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1  | INTRODUCTION

Animal tracking via telemetry devices has become routine in ecology and 
allows for the study of animal movement, resource selection, and space 
use (Hanks, Hooten, & Aldredge, 2015; Hooten, Johnson, McClintock, 
& Morales, 2017; Johnson, Hooten, & Kuhn, 2013). Telemetry data pro-
vide insight into animal movement, but may not depict complete cov-
erage of animal activities or behavior. Consequently, a long-standing 

goal in ecology has been to determine how one should define the home 
range or utilization density (UD) of an animal with incomplete knowl-
edge of its path (Kie et al., 2010). Heuristically, UDs can be thought of 
as a probability density for the realization of an animal’s location on a 
two-dimensional surface, that is, where an animal is likely to be found 
on a map if we relocate it sometime in the future (Hooten et al., 2017).

Kernel density estimation has become the most frequently used 
method for estimating the UD (Keating & Cherry, 2009; Kie et al., 
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Abstract
1.	 A long-standing goal in ecology is to describe an animal’s home range or utilization 

density (UD) without complete knowledge of the animal’s movement. There are a 
number of methods available to calculate a UD from telemetry data, but the most com-
mon methods limit the UD to cover areas where the animal was observed during track-
ing, and do not account for preferential use of different habitats (resource selection).

2.	 The limiting distribution of a continuous-time Markov chain (CTMC) matches the 
intuitive understanding of a UD for an animal following a CTMC movement model. 
By modelling continuous-time movement through discrete-gridded space we can 
infer environmental effects on animal movement and then predict a UD over the 
desired spatial area that captures preferential use of space.

3.	 The r packages crawl and ctmcmove allow ecologists to use telemetry data to 
predict the UD of an animal using the limiting distribution of a CTMC movement 
model.

4.	 We used data collected from Steller sea lions in Alaska to illustrate use of this 
method for investigating range-wide space use. Our findings show how these pack-
ages, and this method, can aid our understanding of space-use by predicting use 
outside the areas where animals were observed, avoiding barriers to movement, 
including environmental covariates and removing the release effect of telemetry 
studies. These results will be important for both conservation and management, 
particularly when determining critical habitat designation.
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2010; Lavar & Kelly, 2008), with Brownian Bridge Movement Models 
gaining popularity in recent years (Horne, Garton, Krone, & Lewis, 
2007; Kranstauber, Kays, LaPoint, Wikelski, & Safi, 2012; Tracey et al., 
2014). These methods are popular and easy to implement with r pack-
ages; however, choice of smoothing parameter (Kie et al., 2010) and 
adjustments for environmental barriers (e.g., marine animals not cross-
ing land or terrestrial animals not walking off a cliff) remain points of 
debate. Additionally, these methods typically restrict the UD within 
the area where the animal was observed and do not extrapolate to 
include other potential high-use areas nearby.

Whitehead and Jonsen (2013) recently proposed a method to cal-
culate UDs from telemetry data by using the limiting distribution of 
a discrete-time Markov chain. This method is an improvement in cal-
culating density estimates, but does not incorporate continuous-time 
nor habitat related covariates that may inform movement patterns.

When analysing animal telemetry data, the goal is often to relate 
the continuous movement of the animal to gridded environmental 
covariates. Hanks et al. (2015) proposed a continuous-time Markov 
chain (CTMC) to model an animal’s movement through a discrete, 
gridded space. This process links animal movement to environmental 
covariates and allows for flexible modelling of an animal’s response to 
potential drivers of movement.

In this paper, we describe a method to estimate the UD of an an-
imal using a CTMC model that accounts for environmental barriers 
and preferential use of different habitats. We extend the approach 
of Hanks et al. (2015) to predict space use across the entire area of 
interest, instead of restricting the UD to where the animal was ob-
served during the deployment period. We explain how this method 
works, show how it can be applied using the r packages crawl and  
ctmcmove, and demonstrate the method using telemetry data from 
Steller sea lions (SSL) (Eumetopias jubatus) in Alaska.

