NORTHERN FUR SEAL (Callorhinus ursinus): Eastern Pacific Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Northern fur seals occur from southern California north to the Bering Sea (Fig. 1) and west to the Sea of Okhotsk and Honshu Island, Japan. During the summer breeding season, most of the worldwide population is found on the Pribilof Islands (St. Paul Island and St. George Island) in the southern Bering Sea, with the remaining animals on rookeries in Russia, on Bogoslof Island in the southern Bering Sea, on San Miguel Island off southern California (Lander and Kajimura 1982, NMFS 1993), and on the Farallon Islands off central California. Non-breeding northern fur seals mav occasionally haul out on land at other sites in Alaska, British Columbia, and on islets along the west coast of the United States (Fiscus 1983).

During the reproductive season, adult males usually are on shore during the 4-month period from May to August, although some may be present until November (well after giving up their territories). Adult females are ashore during a 6-month period (June-November). Following their respective times ashore, Alaska northern fur seals of both genders then move south and remain at sea until

Figure 1. Approximate distribution of northern fur seals in the eastern North Pacific (dark shaded area). Eastern Pacific northern fur seal breeding colonies in U.S. waters are located on the three named islands. The U.S. Exclusive Economic Zone is delineated by a black line.

the next breeding season (Roppel 1984). Adult females and pups from the Pribilof Islands move through the Aleutian Islands into the North Pacific Ocean, often to the waters offshore of Oregon and California (Ream et al. 2005). Adult males generally move only as far south as the Gulf of Alaska in the eastern North Pacific (Kajimura 1984) and the Kuril Islands in the western North Pacific (Loughlin et al. 1999). In Alaska, pups are born during summer months and leave the rookeries in the fall, on average around mid-November but ranging from late October to early December. Alaska northern fur seal pups generally remain at sea for 22 months (Kenyon and Wilke 1953) before returning to land, usually at their rookery of birth but with considerable interchange of individuals between rookeries.

Two separate stocks of northern fur seals, an Eastern Pacific stock and a California stock, are recognized within U.S. waters based on the distribution and population response factors of the Dizon et al. (1992) phylogeographic approach, which considers four types of data: 1) Distribution: continuous during non-breeding season and discontinuous during the breeding season, high natal site fidelity (DeLong 1982, Baker et al. 1995); 2) Population response: substantial differences in population dynamics between the Pribilof Islands and San Miguel Island (DeLong 1982, DeLong and Antonelis 1991, NMFS 1993); 3) Phenotypic differentiation: unknown; and 4) Genotypic differentiation: little evidence of genetic differentiation among breeding islands (Ream 2002, Dickerson et al. 2010). The California stock is reported in the Stock Assessment Reports for the U.S. Pacific Region.

This stock assessment report assesses the abundance and Native subsistence harvest of Eastern Pacific northern fur seals at the breeding colonies in U.S. waters; human-caused mortality and serious injury other than subsistence harvest is estimated only for the portion of the stock's range within U.S. waters (i.e., the U.S. Exclusive Economic Zone), because relevant data are generally not available for the broader range of the stock.

POPULATION SIZE

The population estimate for the Eastern Pacific stock of northern fur seals is calculated as the estimated number of pups born at rookeries in the eastern Bering Sea multiplied by a series of expansion factors determined from a life table analysis to estimate the number of yearlings, 2-year-olds, 3-year-olds, and animals 4 or more years

old (Lander 1981, Loughlin et al. 1994). The resulting population estimate is equal to the pup production estimate multiplied by 4.47. The expansion factor is based on a sex and age distribution estimated after the harvest of juvenile males was terminated. There is no coefficient of variation (CV) for the expansion factor. Pup production is estimated at all islands using a mark-recapture method, or "shear-sampling" (Chapman and Johnson 1968, York and Kozloff 1987, Towell et al. 2006), with the exception of estimates conducted at Bogoslof Island through 1995, where the smaller population size in those years allowed direct counting of pups. As the majority of pups are born on St. Paul and St. George Islands, pup surveys are conducted biennially on these islands. Pup production estimates are available less frequently on Sea Lion Rock (adjacent to St. Paul Island) and Bogoslof Island (Table 1). Annual variation in female reproductive rates is reflected in the respective pup production estimates. Because the estimation of stock population size relies on these estimates of pup production, means of recent pup production estimates are used to account for variability in the reproductive rates over time. The most recent estimate for the number of northern fur seals in the Eastern Pacific stock, based on pup production estimates on Sea Lion Rock (2014), on St. Paul and St. George Islands (mean of 2014, 2016, and 2018), and on Bogoslof Island (mean of 2015 and 2019), is 626,618 northern fur seals ($4.47 \times 140,183$).

Table 1. Estimates and/or counts of northern fur seal pups born on the Pribilof Islands and Bogoslof Island. Standard errors for pup estimates at rookery locations and the CV for total pup production estimates are provided in parentheses (direct counts do not have standard errors). The "symbol indicates that no new data are available for that year and, thus, the most recent prior estimate/count was used in determining total annual estimates.

