

Protected species toolbox

Quantitative tools to assess the impact of anthropogenic activity on sea turtle populations

Heather Haas (NEFSC), Melissa Warden (Integrated Statistics), Paul Richards (SEFSC)

18 Nov 2015

Goals

Develop a suite of defensible, transparent, quantitative tools to evaluate the impact of human-caused mortality on sea turtle populations

NOAA's National Marine Fisheries Service

NOAA Fisheries Toolbox

2/10/2014

3/4/2010

General

Welcom

- n. Albourt NE
- Toolbox Design
- Comparing NFT Models
- Download Models
- Frequently Asked Question:
- NFT History and Milestone
- Referencing NFT Software
 Model List
- A Stock Production Model Incorporating Covariates
- Age Structured Assessmen
- Age Structured Projection Model
- An Index Method
- Collie-Sissenwine Analysis
- Depletion Corrected Average Catch Model
- Dual Zone VPA
- Instanteous Rate
- » Kalman Filter
- Length Based Yield Per Recruit
- Management Strategy Evaluation
- Model Compare
- Population Simulator Age Based
- Productivity and Suscentibility
- Productivity and Susceptibility Analysis
- Rivard Weights
- Statistical Catch at Age Model
- Statistical Catch at Length Model
- Stock Recruitment Fitting Model
- Stock Synthesis Version 3
- Survival Estimation in
- Virtual Population Analysis
-
- Yield Per Recruit

Welcome to the

Model Compare

Rivard Weights Calculator

Productivity and Susceptibility Analysis

NOAA Fisheries Toolbox Version 3.1

The NOAA Fisheries Toolbox (NFT) is a suite of biological modeling software programs that can be used in fisheries stock assessments.

Currently Available Models

Estimation of Stock Size and Mortality

	A Stock Production Model Incorporating Covariates	(ASPIC)	5.34.9	2/08/2011
	Age Structured Assessment Program Model	(ASAP)	3.0.17	04/14/2014
	Collie-Sissenwine Analysis	(CSA)	4.3	01/13/2014
	Dual Zone Virtual Population Analysis	(VPA-2BOX)	3.05	8/4/2004
•	Statistical Catch at Age Model	(STATCAM)	1.4.1	5/2/2008
•	Statistical Catch at Length Model	(SCALE)	1.0.11	9/13/2013
•	Stock Synthesis Version 3	(SS3)	3.45f	10/18/2012
•	Virtual Population Analysis	(VPA)	3.4.5	4/18/2014
Ma	anagement Scenario Projections			
	Age Structured Projection Model	(AGEPRO)	4.2.2	9/17/2013
Bi	ological Reference Points			
	Age Based Yield Per Recruit	(YPR)	3.3	9/17/2013
	An Index Method	(AIM)	2.5.0	1/31/2014
	Length Based Yield Per Recruit	(YPRLEN)	2.1	4/20/2012
	Stock Recruitment Fitting Model	(SRFIT)	7.0.1	3/18/2010
Mo	odel Performance Evaluation			
	Population Simulator - Age Based	(POPSIM-A)	8.2	12/12/2013
	Population Simulator - Length Based	(POPSIM-L)	8.0	12/12/2013
	Management Strategy Evaluation	(MSE)	4.0	12/23/2013
•	Visual Report Designer	(VisRpt)	1.6.1	4/2/2008
Mo	odels for Data Limited Situations			
	Depletion Corrected Average Catch Model	(DCAC)	2.1.1	10/4/2012
	Survival Estimation in Non-Equilibrium situations	(SEINE)	1.3	9/15/2008
Mo	odel for Analyzing Tagging Data			
•	Instantaneous Rates	(IRATE)	2.0	4/19/2013
Ad	lditional Tools			
•	Kalman Filter	(KALMAN)	2.3	7/24/2009

(RIVARD)

Three-phase plan

- Population model with removals
 - Removal from different life stages
 - Removal as individual turtles or adult equivalents
- Investigate population monitoring metrics
- Apply and evaluate impact assessment tools