2  | CTMC MODELS OF ANIMAL  
MOVEMENT

A CTMC movement model is a stochastic process in which an animal 
transitions in continuous time between a set of discrete states, in this 
case, spatial grid cells. Movement through the cells is defined by the 
rate (λij) at which an animal transitions from cell, i, to neighbouring cell, j. 
The time spent in cell i is exponentially distributed with rate ̄λi=

∑ni

j=1
λij

, and once an animal leaves cell i the probability that it moves from cell 
i to cell j is λij∕λ̄i (Kulkarni, 2010). Herein, transitions are only allowed 
between neighbouring grid cells (e.g., a rook’s neighbourhood), but this 
is not a mathematical constraint, it can be extended as desired. Setting 
a rate λij = 0 makes moving from cell i to cell j impossible, so the CTMC 
model can easily incorporate impassible terrain.

The discrete-space representation of the CTMC movement path 
provides a natural framework for making inference about possible driv-
ers of movement, represented as covariates in raster form, by setting 
the rate of movement from cell i = 1, …, S, to cell j as λij=exp (x�

ij
�), 

where xij contains covariates controlling the rate of movement from 
cell i to j and β is the associated vector of coefficients.

Hanks et al. (2015) consider two broad classes of covariates: (1) 
motility covariates (xij = xi), which are dependent only on the landscape 
in cell i and are constant over all j, and (2) directional covariates of 
movement, in which xij are different for each neighbouring cell and 
capture directional bias in movement along covariate gradients. The 
motility covariates control the desire of an animal to stay in (or leave) a 
cell due to the current habitat (i.e., speed of movement through a cell), 
while directional drivers control attraction (or repulsion) to neighbour-
ing cells due to improvement (degradation) in the neighbouring habitat 
relative to the current habitat.

This CTMC approach is similar to a resource selection analysis 
with the available resources defined as the neighbouring grid cells. 
The transition rate to each neighbouring cell contains information 
that defines preferential use of the resources in each cell. Estimates of  
β, therefore, provide information about how animals are using the 
available habitat.

A number of species have barriers in their environment that they 
are unable to cross (e.g., marine mammals cannot swim across land). 
Modelling movement in discrete space allows us to put “holes” in the 
habitat grid that serve as barriers for movement (the probability of 
transition into a barrier cell = λij = 0). By not allowing the movement 
path to cross a barrier, we can calculate a UD that respects impassible 
barriers to movement.

3  | INFERRING UDS FROM CTMC 
LIMITING DISTRIBUTIONS

Heuristically, the limiting distribution of the CTMC is the long-run 
distribution of the animal’s location at some point far into the fu-
ture. In the case of an animal moving through gridded space, the 
states are cells in the habitat grid and the limiting distribution is the 
probability that an animal is located in each cell at some point far in 
the future. This description of the limiting distribution matches how 
ecologists think of the UD, so, it stands to reason that it can be con-
sidered as the UD for an animal following a CTMC movement model.

The conditions under which a CTMC possesses a limiting distribu-
tion have been studied in many contexts (see section 4.6 of Kulkarni, 
2010). The most general conditions that ensure a CTMC has a limiting 
distribution are that the CTMC is irreducible and positive recurrent. For 
our model, this means:

1.	 if a grid cell can be visited (e.g., not a barrier cell) then it can 
be accessed from any other grid cell given enough time (irre-
ducible) and

2.	 after an animal leaves a cell, the probability that it will take an infi-
nitely long time to return to that cell is zero (positive recurrence).

For the CTMC model of animal movement, these conditions are 
satisfied if the study area is not cut into sections where the animal 
cannot move from one section to another (1) and all other cells allow 
at least one move to a neighbouring cell (2). Mathematically, the sec-
ond condition implies that λ̄i>0 for any cells the animal can visit. In 



     |  3Methods in Ecology and Evolu
onWILSON et al.

a general sense, there can be no cells for which the animal remains 
forever once it enters, and the predicted space should not contain cells 
that would never be visited by the animal in question.

