Spatial prediction of fisheries bycatch

Brian Stock, Eric Ward, Tomo Eguchi SIO/UCSD, NWFSC, SWFSC

Growing interest in spatial models

Spatial semiparametric models improve estimates of species abundance and distribution

Andrew Olar Shelton, James T. Thorson, Eric J. Ward, and Rlake E. Feist

Yields abundance estimates that are:

- More precise
- More biologically reasonable
- Extreme catch events
- Sampling locations

Growing interest in spatial models

Used by NWFSC assessment team

Static management

Motivation

Static management

Motivation

Dynamic management

Static management

Polovina et al. 2015

Motivation

Dynamic management

avoid fishing north of solid black $65.5^{\circ} \mathrm{F}$ line to reduce turtle interactions

PIFSC

Polovina et al. 2015

Research Questions

1. How well can we predict fisheries bycatch in space and time?

Research Questions

1. How well can we predict fisheries bycatch in space and time?

Pr(some bycatch)
Binomial

Research Questions

1. How well can we predict fisheries bycatch in space and time?

Pr(some bycatch)
E(bycatch | some bycatch)

Binomial
Positive

Research Questions

2. What type of spatial model best predicts bycatch?

1) Shared
2) Constant

3) Multiple years

Parametric

- INLA-SPDE
- GAM

Non-parametric

- Random Forest
- SVM

Research Questions

3. Does the answer depend on species traits?

Benthic
Benthic
Low
Low
Bycatch Rate:
29\%
18\%

Habitat:
Movement:
Benthic
Med

Habitat:

Pelagic
Movement:
Bycatch Rate:

Pelagic High
0.15%
0.3%

Pelagic High
0.18\%

Research Questions

3. Does the answer depend on species traits?

Benthic
Benthic
Low
Low
Movement:
Bycatch Rate:

Habitat:
Pelagic

Pelagic
Movement:
Bycatch Rate:
High
High
High
89\%
0.15%
0.18%

Research Questions

3. Does the answer depend on species traits?

Habitat:	Benthic	Benthic	Benthic
Movement:	Med	Low	Low
Bycatch Rate:	29%	18%	0.3%
Habitat:	Pelagic	Pelagic	Pelagic
Movement:	High	High	High
Bycatch Rate:	89%	0.15%	0.18%

West Coast Groundfish

Binomial

Positive
~ SSt + depth +
distance to rocky substrate + size of rocky patch + in Rockfish Conservation Area + gear type + predicted occurrence (survey) + spatial field

Hawaii Longline

Binomial

Positive
~ sst (observed) + target + spatial field

Spatial field: INLA-SPDE

Spatial Partial Differential Equation

- Discrete approximation of continuous spatial fields

Results: Shared model

Binomial

Results: Multiple years

Binomial

Results: Shared model

Binomial

Results: Shared model

Binomial

Results: Shared model

Binomial

Results: ROC

Results: ROC

Results: ROC

Binomial

Eliminate 20% of fishing
Reduction in bycatch:

- - = 20%
- 45%
- 85%
- 100\%

Results: ROC

Binomial

Conclusions

1. How well can we predict fisheries bycatch in space and time?

Well enough to be useful for management
2. What type of spatial model best predicts bycatch?
3. Does the answer depend on species traits?

Depends on amount of data and bycatch rate

Acknowledgements

SIO

- Brice Semmens

NWFSC

- Eric Ward
- Essential Fish Habitat (Blake Feist)
- West Coast Groundfish Observer Program (Jason Jannot)

SWFSC

- Tomo Eguchi

PIFSC

- Hawaii Longline Observer Program (Eric Forney)

Results (preliminary)

Table 2. Probability of occurrence (binomial model, test data)

	$\begin{aligned} & \text { DBRK } \\ & \text { (18\%) } \end{aligned}$		$\begin{aligned} & \text { PHLB } \\ & \text { (28\%) } \end{aligned}$		$\begin{aligned} & \text { YEYE } \\ & \text { (0.4\%) } \end{aligned}$		$\begin{aligned} & \text { LOGG } \\ & (0.15 \%) \end{aligned}$		$\begin{aligned} & \text { LEATH } \\ & (0.18 \%) \end{aligned}$		$\begin{aligned} & \text { BLUE } \\ & \text { (89\%) } \end{aligned}$	
Method	AUC	F										
INLA												
Shared	. 843		. 820		. 775		. 923		. 795		. 740	
Constant	. 849		. 826		. 774		---		---		. 749	
Fixed	. 863		. 790		. 774		---		---		---	
AR	. 862		. 790		. 774		---		---		. 684	
GAM												
Null (GLM)	. 799		. 704		. 762		. 924		. 797		. 672	
Shared	. 845		. 818		. 766		. 931		. 847		. 739	
Constant	. 851		. 826		. 776		. 938		. 820		. 749	
Fixed	. 864		. 848		. 653		. 947		. 677		. 762	
Random Forest												
Constant	. 881		. 874		. 743		. 592		. 627		. 780	
SMOTE	. 879		. 871		. 794		. 953		. 704		. 781	
Downsample	. 874		. 869		. 788		. 946		. 836		. 795	

Results: ROC

Binomial

Fisheries Observer Data

West Coast Groundfish

- 2002-2013
- 55,835 tows
- 1.7 million records

Hawaii Longline

- 1994-2014
- 70,297 sets
- 3.2 million records

Results: RCAs

Binomial

11\% of tows were in Rockfish Conservation Areas

Q: What about the positive model?

Q: What about effort?

Results: ROC (survey)

Binomial

Proof of Concept

Binomial

Proof of Concept

Positive

Proof of Concept

Positive

These extreme bycatch events are the most important to predict!

Proof of Concept

Positive

Proof of Concept

Positive

Proof of Concept

Positive

Spatial models: INLA-SPDE

Integrated \mathbb{N} ested \llcorner Laplace $\mathbb{A} p$ proximation

- Alternative to MCMC for Bayesian inference
- Much faster

1. Find the posterior mode
2. Calculate local curvature
3. Use N (mode, curvature)

Spatial models: INLA-SPDE

Spatial Partial Differential Equation

- Discrete approximation of continuous spatial fields

Preliminary results: ROC curves

False positive rate 0.30
True positive rate 0.70

Preliminary results: ROC curves

False positive rate 0.48
True positive rate
0.52

False positive rate 0.30
True positive rate 0.70

Preliminary results: ROC curves

This PDF was later amended to make the document 508 compliant.