First phase

Establish spatial loggerhead population model

Impact of removals from different life stages

Model structure and general overview

- Spatial matrix model
 - Annual survival and fecundity
 - 4 life stages
 - 3 regions (neritic north, neritic south, oceanic)
- Removals from the population in terms of individuals or adult equivalents, and affecting different life stages or regions

Simulated population trajectory minus removal

Population projection

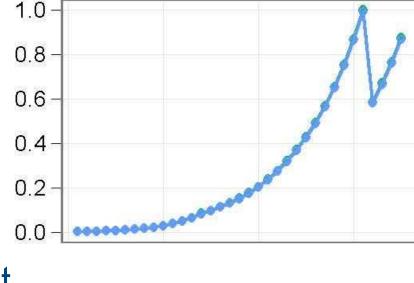
$$\mathbf{n}(t+1) = A\mathbf{n}(t)$$

Removals

$$\mathbf{n}(t) = \mathbf{n}(t) - \mathbf{r}$$

Removals

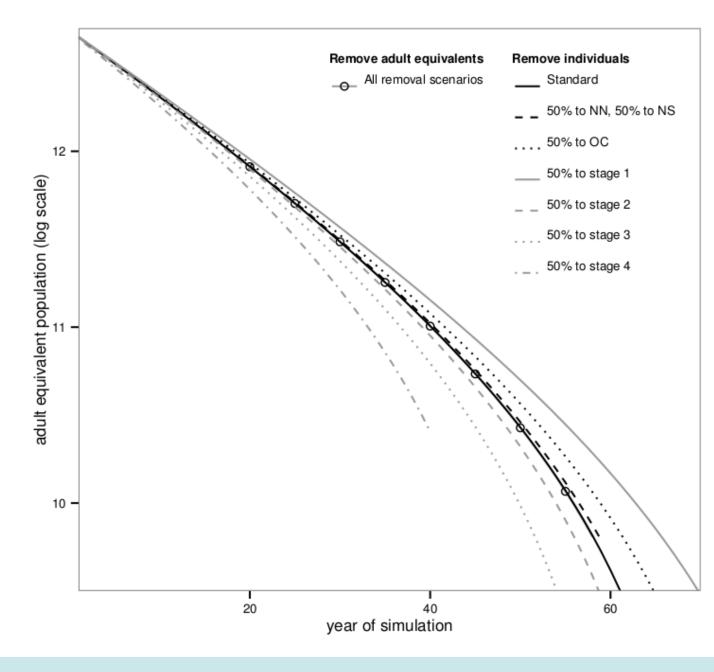
- Standard: based on stage distribution (but adjusted so not heavy on stage 1)
- Weighted
 - 50% to neritic north, 50% to neritic south
 - 50% to oceanic
 - 50% to stage 1, 2, 3, or 4
- Individuals or adult equivalents (determined from model-based reproductive values)



Reproductive values

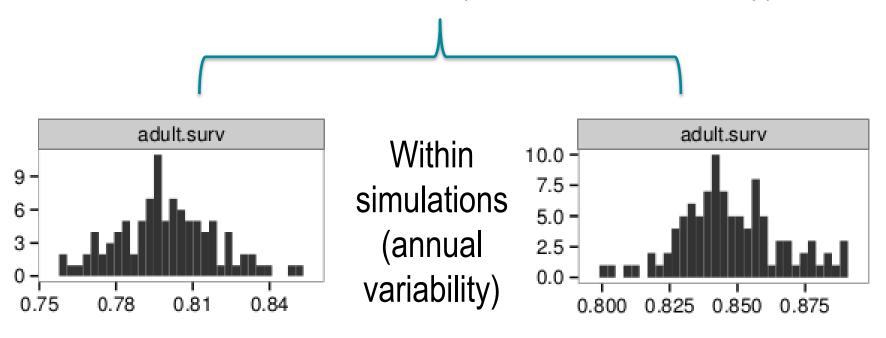
 Size-based proportions representing the contributions that individuals make to current and