To aid in the calculation of the UD from a CTMC, it will be help-
ful to break the CTMC into two random processes, the embedded 
Markov chain, G1, …, GT, which is the time-ordered list of cells visited 
over the course of the deployment, and the times, τ1, …, τT, that the 
animal spends in each cell. Because the CTMC model is irreducible 
and positive recurrent, the limiting distribution can be calculated as a 
weighted average

of α = (α1, …, αS)’, which is the limiting distribution of the embedded 
Markov chain (Norris, 1997). Therefore, in the long run, the propor-
tion of time that an animal spends in a cell is equal to the long-run 
probability (αk) that it visits that cell (the limiting distribution of the 
embedded chain), multiplied by the expected amount of time 1∕λ̄k it 
resides in that cell (residence time is exponentially distributed with 
rate λ̄k). This is just one solution for obtaining the limiting distribu-
tion and is a good explanation of the general idea. There are many 
approaches to finding the limiting distribution of a CTMC once the 
rate parameters (λij) have been estimated (Moler & Van Loan, 2003). 
Our analysis uses the more numerically efficient method of Harrod 
and Plemmons (1984).

There are several benefits (not mutually exclusive) to estimating a 
UD using this limiting distribution method. As Whitehead and Jonsen 
(2013) note, using a limiting distribution removes the release effect. 
That is, over a small timeframe, an animal may not adequately explore 
all of the territory it would normally use because it can only move so 
far from where the researcher releases it. By removing the release ef-
fect, this approach allows predictive estimation of the UD because it 
estimates use in the long run, after the animal has had time to explore 
all of the study area. Consequently, high use areas can be predicted 
where the animal never visited, if the environmental conditions in 
those cells are good enough to eventually warrant a visit from the 

animal. Finally, because the initial conditions are removed, estimated 
UDs are directly comparable between animals of different telemetry 
deployment lengths. Essentially, the deployment length (i.e., release) 
effects have been removed since the UD for every animal is based on 
the same long-run time-scale. This method also links the movement 
of the animal to environmental covariates, consequently account-
ing for the animal’s response to environmental drivers of movement 
when calculating the UD. This method for estimating a UD can now 
be implemented using the ctmcmove package in r.

4  | TUTORIAL

This tutorial illustrates how to use existing r packages to estimate a 
UD using telemetry data and environmental covariates. We initially 
modelled the telemetry data using the r package crawl (Johnson, 
2016) with subsequent steps of the CTMC model implemented in 
ctmcmove (Hanks, 2016). The general steps to accomplish this are: 
(1) create covariate rasters; (2) create a quasi-continuous movement 
path from the telemetry data using crawl; (3) adjust the movement 
path to avoid any barriers; (4) estimate CTMC model parameters 
using ctmcmove; and (5) calculate the UD. See Appendix S1 for  
step-by-step code.

For this example, we used telemetry data (Wildlife Computers 
SPLASH tags) from adult female SSL, tagged over-winter in the 
Aleutian Islands, Alaska, USA. The data include location estimates (lat-
itude/longitude), with a corresponding date/time, location class (an 
error estimate for each Argos location), and whether or not the SSL 
was hauled-out on land (drytime).

4.1 | Create covariate rasters

The raster grid extent and resolution was the same for all animals 
(1 km) and covered the central Aleutian Islands (Figure 1). We used 
bathymetry (Alaska Regional Office 2017), slope, distance to the clos-
est SSL haul-out or rookery site (Fritz, Sweeney, Towell, & Gelatt, 

ui=
αi∕λ̄i

∑

k αk∕λ̄k

F IGURE  1 Study area: Central Aleutian Islands, Alaska, USA
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2016), and distance to the continental shelf as our environmental co-
variates (Figure 2).

We loaded the environmental covariate rasters into r using the raster 
package and made two raster stack objects representing the directional 
(grad.stack) and motility covariates (loc.stack), respectively.

