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BACKGROUND ON REGULATORY ASPECTS OF MANMADE UNDERWATER SOUND  
 
In 2016 and again in 2018, the National Marine Fisheries Service (NMFS), a United States regulatory 
agency within the Department of Commerce’s National Oceanographic and Atmospheric Administration 
(NOAA), promulgated guidance for estimating hearing risk to marine mammals from manmade sound. 
As the primary U.S. regulatory agency responsible for administering the Marine Mammal Protection Act 
(MMPA) (NMFS, 2018a), NMFS is responsible for assessing the potential risk to marine mammals from a 
variety of activities, including those that emit sound underwater. The guidance is based on an estimation 
of the range at which a specified sound source might produce a Permanent Threshold Shift (PTS) in 
hearing (a minor partial permanent hearing loss). The PTS threshold itself is a conservative, 
precautionary estimate of the potential onset of slight partial hearing loss (Southall et al 2019; NMFS 
2018a) and is sometimes used as a surrogate for the regulatory metric of Level A Harassment, though no 
regulatory or judicial opinion has been rendered on the equivalence of slight partial PTS to Level A 
Harassment. This should be considered during the process of risk estimation for an activity in which 
other conservative precautionary assumptions will additionally compound the over-prediction of risk. 
 
Due to the complexity of the initial NMFS guidance (2018a) and the challenges it can present to both 
expert and non-expert users, NMFS (2018b and 2020) also developed a simplified tool using Microsoft 
Excel for quickly and easily calculating ranges where the onset of PTS might be of concern (referred to as 
“isopleths”). NMFS referred to the simplified spreadsheet tool and guidance as an Alternative 
Methodology (AM) to the NMFS 2018a guidance. In reviewing and updating the NMFS AM User 
Spreadsheet Tool and Guidance, we have come to the conclusion that the simplified methodology is 
NOT an acceptable or reasonable “alternative” to the 2018a guidance. However, IAGC recognizes that 
application of the full NMFS guidance (2018a) may be beyond the capabilities of some users. Therefore, 
we have provided revised materials consisting of a spreadsheet tool and user guide for that spreadsheet 
tool, intended to provide a more realistic isopleth calculation. It should be noted that IAGC strongly 
cautions against the application of the AM spreadsheet tool when possible. We highlight scenarios in 
which the Alternative Methodology is particularly inappropriate in the body of this document. 
 
The initial aim of the simplified process for deriving PTS isopleths was to provide a less computationally 
difficult risk estimator without departing too far from the underlying science behind the NMFS 2018a 
guidance. As this iteration of the User Spreadsheet Tool and Guidance clearly documents, this simplified 
AM tool should not be treated as equivalent to or even roughly comparable to the 2018a guidance, and 
should most definitely not be used for MMPA Level A take estimation or regulatory decision making. 
Unfortunately, the NMFS Alternative Methodology has already figured in at least one MMPA permitting 
request and authorization (e.g. H.T. Harvey and Associates, 2019) in spite of concerns about the 
technical utility of the User Spreadsheet Tool. We have done our best to document those concerns and 
urge users to limit their reliance on the NMFS AM User Spreadsheet Tool to initial, cursory, internal 
planning activities, intended to lead to a fuller treatment of the produced sound and its potential risk to 
marine mammal species. 
  
This document is intended to correct some, but not all, of the problematic features of the 2018(b) and 
2020 NMFS AM Spreadsheet Tool, most specifically for Tab F as applied to compressed air (CA) sound 
sources used in geophysical research and exploration surveys. (Indeed, it is not possible to fully analyze 
the complexities of underwater sound and its interaction with marine mammals using a simplified 
model.) The aim is to help the user resolve some ambiguities and difficulties associated specifically with 
the impulsive sound produced by compressed air sound sources or “air guns”. For example, the 2018b 
NOAA Optional User Spreadsheet Tool and User Guidance presents multiple opportunities for the 
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inadvertent entry of incorrect information by the user whereas this Supplemental Spreadsheet Tool and 
Guidance minimizes the risk of incorrect data entries, and provides more detailed guidance about the 
choice of values to enter into the spreadsheet tool; all with the goal of reducing the likelihood of user 
errors in the risk estimation process or misunderstanding by the user of the pre-existing NMFS guidance 
and associated user tools. 
 