Year	St. Paul	Sea Lion Rock	St. George	Bogoslof	Total
1994	192,104	12,891	22,244	1,472	228,711
	(8,180)	(989)	(410)	(N/A)	(0.036)
1005	"	"	"	1,272	228,511
1995				(N/A)	(0.036)
1996	170,125	"	27,385		211,673
	(21,244)		(294)		(0.10)
1007	"	"	"	5,096	215,497
1997				(33)	(0.099)
1008	179,149	"	22,090		219,226
1990	(6,193)		(222)		(0.029)
2000	158,736	"	20,176	"	196,899
2000	(17,284)		(271)		(0.089)
2002	145,716	8,262	17,593	"	176,667
2002	(1,629)	(191)	(527)		(0.01)
2004	122,825	"	16,876	"	153,059
2004	(1,290)		(239)		(0.01)
2005	"	"	"	12,631	160,594
2005				(335)	(0.01)
2006	109, 961	"	17,072	"	147,900
2000	(1,520)		(144)		(0.011)
2007	"	"	"	17,574	152,867
2007				(843)	(0.011)
2008	102,674	6,741	18,160	"	145,149
2000	(1,084)	(80)	(288)		(0.009)
2010	94,502	"	17,973	"	136,790
2010	(1,259)		(323)		(0.011)
2011	"	"	"	22,905	142,121
2011				(921.5)	(0.011)
2012	96,828	"	16,184	"	142,658
	(1,260)		(155)		(0.011)
2014	91,737	5,250	18,937	"	138,829
2014	(769)	(293)	(308)		(0.009)
2015	"	"	"	27,750	143,674
				(228)	(0.006)

Year	St. Paul	Sea Lion Rock	St. George	Bogoslof	Total
2016	80,641	"	20,490	"	134,131
2010	(717)		(460)		(0.007)
2018	75,719	"	21,625	"	130,344
2018	(1,008)		(345)		(0.009)
2010		"	"	36,015	138,609
2019				(1,098)	(0.011)

Minimum Population Estimate

A CV(N) that incorporates the variance of the correction factor is not available. Consistent with a recommendation of the Alaska Scientific Review Group (SRG) in October 1997 (DeMaster 1998) and recommendations contained in Wade and Angliss (1997), a default CV(N) of 0.2 is used in the calculation of the minimum population estimate (N_{MIN}) for this stock. N_{MIN} is calculated using Equation 1 from the potential biological removal (PBR) guidelines (NMFS 2016): N_{MIN} = N/exp(0.842×[ln(1+[CV(N)]²)]^{1/2}). Using the population estimate (N) of 626,618 and the default CV (0.2), N_{MIN} for the Eastern Pacific stock is 530,376 northern fur seals.

Current Population Trend

Estimates of the size of the Alaska population of northern fur seals increased to approximately 1.25 million in 1974. The population began to decrease in the mid-1970s, with pup production declining at a rate of 6.5-7.8% per year into the 1980s (York 1987). By 1983, the total stock estimate was 877,000 northern fur seals (Briggs and Fowler 1984). Annual pup production on St. Paul Island remained stable between 1981 and 1996 (Fig. 2; York and Fowler 1992). There has been a decline in pup production on St. Paul Island since the mid-1990s. Pup production at St. George Island had a less pronounced period of stabilization, beginning in the late-1980s, that was similarly followed by a decline. However, pup production stabilized again on St. George Island beginning around 2002 (Fig. 3). From 1998 to 2018, pup production declined 4.09% per year (SE = 0.34%; P < 0.01) on St. Paul Island and showed no significant trend (SE = 0.58%; P = 0.59) on St. George Island. The estimated pup production in 2018 was below the 1919 level (Bower 1920) on both St. Paul and St. George Islands. Northern fur seal pup production at Bogoslof Island has grown at an exponential rate since the 1990s (Towell and Ream 2012) (Fig. 4). Despite continued growth at Bogoslof Island, recent estimates of pup production indicate that the rate of increase may be slowing. Since the first pups were observed on Bogoslof Island in 1980, pup production increased at an annual rate of 30.0% (SE = 2.41) but has slowed to an annual rate of 9.2% (SE = 0.91) since 1997. Temporary increases in the overall stock size are observed when opportunistic estimates are conducted at Bogoslof, but declines at the larger Pribilof colony (specifically St. Paul) continue to drive the overall stock estimate down over time. Recent (20-year and 10-year) trends in pup production were fit using agTrend (Johnson and Fritz 2014). Estimated pup production for the Eastern Pacific stock has been declining at 1.80% (95% CI: -2.36 to -1.19) per year from 1999 to 2019 (Fig. 5) but only at 0.55% (95% CI: -2.11 to 1.06; not significantly different from 0) per year from 2009 to 2019 (Fig. 6).

Figure 2. Estimated number of northern fur seal pups born on St. Paul Island, 1980-2018.

Figure 3. Estimated number of northern fur seal pups born on St. George Island, 1980-2018.

Figure 4. Estimated number of northern fur seal pups born on Bogoslof Island, 1980-2019.

Figure 5. Estimated pup production for the Eastern Pacific stock, 1990-2019, from agTrend (dots), 95% credible interval (bars), agTrend temporal interpolation fit (black line), 1999-2019 average decline (blue line; 1.8%), and 95% credible interval for the fitted average decline in each year (light blue shading).

