Dynamic ensemble models to predict blue whale
distributions and risk exposure in near real-time
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Motivation: Ship strikes as a threat S
to blue whales

 Blue whale abundance globally is
at 3-11% its pre-industrial level

o Ship strikes identified as major
threat inhibiting population

recovery (Berman-Kowalewski et al.
2010; Redfern et al. 2013, Rockwood et al.
2017)

 Most recent estimate of 20 blue
whale ship strikes per year Iin

California Current (Rockwood et al.
2017)

Flip Nicklin, Minden Pictures



Shipping and blue whale hotspots S

Hazen et al. 2017 J Appl Ecol

Gulf of the Farallones

Channel Islands

Blue whales have similar
hotspots (1994-2008).
Irvine et al. 2014 PLOS One
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High spatial overlap
between shipping intensity
and blue whale hotspots

Southern CA Bight a
hotspot for strikes
(Rockwood et al. 2017,
Redfern et al. 2013)




I EE——————————————————. o

Dynamic Ocean Management

Uses real-time data on the shifting characteristics of the
ocean to generate responsive spatial management strategies

Hobday et al. 2014, Lewison et al. 2015, Maxwell et al. 2015, Hazen et al. 2018
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WhaleWatch 1.0:
Monthly predictions
at 25km scale, remote
sensed variables
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Publications WhaleWatch is a NASA-funded project to help reduce human impacts on whales by providing near real-time information on where they
- ocour and hence where whales may be most at risk from threats, such as ship sirkes, entangh and loud und sounds. These
Education & Outreach model estimales were developed from habitat-based models of whale occurrence that combine satellite tracking of whales with information

on the environment,
Maps & Data

View the WhaleWatch Webinar
Recent Stories

This month’s model estimates for Blue Whales (Balaenoptera musculus) off the U.S. West Coast:
Newsroom

NOAA Affiliates 1-Mar-2017 - 1-Apr-2017 Likefihood of Occurrence MNumbar of Whales

Lower Average

= =

Average

How do I?

Contact the West Coast
Region

» Learn more about ESA
Section 7 consultations

» Learn more about the Pacific

Coastal Salmon Recovery

Fund

Leg into my IFQ account

Find a biological opinion

» Report a stranded or
entangled marine mammal

. Reporta violatian Lower, A ge, and Upper 0 the range of relative likelihood of biue whale presence from 0 fiow) to 100 (high).
Find grant Hiea Average density (# whales per 25km x 25km grid cell) is included on the far right.

Model developed by Hazen et al. (2016)

Values are per 25 x 25 km (approximately 13 x 13 nmile). Red colors represent higher occurrence and blue lower values. It should be noted
that these predictions are only estimates based on the models developed from historical data and do not represent actual recorded
sightings or current densities. In this version, the model predictions are based on thly products of the envi tal data.

Hazen et al. 2017 J. Appl. Ecol.
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WhaleWatch 2.0: Objective p <\ jele=aN S

INITIATIVE

- Use regional ocean modeling (ROMS) data to develop a tool predicting
blue whale habitat based on the current environmental conditions in the
California Current.

- Models are built and being validated at daily and 10km resolution to
offer finer scale approaches towards reducing ship strike risk.

Bailey et
al. 2009

e Regional Ocean
"*"*-Mzodeling System
(RomS)




Approach: Species Distributional Modeling

Distribution / behavioral data
e.g. sightings data, tag data, foraging events
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Distribution / behavioral data
e.g. sightings data, tag data, foraging events
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METHODS ‘

Approach: Species Distributional Modeling

Distribution / behavioral data
e.g. sightings data, tag data, foraging events
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Approach: Species Distributional Modeling

Distribution / behavioral data
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Approach: Ensemble Modeling

Predictions from a set (‘ensemble’)

of models often yield more robust

predictions and allow evaluation of
uncertainties.