Although this version of the User Spreadsheet Tool offers some improvements over the original NMFS 
2018b User Spreadsheet Tool it is probably incorrect to characterize that 2018 (v.2) User Spreadsheet 
Tool or this proposed supplemental analysis as an “Alternative” to the full NMFS (2018a) Guidance. In 
this document we highlight some of the as-yet unresolved problems with the AM User Spreadsheet Tool 
methodology for calculating cumulative SEL isopleths, as well as issues with propagation of sound in 
shallow water or other special oceanographic conditions, and the problem of chemical absorption of 
higher frequencies of sound. The issue of chemical absorption of sound at increasing sound frequencies 
effectively renders all predicted isopleths greatly over-predictive of actual PTS isopleths, most especially 
for the High Frequency Cetacean (HF) hearing group.  
 
In summary, the User Spreadsheet Tool, even in its currently proposed version, is not a viable alternative 
to the NMFS 2018a guidance. At best, it can indicate when ranges to PTS are not a factor worthy of the 
time, expense, and effort of fully modeling, or when full ocean acoustic modeling is not only desirable 
but necessary to facilitate fact-based decision making. Throughout this document we draw the user’s 
attention to physical and biological circumstances that should give the user pause regarding application 
of the AM User Supplemental Guidance as an alternative to more complete modeling and analysis 
during regulatory decision-making processes. 
 
EXECUTIVE SUMMARY 
 
This Supplemental User Guide is in three sections:  
 

• New Supplemental Guidance and Tools (Section A) offers amendments to the 2018 NMFS 
Optional User Spreadsheet Tool, v.2 plus additional tools to help users who may not possess all 
of the information needed to complete the Optional Spreadsheet Tool, including:  

o A simple conversion tool to help users easily convert sound pressure levels from 
common geophysical industry units like Bars or Pascals to dB SPL re 1 microPascal1; 

o A tool to generate hearing-weighted SEL values from default 1/3 octave frequency 
bands (TOB) replicating the frequency spectrum of a derived Generic Pulse (substitution 
of user-provided TOB values unique to the user’s source is possible, as well); and  

o An Appendix detailing the process by which TOB default values for a Generic Pulse were 
generated.  

• Section B flags those problem areas within the current (v.2) User Guidance and Optional 
Spreadsheet tool (NMFS 2018b) needing correction or improvement, and provides a rationale 
for the proposed changes that were addressed in the new User Spreadsheet Tool (Section A);  

• Section C provides Background and Context for those desiring more in-depth information about 
the operational characteristics of compressed air (CA) sound sources (“air guns”) and the sound 
they produce.  

• Appendix A provides detailed information about the sources of frequency spectra used to 
generate a Generic Pulse spectrum for the proposed revised Supplemental Guidance. 

1 A Glossary is provided at the end of this document to help define terms-of-art or abbreviations used in this document. 
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We recommend that all users, including expert users, read the Background and Context (Section C) to 
familiarize themselves with the sometimes complex and non-intuitive aspects of the CA sources 
commonly used in geophysical research and exploration.  
 
Section B describes the potential sources of user errors in the application of the current User 
Spreadsheet Tool and some of the underlying precautionary assumptions that render predictions of risk 
from the User Spreadsheet Tool (v.2) much higher than predictions that would result from applying the 
NMFS 2018a guidance with a more sophisticated modeling approach. Illustrative examples are provided.  
 
