### Assessing bycatch estimation methods under data-poor scenarios

NMFS Protected Species Toolbox Mini-Symposium II March 1-2, 2018

Presenter: K. Alexandra Curtis (OAI)

**NOAA** FISHERIES

DEPARTMENT OF CON

NOAA

NATIONAL

# **Motivation**

- Many methods for bycatch estimation
  - Challenging and important problem
  - Diversity of challenges from sample size to meta-dataset
- But many challenges shared... common lessons on estimation method choice?
- Good estimates needed to underpin effective management and population assessments
  - Bias, error, and confidence interval coverage

# **Objectives**

- 1. Develop guidance on when particular estimation methods may perform poorly
- Inform managers and scientists wrt comparability of estimates from different methods









# Approach

- Large observer data sets as "whole truth" (varying fishery size, event frequency, data dispersion)
- Range of simulated observer coverages (5-50%, random and stratified design)
- For each simulation, estimate mean and confidence intervals at three coverage levels: 95%, 80%, 50%
- Evaluate



# **Approach: Estimation Methods**

| Estimation Method                                                                                                                | NEFSC  | SEFSC  | SWFSC | NWFSC  | AFSC | PIFSC |
|----------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|--------|------|-------|
| Mean-per-unit (binomial)<br>(effort-based expansion)<br>Wilson interval<br>bootstrap interval                                    |        | √<br>√ | √     | √*     |      |       |
| Ratio (landings-based expansion)<br>analytical interval<br>bootstrap interval<br>BC bootstrap interval<br>BCa bootstrap interval | √<br>√ | √<br>√ |       | √<br>√ | V    |       |
| Delta-lognormal                                                                                                                  |        | √      |       |        |      |       |
| Horvitz-Thompson                                                                                                                 |        |        |       |        |      | √     |
| Generalized Linear Model<br>Poisson<br>Binomial                                                                                  | √<br>√ |        |       |        |      |       |
| Generalized Additive Model<br>Poisson                                                                                            | ✓      |        |       |        |      |       |
| Random Forest                                                                                                                    |        |        | √     |        |      |       |



# **Approach: Estimation Methods**

| Estimation Method                                                                                                                | NEFSC        | SEFSC  | SWFSC | NWFSC  | AFSC | PIFSC        |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-------|--------|------|--------------|
| Mean-per-unit (binomial)<br>(effort-based expansion)<br>Wilson interval<br>bootstrap interval                                    |              |        | √     |        |      |              |
| Ratio (landings-based expansion)<br>analytical interval<br>bootstrap interval<br>BC bootstrap interval<br>BCa bootstrap interval | √<br>√       | √<br>√ |       | √<br>√ | V    |              |
| Delta-lognormal                                                                                                                  |              | √      |       |        |      |              |
| Horvitz-Thompson                                                                                                                 |              |        |       |        |      | $\checkmark$ |
| Generalized Linear Model<br>Poisson<br>Binomial                                                                                  | √<br>√       |        |       |        |      |              |
| Generalized Additive Model<br>Poisson                                                                                            | $\checkmark$ |        |       |        |      |              |
| Random Forest                                                                                                                    |              |        | √     |        |      |              |



# **Approach: Performance metrics**

- Mean
  - Bias (ratio)
  - MAE (standardized)
  - RMSE (standardized)
- Confidence intervals:
  - Overall coverage
  - Upper tail error rate







# **Approach: Data sets**

- CDGN 1991-2000\* (intra-annual estimates)
  - 71-134 observed trips yr<sup>-1</sup>

| Species                      | Code | Catch<br>(total) | Catch Yr <sup>-1</sup><br>(range) | Var:Mean<br>(annual) | Knox test p-value<br>(20km, 3 days) | Wi24 Wi22 Wi20 Wi18<br>West Longhole<br>Henrod sets in the California drift gillnet fishe |
|------------------------------|------|------------------|-----------------------------------|----------------------|-------------------------------------|-------------------------------------------------------------------------------------------|
| Leatherback turtle           | DC   | 22               | 0 – 5                             | 1.0                  | 0.04                                |                                                                                           |
| Pacific white-sided dolphin  | LO   | 22               | 0 – 5                             | 1.5                  | 0.036                               |                                                                                           |
| Northern right whale dolphin | LB   | 56               | 0 – 11                            | 2.0                  | 0.057                               |                                                                                           |
| Elephant seal                | MA   | 104              | 2 – 22                            | 1.1                  | 0.001                               |                                                                                           |
| California sea lion          | ZC   | 120              | 4 – 9                             | 1.9                  | 0.001                               |                                                                                           |
| Short-beaked common dolphin  | DS   | 301              | 9 – 45                            | 1.6                  | 0.001                               |                                                                                           |