Figure 6. Estimated pup production for the Eastern Pacific stock, 1990-2019, from agTrend (dots), 95% credible interval (bars), agTrend temporal interpolation fit (black line), 2009-2019 average decline (blue line; 0.55%), and 95% credible interval for the fitted average decline in each year (light blue shading).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Pelagic sealing led to a decrease in the fur seal population; however, a moratorium on fur seal harvesting and termination of pelagic sealing resulted in a steady increase in the northern fur seal population from 1912 to 1924. During this period, the rate of population growth was approximately 8.6% (SE = 1.47) per year (A. York, NMFS-AFSC-MML (retired), unpubl. data), the maximum recorded for this species. This growth rate is similar and slightly higher than the 8.1% rate of increase (approximate SE = 1.29) estimated by Gerrodette et al. (1985). Though not as high as growth rates estimated for other fur seal species, the 8.6% rate of increase is considered a reliable estimate of the maximum net productivity rate (R_{MAX}) given the extremely low density of the population in the early 1900s.

POTENTIAL BIOLOGICAL REMOVAL

PBR is defined as the product of the minimum population estimate, one-half the maximum estimated net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5R_{MAX} \times F_R$. The recovery factor (F_R) for this stock is 0.5, the value for depleted stocks under the Marine Mammal Protection Act (MMPA) (NMFS 2016). Thus, for the Eastern Pacific stock, PBR is 11,403 northern fur seals (530,376 × 0.043 × 0.5).

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Information for each human-caused mortality, serious injury, and non-serious injury reported for NMFSmanaged Alaska marine mammals between 2015 and 2019 is listed, by marine mammal stock, in Freed et al. (2021); however, only the mortality and serious injury data are included in the Stock Assessment Reports. The minimum estimated mean annual level of human-caused mortality and serious injury for the Eastern Pacific stock between 2015 and 2019 is 373 northern fur seals: 3.5 in U.S. commercial fisheries (2.7 from observer data and 0.8 from stranding data), 2.4 in unknown (commercial, recreational, or subsistence) fisheries, 7 in marine debris, 0.4 due to other causes (car strike, dog attack), and 360 in the Alaska Native subsistence harvest. These mortality and serious injury data do not reflect the total potential threat of entanglement, since additional northern fur seals initially considered seriously injured due to entanglement in fishing gear or marine debris were disentangled and released with non-serious injury to both the Eastern Pacific and California stocks of northern fur seals, when events occur in the area and time of year where the two stocks overlap (off the U.S. west coast in December through May), may result in overestimating stock specific mortality and serious injury. Additional potential threats most likely to result in direct human-caused mortality or serious injury of this stock include the increased potential for oil spills due to an increase in vessel traffic in Alaska waters (with changes in sea-ice coverage).

Fisheries Information

Information for federally-managed and state-managed U.S. commercial fisheries in Alaska waters is available in Appendix 3 of the Alaska Stock Assessment Reports (observer coverage) and in the NMFS List of Fisheries (LOF) and the fact sheets linked to fishery names in the LOF (observer coverage and reported incidental takes of marine mammals: https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mamma

Based on historical reports and the stock's geographic range, northern fur seal mortality and serious injury is known to occur in several fishing gear types, including trawl, gillnet, and longline fisheries. However, observer data are limited. Both trawl and longline fisheries are regularly observed, but this occurs at different levels dependent upon the target species and location. Observation is as high as 100% in some trawl fisheries, but it is less than 50% in other trawl and longline fisheries that also have the potential to overlap with northern fur seals. Further, drift gillnet and set gillnet fisheries in Alaska are not currently observed. Therefore, the potential for fisheries-caused mortality and serious injury may be greater than is reflected in existing observer data.

Between 2015 and 2019, incidental mortality and serious injury of northern fur seals was observed in one of the federally-managed U.S. commercial fisheries in Alaska monitored for incidental mortality and serious injury by fisheries observers: the Bering Sea/Aleutian Islands flatfish trawl fishery (Table 2; Breiwick 2013; MML, unpubl. data). The minimum estimated mean annual mortality and serious injury rate in this fishery between 2015 and 2019 is 2.7 northern fur seals.

Observer programs for Alaska State-managed commercial fisheries have not documented any mortality or serious injury of northern fur seals.

Table 2. Summary of observed incidental mortality and serious injury of Eastern Pacific northern fur seals due to U.S. commercial fisheries between 2015 and 2019 and calculation of the mean annual mortality and serious injury rate (Breiwick 2013; MML, unpubl. data). Methods for calculating percent observer coverage are described in Appendix 3 of the Alaska Stock Assessment Reports.

Fishery name	Years	Data type	Percent observer coverage	Observed mortality	Estimated mortality (CV)	Mean estimated annual mortality
Bering Sea/Aleutian Is. flatfish trawl	2015 2016 2017 2018 2019	obs data	100 99 100 100 100	0 0 1 2 10	$0 \\ 0 \\ 1 (0.03) \\ 2 (0.03) \\ 10 (0.05)$	2.7 (CV = 0.04)
Minimum total estimated annual mortality						2.7 (CV = 0.04)

Entanglements of northern fur seals have been observed on St. Paul, St. George, and Bogoslof Islands. Since 2011, there has been an increased effort to include entanglement reports in the NMFS Alaska Region marine mammal stranding database. A summary of entanglements in fishing gear reported between 2015 and 2019 is provided in Table 3 (Freed et al. 2021). These mortality and serious injury estimates result from an actual count of verified human-caused deaths and serious injuries and are minimums because not all entangled animals strand nor are all stranded animals found, reported, or have the cause of death determined. One dead and three seriously injured northern fur seals entangled in commercial Bering Sea/Aleutian Islands trawl gear were reported to the NMFS Alaska Region marine mammal stranding network between 2015 and 2019, resulting in a minimum mean annual mortality and serious injury rate of 0.8 northern fur seals in commercial trawl fisheries (Table 3; Freed et al. 2021).