Section A provides modifications to the User Spreadsheet Tool and Guidance that will prevent some, but 
not all, of the most common problems with the current (v. 2) NMFS spreadsheet and guidance. The 
proposed revisions to the User Spreadsheet Tool and Guidance also provides a Generic Pulse energy 
spectrum for users who do not possess frequency spectrum data specific to their own CA sound source. 
The provided Generic Pulse spreadsheet tool is based on the spectra from a variety of array sizes and 
configurations. Users should substitute their own source level information, pulse duration, vessel speed, 
pulse repetition rate and pulse frequency spectrum, if known.  
 
Since marine seismic surveys have historically used non-SI (non-metric) units of measure (e.g., cubic 
inches, pounds per square inch and bars), a simple calculator tool is also provided to convert sound 
source properties that may have originally been expressed in bar (bar-meter) or an SI unit like Pascals 
into the decibel metrics used in the NMFS guidance.   
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LIST OF ACRONYMS 
 

4D Four dimensional, meaning spatial change over time. In the context of this document 4D 
refers to modeling of the propagation of sound, such as CA array sound, through the 3D 
volume of the ocean over time. Sound may be reflected off the air-water and substrate-water 
boundaries and may be refracted (bent) by layers of water with different densities and thus 
different sound speeds. Broadband sounds like CA array sounds, which contain many 
frequencies, will also be spread in time as they travel, much as light is broken up into its 
component colors by a prism. Such modeling is computationally intensive, and usually 
expensive of both time and money, so simpler models like the User Spreadsheet Tool may be 
used to approximate sound propagation through the water, with decreased realism or 
accuracy of model predictions relative to a full 4D model. 

AM Alternative Methodology. The term applied by NMFS to a spreadsheet tool and guidance 
(NMFS, 2018b) offered by NMFS as a simpler alternative to the implementation of their 
original PTS risk guidance (NMFS, 2018a) 

ANSI American National Standards Institute. For all US standards of acoustic measurement, ANSI is 
administered by the Acoustical Society of America (ASA). 

Bar is a non-SI unit of pressure often used to express the acoustic output of CA arrays and other 
geophysical survey sound sources. A bar is equal to 100,000 Pascals or roughly equivalent to 
the atmospheric (barometric) pressure at sea level. 

CA Compressed air, referring to the most commonly used type of sound source used in marine 
geophysical survey. Also colloquially known as “air guns”. See Section C.1. 

cui Cubic Inches. The volumes of compressed air sound sources (air guns) are typically expressed 
in cubic inches rather than SI terms like liters (l) or cubic centimeters (cc). 

dB the decibel (one tenth of a Bel) is a logarithmic ratio expression of acoustic pressure values, 
and as such it is referenced to a reference value, typically in Pascals (e.g. re 1μPa). The Bel is 
named after Alexander Graham Bell, and is a logarithmic scale used to express sound 
pressure levels in smaller numbers than if Pascals were used.  

Duty cycle Duty cycle refers the ratio of sound-on to sound-off for intermittent sound sources such as 
sonars or geophysical survey sound sources. The typical duty cycle of a CA array is 0.01 or 1 
%, since the CA sound, with a duration of less than 0.1 second, occurs approximately every 
ten seconds (0.1/10 = 0.01). 

EARS Environmental Acoustic Recording System. In this document, EARS refers specifically to a 
type of underwater sound recording device developed by George Ioup and associates at the 
University of New Orleans and the Naval Research Laboratory at Stennis, Mississippi for the 
recording of CA array sound and other marine environmental sounds, including marine 
mammal sounds. 

ESA Endangered Species Act. 
HF High Frequency, referring specifically to the High Frequency Cetacean Hearing Group, 

consisting of porpoises and related species of high frequency-hearing specialist marine 
mammals (also see MF Cetacean Hearing Group). 

HRG High Resolution Geophysical survey, which typically involves a non-CA sound source like a 
multi-beam sonar. HRG surveys are typically used to resolve more structural detail of the 
geology at shallower depths than a full CA survey, for the purpose of surface mining of sand 
or gravel, determining pipeline routes or assessing pile driving sites. But even if CA sources 
are used, they are fewer in number and not configured like a typical CA array. 