future reproduction

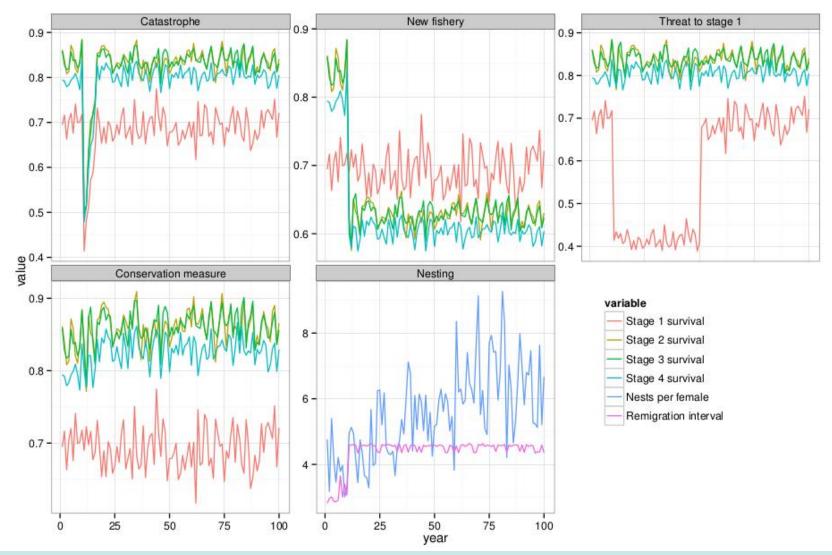

- Used to calculate adult equivalents
- Scaled so equals 1 for the breeding class and near 0 for youngest turtles, so one breeding adult = 1 adult equivalent

Results

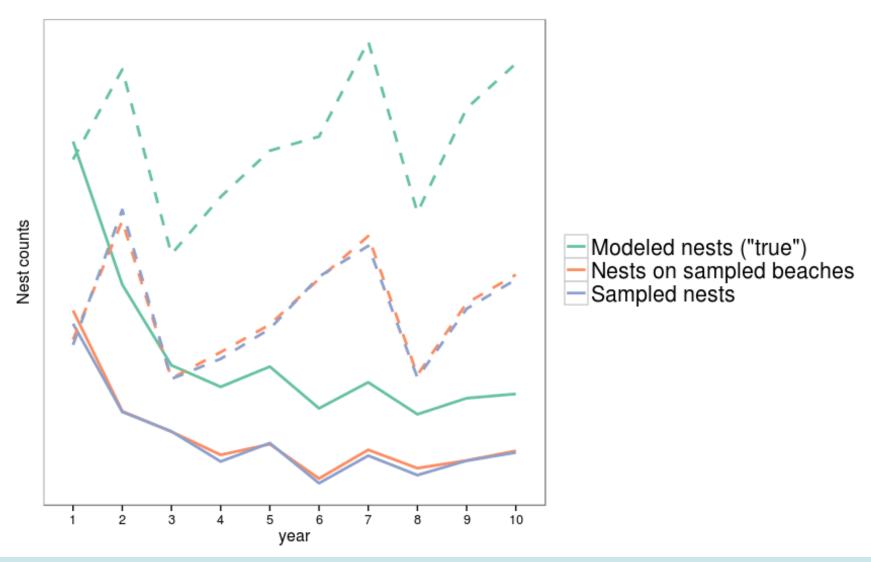
Removal in terms of adult equivalents is robust to affected life stage