In addition, 16 northern fur seals initially considered to be seriously injured due to entanglement in commercial Bering Sea/Aleutian Islands trawl gear (1 in 2015 and 3 in 2016), unidentified trawl gear (9 in 2019), unidentified net (1 each in 2016 and 2017), and unidentified hook and line gear (1 in 2019) were disentangled and released with non-serious injuries (Freed et al. 2021); therefore, they were not included in the mean annual mortality and serious injury rate for 2015 to 2019.

The total mean annual mortality and serious injury rate incidental to U.S. commercial fisheries between 2015 and 2019 is 3.5 northern fur seals (2.7 from observer data + 0.8 from stranding data).

The minimum mean annual mortality and serious injury rate due to entanglements in Bering Sea/Aleutian Islands gillnet (0.2), Bering Sea/Aleutian Islands unidentified fishing gear (0.2), trawl gear (1.2), and hook and line

gear (0.2) in Alaska waters between 2015 and 2019 totaled 1.8 northern fur seals (Table 3; Freed et al. 2021). These entanglements cannot be assigned to a specific fishery, and it is unknown whether commercial, recreational, or subsistence fisheries are the source of the fishing debris.

The Eastern Pacific northern fur seal stock can occur off the west coast of the continental U.S. in winter/spring; therefore, any mortality or serious injury of northern fur seals reported off the coasts of Washington, Oregon, or California during December through May is assigned to both the Eastern Pacific and California stocks (as noted in Table 3). Reports to the NMFS West Coast Region marine mammal stranding network between 2015 and 2019 resulted in a minimum mean annual mortality and serious injury rate of 0.6 northern fur seals entangled in trawl gear from unknown (commercial, recreational, or subsistence) fisheries off the U.S. west coast in December through May, which was assigned to both stocks of northern fur seals (Table 3; Freed et al. 2021). This mortality and serious injury estimate results from an actual count of verified human-caused deaths and serious injuries and is a minimum because not all entangled animals strand nor are all stranded animals found, reported, or have the cause of death determined.

Table 3. Summary of mortality and serious injury of Eastern Pacific northern fur seals, by year and type, reported to the NMFS Alaska Region and NMFS West Coast Region marine mammal stranding networks, the NMFS Southwest Fisheries Science Center (SWFSC), and the Alaska Department of Fish and Game (ADF&G) between 2015 and 2019 (Freed et al. 2021). Animals that were disentangled and released with non-serious injuries have been excluded from this table.

Cause of injury	2015	2016	2017	2018	2019	Mean annual mortality
Entangled in commercial Bering Sea/Aleutian Is. trawl gear	1	1	1	1	0	0.8
Entangled in Bering Sea/Aleutian Is. gillnet gear*	1	0	0	0	0	0.2
Entangled in Bering Sea/Aleutian Is. unidentified fishing gear*	1	0	0	0	0	0.2
Entangled in trawl gear*	0	0	3 ^a	0	6	$1.2 + 0.6^{a}$
Entangled in hook and line gear*	0	0	0	0	1	0.2
Entangled in marine debris	0	9	13	6	7	7
Struck by car	1	0	0	0	0	0.2
Dog attack	0	1 ^a	0	0	0	0.2ª
Total in commercial fisheries						
*Total in unknown (commercial, recreational, or subsistence) fisheries						$1.8 + 0.6^{a}$
Total in marine debris						7
Total due to other causes (car strike, dog attack)						$0.2 + 0.2^{a}$

^aThe mortality or serious injury occurred off the coast of Washington, Oregon, or California in December through May and was assigned to both the Eastern Pacific and California stocks of northern fur seals.

Alaska Native Subsistence/Harvest Information

NMFS signed agreements with the Tribal Government of St. Paul Island (2000) and the Traditional Council of St. George Island (2001) to co-manage Steller sea lions and northern fur seals. These co-management agreements promote full and equal participation by Alaska Natives in decisions affecting the subsistence management of northern fur seals (to the maximum extent allowed by law) as a tool for conserving northern fur seal populations in Alaska (https://www.fisheries.noaa.gov/alaska/marine-mammal-protection/co-management-marine-mammals-alaska, accessed December 2021). Alaska Natives residing on the Pribilof Islands are allowed an annual subsistence harvest of northern fur seals, based on the regulations in 50 CFR 216, subpart F. The regulations authorize the taking of juvenile males for subsistence uses, which results in a much smaller impact on population growth than a harvest that includes females. However, accidental mortality of females does occur during subsistence activities and is authorized in the new regulations. The accidental mortality of female northern fur seals between 2015 and 2019 included seven females on St. Paul Island: two in 2015 (Lestenkof et al. 2015), one in 2016 (Melovidov et al. 2017a), one in 2018 (Lestenkof et al. 2019), and three in 2019 (Lestenkof et al. 2020). The harvest of male northern fur seal pups began on St. George Island in 2014 and on St. Paul Island in 2019.