Hz Hertz, the SI unit for sound frequency (1 pressure oscillation or cycle per second = 1 Hz). The 
normal range of hearing for humans is 20 Hz-20,000 Hz (20 kHz). The normal range of hearing 
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for marine mammals varies by group, and can be considerably lower in frequency for LF 
Cetaceans (7 Hz) or considerably higher for HF cetaceans (up to 180 kHz). 

IAGC International Association of Geophysical Contractors. A non-profit trade association 
representing the geophysical survey industry. 

km An SI unit of length/distance measurement. 1 km = 1000 meters. 
IOGP International Organization of Oil and Gas Producers. 
ISO International Standards Organization. ISO sets global standards for a variety of physical and 

engineering terms and measurements. ISO coordinates with ANSI (see) to develop global 
standards for the expression of acoustic terms and measurements. 

Isopleth      Isopleth refers to a line of constant values like topographic lines on a map or depth contours 
on a navigational chart. In the context of this guidance, Isopleth refers specifically to the 
radial distance from the CA sound source to the decibel level thresholds for the onset of 
small, partial PTS (see). The isopleth is the radius of a horizontally circular, and vertically 
cylindrical volume of water centered at the sound source. The isopleth is assumed to 
demarcate some unspecified level of risk of PTS in animals within the cylindrical volume of 
water established by the PTS isopleth. 

km Kilometer, a unit of distance equal to 1000 meters. One kilometer equals approximately 0.6 
miles. 

LF Low frequency, referring specifically to the LF Cetacean Hearing Group, consisting of the 
large baleen whales. 

m Meter, an SI unit of length measurement, as in 30m = 30 meters. 
m/s Meters per second, an SI unit of measure of speed/velocity. A vessel speed of 5 knots is 

approximately equal to 2.5 m/s. 
msec An SI standard unit of time measurement. A millisecond = 0.001 second. 
MF Mid-frequency, referring to the delphinid cetaceans with high frequency adaptations for 

biosonar, but lacking the higher hearing range and greater sensitivity of the HF Cetaceans 
(porpoises and related species). 

MMPA Marine Mammal Protection Act 
NEPA National Environmental Policy Act. 
NMFS National Marine Fisheries Service, a division of the U.S. National Oceanographic and 

Atmospheric Administration (NOAA) in the Department of Commerce. NMFS Office of 
Protected Resources (OPR) is charged with implementing regulations and guidance for 
compliance with the Marine Mammal Protection Act (MMPA), as well as the Endangered 
Species Act (ESA), where applicable. 

OGP Oil and Gas Producers, original name of the IOGP, a trade association representing oil and gas 
producers. 

OW Otariid Water – referring specifically to the hearing of otariid pinnipeds (sea lions and fur 
seals) in water (in comparison to their hearing abilities in air). 

Pa Pascal, the ISO and ANSI standard of measurement of sound pressure, e.g. dB SPL re 1 μPa-m. 
Sound decibels are typically referenced to microPascals (μPa). 

psi Pounds per square inch. The geophysical industry typically expresses compressed air system 
pressurization in psi, rather than SI units like Pascals or Newtons per square meter. 

PTS Permanent Threshold Shift refers to a permanent loss of hearing across some or all of an 
animal’s hearing range. The loss may be complete or partial and may range from a narrow 
frequency notch to loss across the entire hearing range. PTS in the context of this document 
refers to the first onset of barely noticeable hearing loss across a narrow frequency range of 
1/3 octave or less. 
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PW Phocid Water, referring to the hearing of phocid or true seals (as opposed to otariid seals) in 
water (as opposed to their hearing abilities measured in air). 

 
SEL Sound Exposure Level, refers to the energy flux or sound pressure over time. A constant 

sound pressure of 120 dB for ten seconds would yield an SEL of 130 dB SEL. A constant sound 
pressure of 120 dB for one-tenth of a second would yield an SEL of 110 dB SEL. 