Ensemble

Wintle et al. 2003, Johnson and Omland 2004, Araujo
and New 2007, Thuiller et al. 2008, Gritti et al. 2013,
Scales et al. 2015
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Blue Whale Tag Data

s o lue whaies over the year - 104 blue whales tagged
| | 1994-2009

- Dally GPS locations
estimated from State-Space
Model
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Regional Ocean I\/Iodellng System (ROMS)
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METHODS :

Regional Ocean Modeling System (ROMS)
. Domain is 30-48°N, offshore to 134°W
“— 1/10° (~10 km) horizontal resolution

42 vertical levels

< 1800 km

(1980-2010) and in near-real-time (2011-present)
All output archived and served on UC Santa Cruz OPeNDAP THREDDS server (oceanmodeling.ucsc.edu)



http://oceanmodeling.ucsc.edu/

Model Evaluation

MACROECOLOGICAL METHOD 201/ WILEY and Biogeography

Global Ecology

Paintings predict the distribution of species, or the challenge of
selecting environmental predictors and evaluation statistics

Yoan Fourcadel2 @ | Aurélien G. Besnard13 | Jean Secondil4> @

Raw variables

- Importance of using independent data for
validation and multiple evaluation metrics!
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Model Evaluation N &
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Model Evaluation

6 Training & Testing oy

Datasets x 2 metrics: e

* 100% training vs. 100% testing ) | o f ssssss

« 75% random training vs. 25% e
random testing AUC = true positive rate vs.

. . false positive rate
e 100% training vs. testing in the ~ .
SCB | 1TSS =true positive rate +

true absence rate - 1

 K-folds training & testing S 0-1
cores range U-

* Leave One Year Out training vs. Score 2 0.5 = better than random,
Single Year testing > 0.75 considered good.

 N=3,413 independent sightings  —



Candidate Models

Model Model description 100%/100% K-fold Sightings

hame AUC / TSS AUC / TSS AUC / TSS
GAMM 1 SST+SSH sd+z+2z sd+ILD + EKE 0.912/0.701 |0.839/0.569 |0.941/0.801
GAMM 2 SST + SSH_sd +z +z_sd + ILD + EKE + lat*|lon 0.931/0.745 | 0.862/0.598 | 0.903/0.706
GAMM 3 SST*lat + SSH _sd +z +z_sd + ILD + EKE 0.923/0.722 |0.916/0.713 | 0.921/0.750
BRT SST+SST sd+SSH sd+z+z sd+ILD+EKE+ |[0.944/0.760 | 0.873/0.607 | 0.943/0.792

curl + BV_frequency + slope + aspect

Ensemble 1 | GAMM 1 + BRT 0.951/0.764 | 0.862/0.594 | 0.949 /0.804
Ensemble 2 | GAMM 2 + BRT 0.959/0.798 |0.873/0.623 | 0.941/0.787
Ensemble 3 | GAMM 3 + BRT 0.956/0.782 |0.871/0.618 | 0.941/0.790

Abrahms et al. in review
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Spatial Predictions
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BRT Ensemble

Spatial Predictions
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Spatial Predictions

BRT Ensemble

AUC/TSS scores 2 0.5
= better than random,
= 0.75 considered good.

100% training / 100% testing
AUC =0.951
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Abrahms et al. in review



N G- 7S S
Risk Exposure in Shipping Lanes

Hazen et al. 2017 JAE
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Risk Exposure in Shipping Lanes
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Decision Support Tool
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Decision Support Tool
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Conclusions S

- Dynamic species distribution models can offer a better match with
ecological processes AND human activities in space and time.
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Conclusions o

- Dynamic species distribution models can offer a better match with
ecological processes AND human activities in space and time.

- ROMS-based models offer the ability to improve our spatial (25 to
10 km) and temporal (monthly to daily) scales, and predictive
performance, for estimating the dynamic distribution of blue whales.
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Conclusions e

- Dynamic species distribution models can offer a better match with
ecological processes AND human activities in space and time.

- ROMS-based models offer the ability to improve our spatial (25 to
10 km) and temporal (monthly to daily) scales, and predictive
performance, for estimating the dynamic distribution of blue whales.

- These models are valuable for integrating into decision support
tools.
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