Second phase

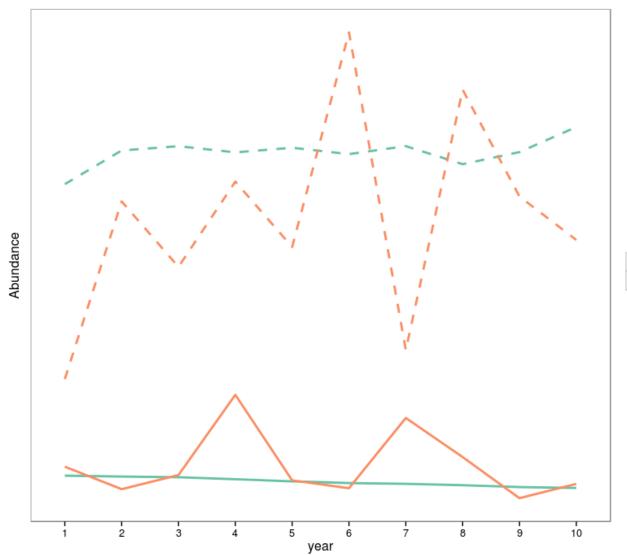
Explore monitoring metrics


Allow variation in parameter estimates

Between simulations (parameter uncertainty)



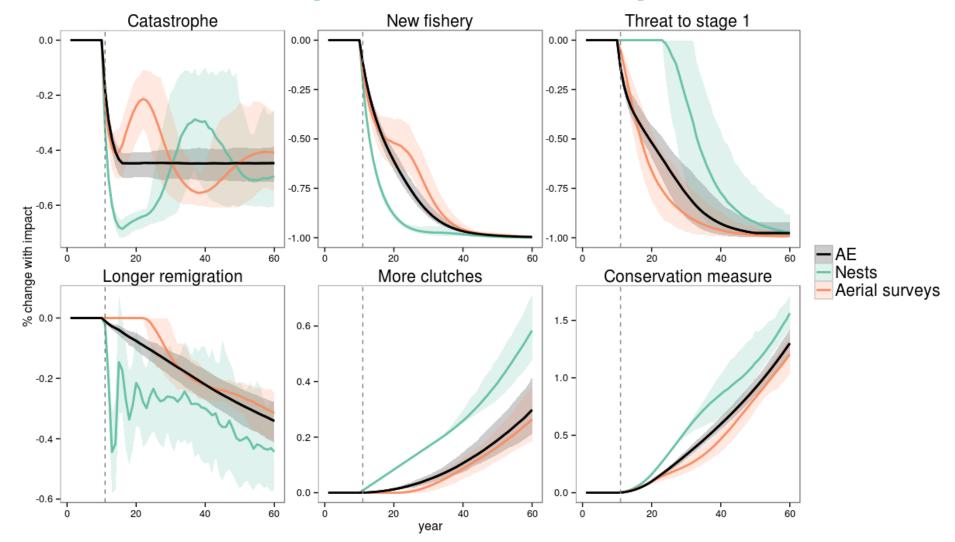
Population perturbations



Monitoring index: nest counts

Monitoring index: aerial survey abundance estimates

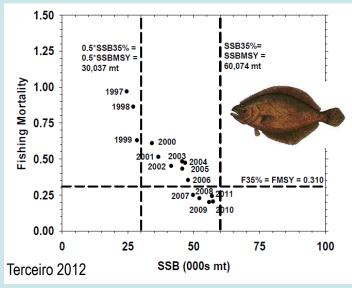
Modeled turtles ("true")Sampled turtles

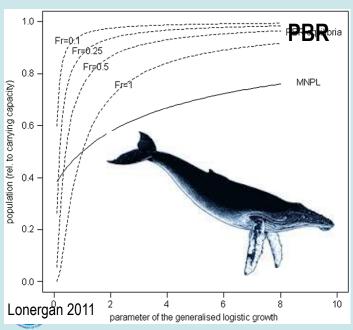

Variability of abundance estimates are based on a NEFSC reference document:

NEFSC & SEFSC. 2011. Preliminary summer 2010 regional abundance estimate of loggerhead turtles (Caretta caretta) in northwestern Atlantic Ocean continental shelf waters. NEFSC Ref Doc. 11-03; 33 p. online at

http://www.nefsc.noaa.gov/nefsc/publications/

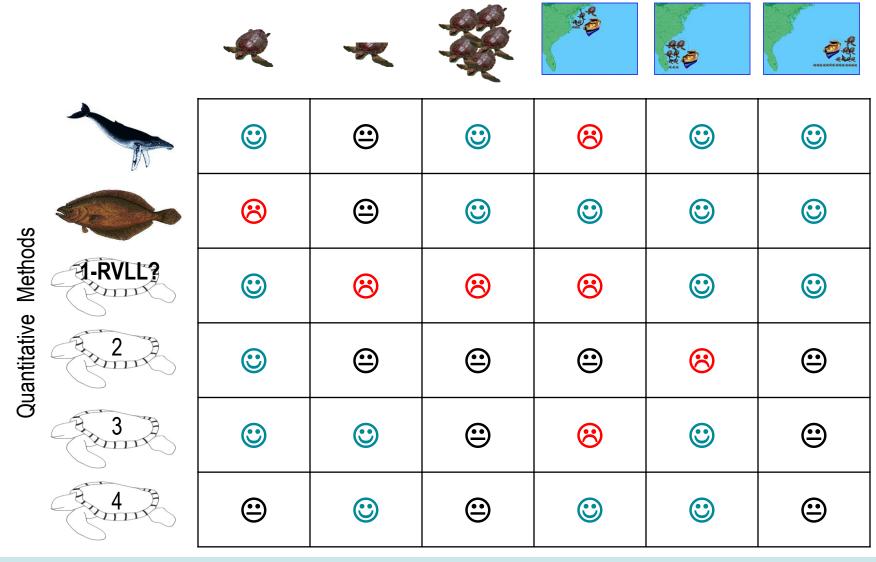
Results: Compare with adult equivalents




Third phase

Apply and evaluate new and existing tools

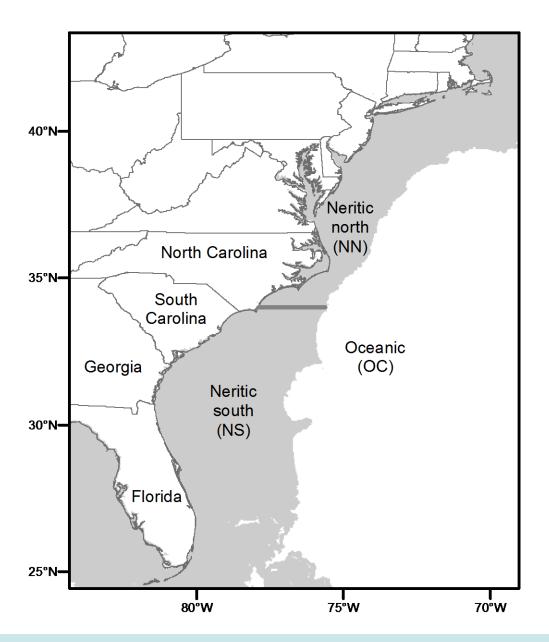
Sea Turtle Assessment



No standard reference points

Management strategy evaluation

Ecological and Management Scenarios



Questions?

3 regions

- Represent foraging areas
- Neritic north, neritic south, oceanic

Survival and remigration rates

						survival rate (S)		
Stage	Stage description	Oceanic (O) or neritic (N)	Approximate CCL (cm)	Duration (d) (years)	Estimated survival rate (S^*)	Neritic Oceanic (NN & NS) (OC)		
I	Hatchling and oceanic juvenile	0	Hatchling – 60.45	13 (10, 18)	0.744 (0.588, 0.878)	0.745 0.744		
II	Small juvenile	N, O	60.46-75.72	10 (9, 12)	0.830 (0.740, 0.890)	0.836 0.830		
III	Large juvenile	N, O	75.73-101.5	7 (4, 12)	0.835 (0.740, 0.925)	0.841 0.836		
IV	Adult	N, O	101.5	indefinite	0.841 (0.770, 0.925)	0.847 0.841		