2015 and 2019 included 57 pups on St. George Island in 2015 (Meyer 2016), 46 in 2016 (Meyer 2017), 51 in 2017 (Meyer 2018), 26 in 2018 (Meyer 2019), and 32 in 2019 (Meyer 2020) and 111 pups on St. Paul Island in 2019 (Lestenkof et al. 2020). Between 2015 and 2019, the average annual subsistence harvest of northern fur seals on the Pribilof Islands was 360 fur seals (Table 4).

Table 4. Summary of the Alaska Native subsistence harvest of northern fur seals on St. Paul and St. George Islands (including the number of juvenile males, pups, and females) between 2015 and 2019.

Year	St. Paul	St. George	Total harvested
2015	314ª	118 ^{b, c}	432
2016	309 ^d	83 ^{e, f}	392
2017	217 ^g	89 ^{h, i}	306
2018	225 ^j	88 ^{k, 1}	313
2019	296 ^m	59 ^{n, o}	355
Mean annual harvest			360

^aLestenkof et al. (2015); ^bKashevarof (2016); ^cMeyer (2016); ^dMelovidov et al. (2017a); ^cTesta (2018); ^fMeyer (2017); ^gMelovidov et al. (2017b); ^bLekanof (2017); ⁱMeyer (2018); ^jLestenkof et al. (2019); ^kMalavansky (2019a); ⁱMeyer (2019); ^mLestenkof et al. (2020); ⁿMalavansky (2019b); ^oMeyer (2020).

Other Mortality

Intentional killing of northern fur seals by commercial fishermen, sport fishermen, and others may occur, but the magnitude of that mortality is unknown.

Because the Eastern Pacific and California stocks of northern fur seals overlap off the west coast of the continental U.S. during December through May, non-fishery mortality and serious injury reported off the coast of Washington, Oregon, or California during that time is assigned to both stocks (see details in Table 3). Reports to the NMFS Alaska Region and West Coast Region marine mammal stranding networks, NMFS SWFSC, and ADF&G between 2015 and 2019 resulted in mean annual mortality and serious injury rates of 7 northern fur seals due to entanglement in marine debris in Alaska waters and 0.2 due to a car strike on St. Paul Island (assigned to the Eastern Pacific stock) and 0.2 due to a dog attack in California (assigned to both stocks) (Table 3; Freed et al. 2021). These mortality and serious injury estimates result from an actual count of verified human-caused deaths and serious injuries and are minimums because not all entangled animals strand nor are all stranded animals found, reported, or have the cause of death determined.

An additional 29 northern fur seals that were initially considered seriously injured due to entanglement in marine debris (6 in 2015, 6 in 2016, 4 in 2017, 9 in 2018 (including one assigned to both stocks), and 4 in 2019) were disentangled and released with non-serious injuries (Freed et al. 2021); therefore, these animals were not included in the mean annual mortality and serious injury rate for 2015 to 2019.

STATUS OF STOCK

Based on currently available data, the minimum estimate of the mean annual U.S. commercial fisheryrelated mortality and serious injury rate for this stock (3.5 northern fur seals) is less than 10% of the calculated PBR (10% of PBR = 1,140 northern fur seals) and, therefore, can be considered insignificant and approaching a zero mortality and serious injury rate. The minimum estimated mean annual level of human-caused mortality and serious injury (373 northern fur seals) does not exceed the PBR (11,403) for this stock. The PBR calculation assumes mortality is evenly distributed across males, females, and each age class; but that is not the case with the subsistence harvest, which accounts for most of the known direct human-caused mortality. The subsistence harvest is almost entirely sub-adult males and male pups and, therefore, has a relatively low impact on the population due to the disproportionate importance of females to the population. Thus, non-breeding male-biased mortality up to the maximum levels authorized for subsistence use does not represent a significant risk to the Eastern Pacific northern fur seal stock. The northern fur seal was designated as depleted under the MMPA in 1988 because population levels had declined to less than 50% of levels observed in the late 1950s (1.8 million animals; 53 FR 17888, 18 May 1988). The Eastern Pacific stock of northern fur seals is classified as a strategic stock because it is designated as depleted under the MMPA.

There are key uncertainties in the assessment of the Eastern Pacific stock of northern fur seals. The abundance estimate is based on pup counts multiplied by a constant; this constant was based on northern fur seal demographic information which is now quite dated and it is unknown whether the constant is still optimum for this population. Because an estimate of variance cannot be determined, the N_{MIN} calculation uses a default CV of 0.2. At this time, the cause of the decline of this stock is unknown. Estimates of human-caused mortality and serious

injury from stranding data are underestimates because not all animals strand nor are all stranded animals found, reported, or have the cause of death determined.