SELcum Cumulative SEL refers to a methodology adopted by NMFS for assessing the hearing risk from 
multiple CA array sound pulses over a given period of time. The time-separated sounds are 
summed and treated as one continuous sound for the purpose of simplifying calculations of 
SEL. 

SPL Sound Pressure Level. All SPL units are referenced to 1 microPascal. 
SPLpp Peak-to-peak Sound Pressure Level, or the entire pressure change from the peak emitted 

pressure to the surface-reflected phase-inverted pressure. See Section C.3.4. 
SPLpk Peak sound pressure level or zero-to-peak Sound Pressure Level as measured for the initial 

primary pulse of a CA source. See Section C.3.4. 
SPLrms Root Mean Squared Sound Pressure Level. Root mean squared refers to the method of 

determining the average pressure, since decibel SPL values are on a logarithmic scale and 
cannot be average arithmetically. Root Mean Squared SPL should carry a metric for the time 
period over which the averaging occurs. Unless otherwise stated, the reference metric for all 
SPLrms values is SPLrms0.9, or the time over which 90% pf the pulse energy occurs. Other metrics 
like SPLrms125 refer to the time in milliseconds over which sound was averaged.  

TOB Third Octave Band, referring to a one-third octave range of frequencies. An octave is a range 
of frequencies twice the octave below it, and half of the octave above it. Octaves and one-
third octaves approximate metrics of human and general mammalian frequency or pitch 
discrimination. 

TTS Temporary Threshold Shift refers to the temporary, fully recovered, loss of hearing across 
some or all of an individual’s hearing range. In the context of this document, TTS refers to the 
slight temporary loss of hearing that is just barely statistically detectable, and is typically fully 
recovered in minutes or hours. The NMFS PTS metrics are derived from TTS data (also see 
Southall et al, 2007 and Southall et al, 2019). 

VSP Vertical Seismic Profiling refers to a type of geophysical survey with CA sources that typically 
does not use a full CA array as a sound source but instead may use a single CA source, cluster 
of CA sources or a single string of CA sources, and thus produces a sound field and spectrum 
different than that of a full CA array. 

WFA Weighting Factor Adjustment is a value used in the NMFS User Spreadsheet Tool to adjust 
the absolute SEL level of a specified CA source to its hearing group weighted SEL value, based 
on how well a particular marine mammal group hears the different frequencies of sound 
within a CA impulse sound. The hearing-weighting formulae offered in the NMFS (2018a) PTS 
threshold criteria are very computationally demanding. The WFA was offered as a simplified 
method for adjusting raw SEL values to hearing-weighted SEL values. The WFA-adjusted SEL 
will always be less than the raw unadjusted SEL, but the difference between raw and hearing-
weighted SEL depends on the hearing abilities of the different marine mammal hearing 
groups and the frequency structure of the sound of interest. 
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SECTION A:  PROPOSED CHANGES TO NMFS SUPPLEMENTAL GUIDANCE V.2  
 
The NMFS 2018b User Spreadsheet Tool and Guidance address a wide range of sound sources. This 
document focuses solely on revisions to Tab F of the User Spreadsheet Tool. Additional supplemental 
tools (Tabs F1, F2, F3, F4 and F5) have been added in support of Tab F calculations, and are described 
below. The revised Spreadsheet Tool Tab F requires fewer user-entered values than the NMFS 2018b 
Spreadsheet Tool, thus reducing the potential for erroneous entries by users with incomplete 
understanding of the underlying physical and mathematical principles or with incomplete information 
about the source of interest. We emphasize, however, that all default values in the Revised Spreadsheet 
Tool can be modified by the user if so desired.  
 
The same caution is provided to users as was provided for the original NMFS Optional User Spreadsheet 
Tool (v.2): if modifications are made to the template spreadsheet, then the user should save the 
modified spreadsheet under a different name to avoid corrupting the template spreadsheet.  
 