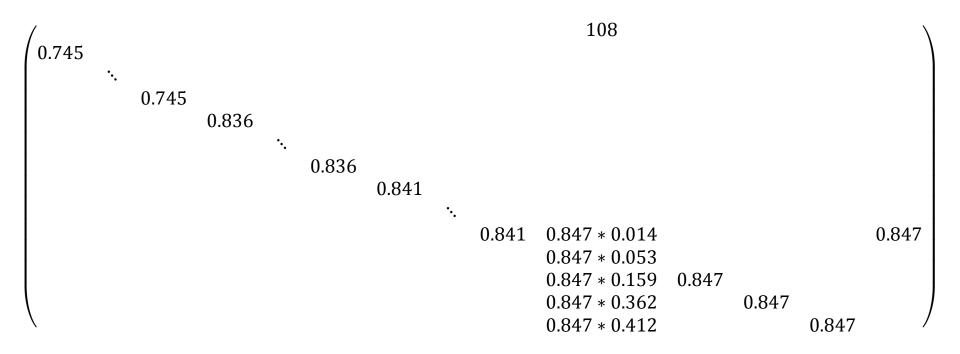
Remigration		Mortality-				
interval (yr)	Observed	corrected				
1	0.019	0.014				
2	0.466	0.412				
3	0.348	0.362				
4	0.130	0.159				
5+	0.037	0.053				

Harvest corrected

Fecundity

Elements of calculating fecundity for nesting female

		egg survivai		
nests per nesting		(i.e., proportion	proportion of	
female per year	eggs per nest	of eggs hatched)	female offspring	year 1 survival
5 (2, 8)	109 (89, 125)	0.53 (0.11, 0.82)	0.5 (0.35, 0.80)	0.744


 $F = 5 \times 109 \times 0.53 \times 0.5 \times 0.744 = 107.5 \approx 108$

Standard removals

			w (stable age distribution;	w _r . (w	p (proportion ITS	r (turtles	r _{AE} (adult equivalents
	Region	Stage	by stages)	rescaled)	removed)	removed)	removed)
_	\overline{C}	1	0.0006	0.0045	0.0044	18.70	4.74
	NN	2	0.0031	0.0686	0.0674	285.06	72.17
	1111	3	0.0006	0.0132	0.0130	54.98	13.92
	J	4	0.0002	0.0034	0.0034	14.21	3.60
ner <)	1	0.0183	0.1455	0.1430	604.77	153.12
	NS	2	0.0249	0.5549	0.5455	2,306.38	583.93
		3	0.0048	0.1070	0.1052	444.85	112.63
		4	0.0046	0.1029	0.1011	427.54	108.24
		1	0.9263	0.3000	0.0051	21.45	5.43
	OC	2	0.0138	0.5780	0.0098	41.33	10.46
	OC	3	0.0027	0.1115	0.0019	7.97	2.02
		4	0.0003	0.0105	0.0002	0.75	0.19

Model structure: patch-specific

Model structure: metapopulation

105 x 105 matrix

$$\mathbf{B} = \begin{pmatrix} \mathbf{B}_{NN} & 0 & 0 \\ 0 & \mathbf{B}_{NS} & 0 \\ 0 & 0 & \mathbf{B}_{OC} \end{pmatrix}$$

Movement matrix

Each M_i is a 3 x 3 matrix

Movement between patches

	Stage		I		II			Ш			IV		
					Origination								
	Patch _	NN	NS	0	NN	NS	O	NN	NS	О	NN	NS	0
D	NN	0.001	0.001	0.001	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03
Destination	NS	0.019	0.019	0.019	0.65	0.65	0.65	0.65	0.65	0.65	0.92	0.96	0.92
	O	0.98	0.98	0.98	0.33	0.33	0.33	0.33	0.33	0.33	0.05	0.01	0.05