HABITAT CONCERNS

A number of natural and human-related factors have been suggested as contributing to the continued decline in abundance of the Eastern Pacific stock of northern fur seals, including environmental perturbation, disease, predation, contaminants, indirect effects of commercial fishing, incidental take, poaching, and the effects of human presence and development at or near fur seal rookeries (NMFS 2007). The concentration of fur seals on the breeding islands and in the surrounding waters of the Bering Sea during summer, and their broad pelagic distribution across the North Pacific Ocean over the winter, complicates the understanding of these factors and the ability to implement effective management strategies. However, the population trends at the Pribilof Islands are of significant concern, with declines in stock abundance continuing to be driven by the declines on St. Paul Island rookeries (Fig. 2); pup production at St. George Island has stabilized (Fig. 3). The Pribilof Island communities, particularly St. Paul, have developed a fishery-based economy since the cessation of the commercial fur harvest in 1985. Harbor development and expansion from 1985 to present, and the economic growth resulting from the now well-established fisheries, has increased the potential exposure of fur seals to construction activities, vessel and vehicle traffic, seafood and municipal waste discharge, and human presence. Management measures are in place to help ameliorate some of these threats around the fur seal breeding and resting sites (e.g., regulatory closures that prohibit unauthorized human access beyond posted fur seal breeding and resting sites from 1 June to 15 October each year, establishment of Aircraft Advisory Zones and Requested Aircraft Flight Paths, and new subsistence use regulations).

Northern fur seals from each island, and even from central breeding areas within each island, may also experience dissimilar exposure to varying environmental and foraging conditions across the Bering Sea; northern fur seals from different central breeding areas consistently use different foraging habitat (Robson et al. 2004, Sterling and Ream 2004, Call et al. 2008, Kuhn et al. 2014). Climate change could alter the abundance, distribution, and makeup of available prey for northern fur seals in the Bering Sea as a result of reduced sea ice and warming temperatures. These changes could differentially impact the survival and reproduction of individuals and breeding aggregations on the three islands; however, the exact mechanisms are unknown and there are no clear management actions that could be taken to address the impacts on northern fur seals.

Commercial fisheries target fur seal prey and prey that compete with fur seals in both the Bering Sea and the North Pacific Ocean. Northern fur seals predominantly prey on walleye pollock over the Bering Sea shelf, and progressively greater proportions of oceanic fish and squid are consumed when they forage over the slope and in off-shelf waters (Zeppelin and Ream 2006). Comparison of ingested prey sizes based on scat and spew analysis indicates an overlap between sizes of pollock consumed by Pribilof Island northern fur seals and those caught by the commercial trawl fishery, suggesting possible competition between fur seals and commercial fisheries for pollock (Gudmundson et al. 2006). In contrast to northern fur seals from the Pribilof Islands, Bogoslof Island northern fur seals forage in the deeper water of the Bering Sea Basin and their diet is comprised primarily of off-shelf species (northern smoothtongue, squid, myctophids) as well as juvenile walleye pollock (Zeppelin and Orr 2010, Kuhn et al. 2014). Our understanding of the consequences of commercial fisheries removals on northern fur seal survival and productivity is highly uncertain.

CITATIONS

- Baker, J. D., G. A. Antonelis, C. W. Fowler, and A. E. York. 1995. Natal site fidelity in northern fur seals, *Callorhinus ursinus*. Anim. Behav. 50(1):237-247.
- Bower, W. T. 1920. Alaska fisheries and fur industries in 1919. U.S. Dep. Commer., Appendix IX to Report of U.S. Commissioner of Fisheries for 1919. Bureau of Fisheries Document No. 891. Washington Government Printing Office. 160 p.
- Breiwick, J. M. 2013. North Pacific marine mammal bycatch estimation methodology and results, 2007-2011. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-260, 40 p.
- Briggs, L., and C. W. Fowler. 1984. Table and figures of the basic population data for northern fur seals of the Pribilof Islands. *In* Background papers submitted by the United States to the 27th annual meeting of the Standing Scientific Committee of the North Pacific Fur Seal Commission, March 29-April 9, 1984, Moscow, U.S.S.R. Available from Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.
- Call, K. A., R. R. Ream, D. Johnson, J. T. Sterling, and R. G. Towell. 2008. Foraging route tactics and site fidelity of adult female northern fur seal (*Callorhinus ursinus*) around the Pribilof Islands. Deep-Sea Res. II 55:1883-1896.