# Read in raster covariates and stack them together 

grad.stack <- stack(bathy,slope,siteDist,shelfDist) 

loc.stack <- stack(int,bathy,slope,siteDist,shelfDist)

We included a barrier to movement in the form of a rasterized 
coastline map (Figure 3) for use when calculating the transition matrix. 
Water is the raster showing where the SSL are allowed to move. Land 
(1–Water) is the raster of barrier cells.

# Create transition matrix with 4 possible directions

trans = transition(water, prod,4)

 

# identify locations of each land grid cell

holes <- which(land@data@values==1)

4.2 | Fit continuous-time correlated random walk 
movement model

We used the telemetry data to fit a quasi-continuous continuous-time 
correlated random walk (CTCRW) path for each animal. 

# Fit CTCRW model

temp.fit <- crwMLE( mov.model=~1, err.model=list 

(x=~A_loc_class-1), activity=~I(1-DryTime),data=data)

4.3 | Simulate CTCRW path for imputation

Because we do not observe the entire quasi-continuous path of the ani-
mal, we integrate over the uncertainty in the continuous path using the 
stacked weighted likelihood approach of Hanks and Hughes (2016). In 
this approach, several (M) paths are simulated from the fitted CTCRW 
model, and the CTMC model is fit to all M paths as if they were inde-
pendent, but with each observation being assigned a weight of 1/M. 
Hanks and Hughes (2016) showed that the results of the stacked 
weighted likelihood approach are nearly identical to those of multiple 
imputation, which has been the premier method of inference in the pres-
ence of missing data (Nakagawa & Freckleton, 2011; Scharf, Hooten, 
& Johnson, 2017). This allows one to account for uncertainty in the 
continuous-space path of the animal. First, we simulated multiple paths 
using the CTCRW fitted model and a set of regular time intervals (Step 2) 
and then we adjusted them by projecting the CTCRW paths that crossed 
land onto the nearest valid path that stayed in the water using the land 
raster and transition matrix that was created in Step (1) (Figure  3).

# simulate path and adjust for barriers

samp <- crwPostIS(simObj, fullPost = FALSE)

F IGURE  2 Environmental variables used as covariates in the analysis of Steller sea lion movement in the central Aleutian Islands, Alaska
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samp <- cbind(samp[[1]][,c(1,3)],t=samp[[3]]) #pull 

out xy coords and time

newpath <- fix_path(samp[,1:2],samp[,3],land,trans) 

%>% data.frame(.)

4.4 | Fit CTMC model

For each simulated path, the discrete space path, G1, …, GT, is ex-
tracted along with cell residence times, τ1, …, τT, using the path2ctmc 
function in ctmcmove. Hanks et  al. (2015) showed that inference on 
CTMC parameters can be made by rewriting the CTMC likelihood 
into a form proportional to a Poisson Generalized Linear Model (GLM) 
likelihood. The necessary transformation of each CTMC path is facili-
tated through the ctmc2glm function. Finally, we fit the model using 
the standard GLM functions in r. See the full code in Appendix  S1.

path <- list(t=newpath$time,xy=newpath[,1:2])

ctmc <- path2ctmc(path$xy,path$t,grad.stack,zero.

idx=holes)

glm.data <- ctmc2glm(ctmc,loc.stack,grad.stack,zero. 

idx=holes)

# fit GLM

fit <- glm(z~bathy+slope+d2site+d2shelf+bathy.loc+ 

slope.loc+ d2site.loc+d2shelf.loc,family=“poisson”,

offset=log(tau), data=glm.data)

Gradient-based drivers of movement explain how directional 
bias in animal movement rates are related to the environment (our 

grad.stack object). A significantly negative value for bathyme-
try, for example, would suggest that animals move towards deeper 
water. Location-based drivers of movement show how speed of 
movement is affected by environmental conditions (loc.stack). 
For example, a significantly negative coefficient value for bathy.loc, 
would suggest that the animal moves more slowly in deeper waters 
(Figure  4).