\* Approximates current fishery size but not management



Washington

Pacific Ocean

### **MPU: Mean Metrics**



| Code | Catch<br>(total) | Var:Mean<br>(annual) |  |
|------|------------------|----------------------|--|
| DC   | 22               | 1.0                  |  |
| LO   | 22               | 1.5                  |  |
| LB   | 56               | 2.0                  |  |
| MA   | 104              | 1.1                  |  |
| ZC   | 120              | 1.9                  |  |
| DS   | 301              | 1.6                  |  |







# **MPU: Confidence Interval Coverage**



|               |               |                | DC                         |                        |            |                                                  |
|---------------|---------------|----------------|----------------------------|------------------------|------------|--------------------------------------------------|
| 100-<br>75-   | ♥▲∎≢          | ■ <b>*</b>     |                            |                        |            |                                                  |
| 50<br>25 -    | ×             | ⊠ <del>米</del> | <b>一</b> 図来                |                        |            |                                                  |
| 0-            |               |                | LO                         |                        |            |                                                  |
| 100<br>75-    | ●▲∎≠          | <b>₽</b> ♠∎+   |                            |                        |            |                                                  |
| 50            | ⊠*            | ⊠¥             | <b>≜</b> ₩                 | <b>≜_</b> ⊠ <u>≭</u> _ | <b>●</b> ★ |                                                  |
| (%)           |               |                | LB                         |                        |            | CI method                                        |
| 90100-<br>75- | ● <b>☆</b> ∎≠ | \$≜∎≢          |                            |                        |            | <ul> <li>exact</li> <li>agresti-coull</li> </ul> |
| S 50<br>25-   | ×             | ▲■ 図米          |                            |                        | <b>▲</b>   | ■ wilson<br>+ HG exact                           |
|               |               |                | MA                         |                        |            | ⊠ bootstrap<br>₩ BCa bootstrap                   |
| e 75-         |               |                |                            |                        |            | CI level                                         |
| 25-           |               |                |                            |                        |            | 50<br>80                                         |
| Ö 100-        |               |                | zc                         |                        |            | 95                                               |
| 75-           |               |                |                            |                        |            |                                                  |
| 25-           | 國業            |                |                            |                        | T          |                                                  |
| 100-          |               |                | DS                         |                        |            |                                                  |
| 75-           |               |                |                            |                        |            |                                                  |
| 25-           |               | ▲■ ' 凶米        |                            |                        |            |                                                  |
| 0-            | 5             | 10<br>O        | 20<br>bserver Coverage (%) | 30                     | 50         |                                                  |

| Code | Catch<br>(total) | Var:Mean<br>(annual) |
|------|------------------|----------------------|
| DC   | 22               | 1.0                  |
| LO   | 22               | 1.5                  |
| LB   | 56               | 2.0                  |
| MA   | 104              | 1.1                  |
| ZC   | 120              | 1.9                  |
| DS   | 301              | 1.6                  |

**OAA FISHERIES** 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 10

#### U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 11



1.5

2.0

1.1

1.9

1.6



# **MPU: Upper Tail Error Rate**



LO

LB

MA

ZC

DS

22

56

104

120

301

# A Few Concluding Thoughts

- Filling in framework: more estimation and sampling methods, larger data sets
- MPU Confidence Intervals
  - Bootstrap intervals not compatible with small fishery (trip-level)
  - Wilson interval balances risk aversion and efficiency
    - Potential trouble areas: overdispersed data
    - Can handle years with zero observed catch
- Zeros: undetected species? Importance of fishery-independent risk assessment

# Acknowledgments

Funding from NOAA Fisheries' Office of Science and Technology

This PDF was later amended to make the document 508 compliant.

Assistance and input from many individuals from every region and science center in NOAA Fisheries: Jim Carretta, Jeff Moore, Tina Fahy, Penny Ruvelas, Lauren Saez, Dan Lawson, Monica DeAngelis, Lyle Enriquez, Charles Villafana, Paul Richards, Lance Garrison, Melissa Soldevilla, Jennifer Lee, Jessica Powell, Nick Farmer, Michael Larkin, Stacey Horstman, Joshua Hatch, Kimberly Murray, Chris Orphanides, Marjorie Lyssikatos, Sean Hayes, David Gouveia, Carrie Upite, Ellen Keane, Kate Swails, Mark Minton, Michael Asaro, Edith Carson, Jason Jannot, Yong-Woo Lee, Thomas Good, Kayleigh Somers, Vanessa Tuttle, Jon McVeigh, Eric Ward, Susan Wang, Paul Wade, Suzie Teerlink, Bridget Mansfield, Aleria Jensen, Amanda Bradford, Donald Kobayashi, Summer Martin, Yonat Swimmer, Annie Yau, Irene Kelly, Dawn Golden

Feedback: alex.curtis@noaa.gov

