Estimating population abundance for beaked whales from drifting acoustic recorders and other data sources

Jeff Moore and Jay Barlow, SWFSC
PSAW II, 2019 Feb 13

Perennial challenge of estimating beaked whale abundance from visual line-transect data

- Cryptic behavior = Low sample sizes, error-prone species identification, and unknown but low $\mathrm{g}(0)$
- Therefore, probable biases and high CVs

Can we do better with passive acoustics?

- Beaked whales are at depth often and exhibit stereotypic acoustic behavior \rightarrow Better sample sizes?

Schorr and Falcone, unpubl. data

PASCAL 2016 (Passive Acoustic Survey for Cetacean Abundance Levels)

Ziphius detected in
870 out of 111 K
(0.8\%) 2-min intervals

Point distance sampling framework (Bayesian)

$N=\frac{\sum_{j=1}^{J} D_{j}}{J} * A$
Population size $(N)=$ average density (mean D across the J DASBRs) * size of study area (A)

For each DASBR j (random effect)...

$$
\begin{array}{ll}
n_{j} \sim \operatorname{Poisson}\left(E\left[n_{j}\right]\right) & \begin{array}{l}
\text { Number of 2-min intervals with Ziphius detections }\left(n_{j}\right) \text { is a Poisson random } \\
\text { variable, with an expectation } E\left[n_{j}\right] \ldots
\end{array} \\
E\left[n_{j}\right]=\frac{D_{j}}{s} * k_{j} * 2 \pi r^{2} * g(0) & \begin{array}{l}
\text { Expected number of detections = Group density (animal density / group size } \\
s) * \text { number of 2-min intervals sampled }(k) * \text { effective detection area (where } \\
r \text { is effective detection radius) }
\end{array}
\end{array}
$$

Group size from visual line-transect data (SWFSC, Moore and Barlow)

- Time at surface (Barlow et al. 2013)
- Mean foraging dive-time (Schorr et al. 2014)
- PASCAL encounter-history data

A closer look at g(0)

- $g(0)$ represents the probability that a beaked whale group within the detection area is actually 'available' to detection during a 2-min interval
- $g(0)=p 1$ * $p 2$
p1 = probability than an animal will be clicking (i.e., on a deep forage dive)
p 2 = probability that an animal is behaviorally available to detection given that it's clicking

A closer look at $\mathrm{g}(0)$

A closer look at g(0)

40 minutes

Animals click for 40+ minutes but time between first and last detection is typically much shorter than this...
irrespective of detection distance (out to about 2 km)

A closer look at $\mathrm{g}(0)$

p1 = probability than an animal will be clicking $=0.295$ ($\mathrm{CV}=0.09$)

- This is the proportion of time throughout the day that animals are clicking on foraging dives (Barlow et al. 2013)
p2 = probability that an animal is behaviorally available to detection given that it's clicking
- The proportion of time animals on foraging dives are facing the hydrophone
- p2 = minutes available to detection / minutes clicking during a foraging dive $=0.370$
$15.7 \mathrm{~min}(\mathrm{SE}=1.4)$
From encounter history data
$41.9 \mathrm{~min}(\mathrm{SE}=6.9 \mathrm{~min})$
From Schorr et al. 2014
- $\mathrm{g}(0)=\mathrm{p} 1 * \mathrm{p} 2=0.295 * 0.370=0.11$

Preliminary new abundance estimate

Inferences

- More Ziphius than we thought! (Current estimates of visual gO likely too high)
- Can obtain more precise estimates of Ziphius with acoustics than visual methods

Issues (we're not done yet)

- The behavioral availability question is more complex than I showed you...
- We are still working out some challenges on estimating the random DASBR effects
- We are currently ignoring some autocorrelation in the data
- Final estimates will likely be less precise than I am currently reporting

Thank you...

- Jen Keating and Emily Griffiths (PASCAL fieldwork and data processing)
- Greg Schorr and Erin Falcone (dive data)
- Annette Henry and Shannon Ranking (PASCAL cruise logistics)
- NOAA R/V Shimada (officers, crew, scientists)
- Greg Sanders (BOEM funding, fieldwork), Mike Weise (ONR funding), Jason Gedamke \& Lisa Ballance (NOAA)

Bureau of Ocean Energy Management