- Chapman, D. G., and A. M. Johnson. 1968. Estimation of fur seal pup populations by randomized sampling. Trans. Am. Fish. Soc. 97:264-270.
- DeLong, R. L. 1982. Population biology of northern fur seals at San Miguel Island, California. Ph.D. Dissertation, University of California, Berkeley, CA. 185 p.
- DeLong, R. L., and G. A. Antonelis. 1991. Impacts of the 1982-1983 El Niño on the northern fur seal population at San Miguel Island, California, p. 75-83. *In* F. Trillmich and K. Ono (eds.), Pinnipeds and El Niño: Responses to Environmental Stress. University of California Press, Berkeley, CA.
- DeMaster, D. P. 1998. Minutes from the sixth meeting of the Alaska Scientific Review Group, 21-23 October 1997, Seattle, Washington. 40 p. Available from Alaska Fisheries Science Center, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.
- Dickerson B. R., R. Ream, S. N. Vignieri, and P. Bentzen. 2010. Population structure as revealed by mtDNA and microsatellites in northern fur seals, *Callorhinus ursinus*, throughout their range. PLoS ONE 5(5):e10671. DOI: dx.doi.org/10.1371/journal.pone.0010671.
- Dizon, A. E., C. Lockyer, W. F. Perrin, D. P. DeMaster, and J. Sisson. 1992. Rethinking the stock concept: a phylogeographic approach. Conserv. Biol. 6:24-36.
- Fiscus, C. F. 1983. Fur seals. In Background papers submitted by the United States to the 26th annual meeting of the Standing Scientific Committee of the North Pacific Fur Seal Commission, Washington, DC, 28 March-5 April, 1983. Available from Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.
- Freed, J. C., N. C. Young, B. J. Delean, V. T. Helker, M. M. Muto, K. Savage, S. Teerlink, L. A. Jemison, K. Wilkinson, and J. Jannot. 2021. Human-caused mortality and injury of NMFS-managed Alaska marine mammal stocks, 2015-2019. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-424, 112 p.
- Gerrodette, T., D. Goodman, and J. Barlow. 1985. Confidence limits for population projections when vital rates vary randomly. Fish. Bull., U.S. 83:207-217.
- Gudmundson, C. J., T. K. Zeppelin, and R. R. Ream. 2006. Application of two methods for determining diet of northern fur seals (*Callorhinus ursinus*). Fish. Bull., U.S. 104:445-455.
- Johnson, D. S., and L. Fritz. 2014. agTrend: a Bayesian approach for estimating trends of aggregated abundance. Methods Ecol. Evol. 5:1110-1115. DOI: dx.doi.org/10.1111/2041-210X.12231.
- Kajimura, H. 1984. Opportunistic feeding of the northern fur seal, *Callorhinus ursinus*, in the eastern North Pacific Ocean and eastern Bering Sea. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-779, 49 p.
- Kashevarof, H. 2016. Northern fur seal harvests, St. George Island, AK: harvest report for the 2015 season 7.7.2015-8.7.2015. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK.
- Kenyon K. W., and F. Wilke. 1953. Migration of the northern fur seal, *Callorhinus ursinus*. J. Mammal. 34(1):86-98.
- Kuhn, C. E., R. R. Ream, J. T. Sterling, J. R. Thomason, and R. G. Towell. 2014. Spatial segregation and the influence of habitat on the foraging behavior of northern fur seals (*Callorhinus ursinus*). Can. J. Zool. 92:861-873.
- Lander, R. H. 1981. A life table and biomass estimate for Alaskan fur seals. Fish. Res. (Amst.) 1:55-70.
- Lander, R. H., and H. Kajimura. 1982. Status of northern fur seals. FAO Fisheries Series 5:319-345.
- Lekanof, D. 2017. Northern fur seal harvests, St. George Island, AK: harvest report for the 2017 season 07/10/2017-08/08/2017. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK.
- Lestenkof, P. M., P. I. Melovidov, and A. P. Lestenkof. 2015. The subsistence harvest of subadult northern fur seals on St. Paul Island, Alaska in 2015. Aleut Community of St. Paul Island, Tribal Government, Ecosystem Conservation Office, St. Paul Island, Pribilof Islands, AK. 16 p.
- Lestenkof, P. M., L. M. Divine, P. I. Melovidov, A. P. Lestenkof, V. M. Padula, and K. M. Melovidov. 2019. The subsistence harvest of subadult laaqudan (northern fur seals) on St. Paul Island, Alaska in 2018. Aleut Community of St. Paul Island, Tribal Government, Ecosystem Conservation Office, St. Paul Island, Pribilof Islands, AK. 16 p.
- Lestenkof, P. M., L. M. Divine, P. I. Melovidov, A. P. Lestenkof, M. Kochergin Jr., L. D. Jones, and S. M. Edelen. 2020. Subsistence harvest of juvenile laaqudan (northern fur seals, *Callorhinus ursinus*) on St. Paul Island, Alaska in 2019. Aleut Community of St. Paul Island, Tribal Government, Ecosystem Conservation Office. St. Paul Island, Pribilof Islands, AK. 13 p.

