
ing in other regions of Alaska. 
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