4.5 | Calculate UD from CTMC output

The coefficient estimates from the GLM (Table  1) explain direc-
tional bias in the movement patterns (grad.stack coefficients) and 
how absolute animal movement rates are related to the environ-
ment (loc.stack coefficients). These coefficients can be used to get 
a rate matrix (R) for the entire raster grid. The elements of this rate 
matrix are the estimated CTMC transition rates λij. The get. UD 
function calculates the limiting distribution of the Markov Chain 
using the rate matrix (R). The limiting distribution is an estimate of 
the proportion of time the animal spends in each cell and is conse-
quently an estimate of the UD.

# Rate matrix & stationary distribution

R <- get.rate.matrix(fit, loc.stack, grad.stack, 

zero.idx=holes)

pi <- get.UD(R)

When considering critical habitat designation or species manage-
ment, it may be important to understand the space use of a population 
of animals, rather than knowing that of one individual. To look at the 

F IGURE  3 Raster grid showing barriers to movement (islands) for Steller sea lions in the central Aleutian Islands, Alaska

200

300

400

500

600

700

—2250 —2000 —1750 —1500 —1250

Easting (km)

N
or

th
in

g 
(k

m
)



6  |    Methods in Ecology and Evolu
on WILSON et al.

space use of all three SSLs together, we combined the individual UD 
rasters (Figure 4) into one ‘population-level’ UD (Figure  5).

allUD <- mosaic(ud15136, ud15137,ud14809,fun=sum)

Calculating individual UDs before combining them allows for individ-
ual variation in habitat preferences to influence the combined UD. This is 
ideal for species with high levels of individual variation in movement pat-
terns (e.g., SSL and harbour seals). If the study species does not have high 
individual variation, or if a general population-mean UD is desired, then 
the glm.data for individuals could be combined before fitting the GLM. 

This would result in the calculation of one UD that estimates the average 
space use for the population. The method can be applied to as many in-
dividuals as necessary. Some demonstration code has been added to the 
appendix for calculating cellwise standard errors of the estimated UD; 
however, this is computationally expensive for large study areas.

5 | CONCLUSIONS AND FUTURE DIRECTIONS

This work demonstrates a method to calculate a UD using the limiting 
distribution of a CTMC. The resulting UD avoids barriers to movement, 

F IGURE    4 Utilization densities for 
Steller sea lions in the central Aleutian 
Islands, Alaska. Blue points are the 
telemetry locations used in the movement 
model for each sea lion
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estimates use over the entire area of interest, accounts for the influ-
ence of covariates and movement on space use, and is not sensitive to 
initial conditions (release effect) or short observation periods.

Avoiding barriers in the calculation of a UD is a large step for-
ward in the analysis of animal space use. Because we have a CTMC 
moving through discrete “states” (grid cells) we need a transition 
probability between each state. When we know where the barri-
ers are located (e.g., islands on a map) we can set the probability of 
transition into the barrier cells equal to zero, preventing movement 
into those cells and excluding them completely from the calculation 
of the UD. Traditionally, barriers to movement were removed post-
hoc after a home range or UD was calculated. Our method avoids 
this and allows for a more accurate representation of space use and 
home range size.

The fix_path function moves any predicted location estimates 
from the crawl model off land; however, some of the islands in this 
region are very small or skinny. The small size resulted in consecutive 
locations occurring on both sides of the island and thus allowed the 
path to cross back and forth over these small areas. We predicted lo-
cations every 20 min through a 1 km raster grid. If it is important to 
keep the path completely off of land, then use a raster resolution and 
prediction interval that reflects the size and shape of the barriers to 
be avoided.