- Loughlin, T. R., G. A. Antonelis, J. D. Baker, A. E. York, C. W. Fowler, R. L. DeLong, and H. W. Braham. 1994. Status of the northern fur seal population in the United States during 1992. p. 9-28. *In* E. H. Sinclair (ed.), Fur Seal Investigations, 1992. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-45.
- Loughlin, T. R., W. J. Ingraham, Jr., N. Baba, and B. W. Robson. 1999. Use of a surface-current model and satellite telemetry to assess marine mammal movements in the Bering Sea. University of Alaska Sea Grant Press, AK-SG-99-03, Fairbanks, AK.
- Malavansky, A. 2019a. Northern fur seal harvests, St. George Island, AK: harvest report for the 2018 season 06/21/2018-08/08/2018. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK.
- Malavansky, A. 2019b. Northern fur seal harvests, St. George Island, AK: harvest report for the 2019 season 06/23/2019-08/08/2019. Aleut Community of St. George Island, St. George Traditional Council, Kayumitax Eco-Office, St. George Island, Pribilof Islands, AK.
- Melovidov, P. I., P. M. Lestenkof, A. P. Lestenkof, L. M. Divine, and R. M. Rukovishnikoff. 2017a. The subsistence harvest of subadult northern fur seals on St. Paul Island, Alaska in 2016. Aleut Community of St. Paul Island, Tribal Government, Ecosystem Conservation Office, St. Paul Island, Pribilof Islands, AK. 14 p. + appendices.
- Melovidov, P. I., P. M. Lestenkof, A. P. Lestenkof, L. M. Divine, V. M. Padula and R. Mata Rukovishnikoff. 2017b. The subsistence harvest of sub-adult northern fur seals on St. Paul Island, Alaska in 2017. Aleut Community of St. Paul Island, Tribal Government, Ecosystem Conservation Office, St. Paul Island, Pribilof Islands, AK. 13 p.
- Meyer, B. 2016. Harvest monitoring services, subsistence harvest of northern fur seals on St. George Island, AK: harvest report for the 2015 season September 15 to November 30, 2015. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK.
- Meyer, B. 2017. Harvest monitoring services, subsistence harvest of northern fur seals on St. George Island, AK: harvest report for the 2016 season September 16 to November 30, 2016. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK.
- Meyer, B. 2018. Harvest monitoring services, subsistence harvest of northern fur seals on St. George Island, AK: harvest report for the 2017 season September 15 to November 30, 2017. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK. 5 p.
- Meyer, B. 2019. Young of the year subsistence harvest of northern fur seals on St. George Island, AK: harvest report for the 2018 season September 15 to November 30. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK. 8 p.
- Meyer, B. 2020. Harvest monitoring services, subsistence harvest of northern fur seals on St. George Island, AK: harvest report for the 2019 season September 15 to November 30, 2019. Aleut Community of St. George Island, St. George Traditional Council, Kayumixtax Eco-Office, St. George Island, Pribilof Islands, AK. 6 p.
- National Marine Fisheries Service (NMFS). 1993. Final conservation plan for the northern fur seal (*Callorhinus ursinus*). Prepared by the National Marine Mammal Laboratory, Alaska Fisheries Science Center, Seattle, WA, and the Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD. 80 p.
- National Marine Fisheries Service (NMFS). 2007. Conservation plan for the Eastern Pacific stock of northern fur seal (*Callorhinus ursinus*). National Marine Fisheries Service, Alaska Regional Office, Juneau, AK.
- National Marine Fisheries Service (NMFS). 2016. Guidelines for preparing stock assessment reports pursuant to the 1994 amendments to the Marine Mammal Protection Act. 23 p. Available online: https://www.fisheries.noaa.gov/national/marine-mammal-protection/guidelines-assessing-marine-mammal-stocks . Accessed December 2021.
- Ream, R. R. 2002. Molecular ecology of northern otariids: genetic assessment of northern fur seal and Steller sea lion distributions. Ph.D. Dissertation, University of Washington, Seattle, WA. 134 p.
- Ream, R. R., J. T. Sterling, and T. R. Loughlin. 2005. Oceanographic features related to northern fur seal migratory movements. Deep-Sea Res. II 52:823-843.
- Robson, B. R., M. E. Goebel, J. D. Baker, R. R. Ream, T. R. Loughlin, R. C. Francis, G. A. Antonelis, and D. P. Costa. 2004. Separation of foraging habitat among breeding sites of a colonial marine predator, the northern fur seal (*Callorhinus ursinus*). Can. J. Zool. 82:20-29.
- Roppel, A. Y. 1984. Management of northern fur seals on the Pribilof Islands, Alaska, 1786-1981. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-4, 32 p.

- Sterling, J. T., and R. R. Ream. 2004. At-sea behavior of juvenile male northern fur seals (*Callorhinus ursinus*). Can. J. Zool. 82:1621-1637.
- Testa, J. W. (ed.). 2018. Fur seal investigations, 2015-2016. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-375, 107 p.
- Towell, R., and R. Ream. 2012. 2011 northern fur seal pup production estimate on Bogoslof Island, Alaska. Available from Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.
- Towell, R. G., R. R. Ream, and A. E. York. 2006. Decline in northern fur seal (*Callorhinus ursinus*) pup production on the Pribilof Islands. Mar. Mammal Sci. 22(2):486-491.
- Wade, P. R., and R. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 p.
- York, A. E. 1987. Northern fur seal, *Callorhinus ursinus*, eastern Pacific population (Pribilof Islands, Alaska, and San Miguel Island, California), p. 9-21. *In J. P. Croxall and R. L. Gentry (eds.)*, Status, biology, and ecology of fur seals. Proceedings of an international symposium and workshop, Cambridge, England, 23-27 April 1984. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-51.
- York, A. E., and C. W. Fowler. 1992. Population assessment, Pribilof Islands, Alaska, p. 9-26. In H. Kajimura and E. Sinclair (eds.), Fur seal investigations, 1990. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-2.
- York, A. E., and P. Kozloff. 1987. On estimating the number of fur seal pups born on St. Paul Island, 1980-86. Fish. Bull., U.S. 85:367-375.
- Zeppelin, T. K., and A. J. Orr. 2010. Stable isotope and scat analyses indicate diet and habitat partitioning in northern fur seals, *Callorhinus ursinus*, across the eastern Pacific. Mar. Ecol. Prog. Ser. 409:241-253.
- Zeppelin, T. K., and R. R. Ream. 2006. Foraging habitats based on the diet of female northern fur seals (*Callorhinus ursinus*) on the Pribilof Islands, Alaska. J. Zool. 270:565-576.