Projection matrix

Multiply B and M (plus some other magic) to get A

$$\mathbf{A} = \begin{pmatrix} \mathbf{B}_{NN,NN} & \mathbf{B}_{NN,NS} & \mathbf{B}_{NN,OC} \\ \mathbf{B}_{NS,NN} & \mathbf{B}_{NS,NS} & \mathbf{B}_{NS,OC} \\ \mathbf{B}_{OC,NN} & \mathbf{B}_{OC,NS} & \mathbf{B}_{OC,OC} \end{pmatrix}$$

Population projection:

$$\mathbf{n}(t+1) = A\mathbf{n}(t)$$

Annual loggerhead ITS (lethal) Endangered Species Act Section 7 reinitation consultation on the federal Atlantic herring fishery **ITS Biological opinion** date management plan (FMP) NMFS' approval of the tilefish fishery management **(Internal NMFS memorandum to document that the 3 Mar 2001 fishery was not likely to adversely affect protected plan species, so no formal biological opinion completed.) Feb 2010 Implementation of the Deep-Sea Red Crab, Feb 2002 The continued authorization of reef fish fishing under Chaceon quinquedens, fishery management plan the Gulf of Mexico (Gulf) reef fish fishery Endangered Species Act section 7 consultation on the fishery management plan for the dolphin and management plan (RFFMP) 191 Sep 2011 wahoo fishery of the Atlantic Ocean Aug 2003 Reinitiation of Endangered Species Act (ESA) 0.67 Section 7 consultation of the continued Sea turtle conservation measures for the pound net fishery in Virginia waters of the Chesapeake Bay Apr 2004 implementation of the sea turtle conservations regulations, as proposed to be amended, and the Reinitiation of consultation on the Atlantic pelagic continued authorization of the Southeast U.S. shrimp longline fishery for highly migratory species Jun 2004 143 fisheries in federal waters under the Magnuson-Amendment to the fishery management plans Stevens Act 7,701 May 2012 (FMP) of the U.S. Caribbean to address required Endangered Species Act Section 7 consultation on the provisions of the Magnuson-Stevens Fishery Jul 2012 Atlantic sea scallop fishery management plan 112 Conservation and Management Act, as amended by Aug 2005 Endangered Species Act Section 7 consultation on the the Sustainable Fisheries Act continued implementation of management measures The continued authorization of snapper-grouper for the American lobster fishery Aug 2012 fishing in the U.S. South Atlantic exclusive Endangered Species Act Section 7 consultation on the economic zone (EEZ) as managed under the NEFSC research vessel surveys as well as two snapper-grouper fishery management plan of the South Atlantic region, including Amendment 13C to cooperative gear research studies to be overseen by Nov 2012 the SGFMP 22.33 Jun 2006 the NEFSC protected species branch (PSB) Continued authorization of the Atlantic shark fisheries The continued authorization of fishing under the

11

1.33 Sep 2009

via the consolidated HMS fishery management plan as amended by Amendments 3 and 4 and the federal

Endangered Species Act Section 7 consultation on the

continued implementation of management measures

dogfish, Atlantic bluefish, Northeast skate complex,

mackerel/squid/butterfish, and summer flounder/

Dec 2012

Dec 2013

26

239

Aug 2007 authorization of a Smoothhound fishery

scup/black sea bass fisheries

Aug 2009 for the Northeast multispecies, monkfish, spiny

fishery management plan (FMP) for coastal

the South Atlantic and Gulf of Mexico

of Mexico

migratory pelagic resources in the Atlantic and Gulf

fishery management plan (FMP) for spiny lobster in

The continued authorization of fishing under the

The continued authorization of fishing under the

of the Gulf of Mexico [F/SER/2005/07541]

fishery management plan for the stone crab fishery

Monitoring index: total adult females estimated from nest counts

- Average nesting frequency
 - Nest every 3 years
 - 4 nests per nesting year
- Total annual adult females = annual "sampled" nests / 4
- Total adult females = 3-year running sum of total annual adult females

This PDF was later amended to make the document 508 compliant.