Recent studies (Bevanda, Fronhofer, Heurich, Müller, & 
Reineking, 2015) have shown that landscape configuration has a 
strong effect on the size of individual home ranges. By incorporating 
environmental covariates into our model, we were able to account 
for the individual’s response to the landscape when estimating the 

SSL: 14809 SSL: 15137 SSL: 15136

Intercept −0.23 (SE) 0.01 0.07 (SE) 0.009 −0.31 (SE) 0.02

Bathymetry −0.51 (SE) 0.22 −0.16 (SE) 0.05 0.05 (SE) 0.14

Slope 1436 (SE) 583 −2.13 (SE) 141.0 525.9 (SE) 277.2

Site Dist. 0.09 (SE) 0.01 0.092 (SE) 0.01 0.16 (SE) 0.02

Shelf Dist. 0.04 (SE) 0.01 −0.02 (SE) 0.01 −0.02 (SE) 0.02

Bathy.loc −2.66 e−4 (SE) 3.35 e−5 −3.22 e−5 (SE) 3.92 e−6 −4.88 e−5 (SE) 2.45 e−5

Slope.loc −1.02 (SE) 0.22 −0.26 (SE) 0.05 −0.17 (SE) 0.11

siteDist.Loc 2.49 e−6 (SE) 3.46 e−7 3.91 e−6 (SE) 7.50 e−7 1.12 e−5 (SE) 1.46 e−6

shelfDist.Loc −1.33 e−5 (SE) 1.45 e−6 −4.54 e−6 (SE) 8.28 e−7 −1.42 e−5 (SE) 2.47 e−6

Bold font indicates significance.

TABLE    1 Coefficient estimates from 
GLM looking at the effect of environmental 
variables on Steller sea lion (SSL) 
movement

F IGURE    5 Combined UD for all three Steller sea lions in the central Aleutian Islands, Alaska
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UD. The transition rate of the CTMC process to each neighbouring 
cell (available resources) contains information that defines prefer-
ential use of the resources in each cell and therefore provides in-
formation about how animals are using the available (or potentially 
available) habitat. Consequently, this method of calculating a UD is 
more similar to resource selection or mechanistic home range mod-
elling (Moorcroft, 2012; Moorcroft, Lewis, & Crabtree, 2006) than to 
statistical UD calculations like kernel density estimation. However, 
this model is essentially using the movement model to make pre-
dictions at unvisited locations, therefore, researchers should be 
warned that the usual cautions concerning prediction beyond the 
data still apply. As with any analysis, our ability to predict an animal’s 
UD hinges on the assumption that our observations are a represen-
tative sample. Particular care should be taken with telemetry data 
from animals with seasonal changes in movement behaviour. For 
example, the UD estimate resulting from telemetry data collected 
from a migratory animal only during winter months is an estimate of 
space use during winter months, and not throughout the entire year. 
Similarly, if animal movement behaviour is highly heterogeneous, 
then the predictive power of the UD will increase with the number 
of animals tracked. In addition, attention should be paid to environ-
mental variables in other sections of the study area. If the values of 
the variables are different in far reaches of the study area then the 
fitted UD will be an extrapolation just as in any fitted regression 
model or GLM.

Steller sea lions are multiple central place foragers and may 
therefore use the entire study are we selected at some time during 
the year (Raum-Suryan, Rehberg, Pendleton, Pitcher, & Getall, 
2004). In the case of animals that are true central place foragers 
(or those with a well-defined home range), the entire study area 
my not actually be used by every animal and the predicted space 
should be adjusted accordingly. We chose to use static variables as 
our environmental covariates, but any variable that can be turned 
into a raster grid can be used in the model. For example, if one is 
willing to assume known locations for central attractors (rookeries, 
foraging hot spots), one simply needs to use distance and/or di-
rection to that location(s) as a covariate layer. Hanks et  al. (2015) 
used prey kill sites as attractors for CTMC analysis of mountain lion 
(Puma concolor) movement. If the location of central attractor is 
unknown the covariate becomes latent, which makes model fitting 
more challenging, but not impossible. Future research might involve 
basis function formulations for covariates in that case. Hanks et  
al. (2015) also considers a model where two individuals interact in 
their movements, however, determining the limiting distribution in 
this case may be challenging.
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