Overview 
 
The IAGC spreadsheet contains the following tabs. Inputs are only required in Tab F. Tab F1 contains an 
optional unit conversion tool. Tab F4 does not require user input, but allows for input of a user-
generated spectrum if desired. Tabs F2, F3, and F5 are reference tables that do not allow user inputs, 
but are included for calculation transparency. As with the NMFS version, all cells that allow for user 
input are marked in sage green.  
 

• Tab F (Revised Isopleth Calculator): replicates the NMFS Alternative Methodology Spreadsheet 
Tool, but with some important changes. This guidance walks through the Revised Tab F, from 
top to bottom, explaining all user entries and calculations, with supporting references as 
needed. 

• Tab F1 (Conversion Tool): enables the user to convert nominal source levels expressed in other 
units into dB SPL re 1 microPascal 

• Tab F2 (wtd SEL Calculator): provides a means of calculating a weighted SEL appropriate to each 
of the five marine mammal Hearing Groups defined in the NMFS 2018a and 2018b guidance. 
The resulting Adjustment (dB) is automatically copied to Tab F. Tab F2 takes Generic Spectrum 
data from Tab F4 and adjusts the 1/3 Octave Band SEL values for Hearing Group weighting 
factors obtained from Tab 3. There are five tables in Tab F2 (one for each Hearing Group). A 
graphical representation of the resulting Hearing Weighted spectrum is also provided, as an aid 
in understanding how the spectrum as perceived by a given Hearing Group may differ from the 
raw, unweighted spectrum in Tab F4. 

• Tab F3 (wtg Values Table): contains a table of weighting functions for each 1/3 octave frequency 
band center frequency, based on the NMFS 2018a weighting functions. There is no user-entered 
information required in Tab F3, but if Hearing Group Weighting Functions as set forth in NOAA 
2018a change in the future, this tab can be updated without having to change any of the other 
tabs. 

• Tab F4 (TOB Center Frequency Calc): provides data from five representative CA source 
spectrograms to generate an averaged SEL value for each 1/3 octave band (TOB) center 
frequency of a Generic Pulse spectrum. The TOB Center Frequency Calculator can be updated if 
and when additional measured frequency spectra become available in the future. The values 
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generated in Tab F4 are imported to Tab F2 to generate Hearing Group Weighted SEL values. 
Users may substitute TOB values from their own CA source in Column O of Tab F4, if desired. A 
graphical display of the resulting spectrum (in TOB increments) is also provided. 

• Tab F5 (TOB Factor Table): contains a list of TOB center frequencies and bandwidths required for 
internal calculations.  

 
Guidance for completing Tab F 
 

• General Project Information: This section is identical to the current AM User Spreadsheet Tool 
(v.2). The General Project Information section asks for a Project Title (cell B10) for clarity and 
consistency during communication about the project, along with a reference to Project 
Source/Information (cell B11) indicating where a reader might obtain more details about the 
project (e.g. an Environmental Impact Statement or MMPA Permit Request). A Project Contact 
(cell B13) such as an individual name, phone number or email provides information about where 
further queries about the project may be directed. 

• The former Step 2 of the User Spreadsheet Tool provided a place for entering a Weighting 
Factor Adjustment (WFA). This step is now incorporated into the Adjustment values in cells C51 
through G51 and the Step 2 WFA component has been eliminated.  

• Source Specific Information: The first and only entry required of the user in Step 2 is the 
Nominal Source Level (see red arrows in Figure 1) into either cell B19 or B21. Cell B21 will 
automatically calculate SPLpk if a value is entered into cell B19 or the user may enter an SPLpk 
value into cell B21 if that is the source level information available to the user. This one entry into 
either call B19 or B21 replaces five user-required entries in v.2 of the User Spreadsheet Tool (see 
Section B, Figure 8). Using a single required user entry greatly reduces the likelihood of data 
entry errors or entry of mixed values, some obtained from measured data at range and some 
obtained from back-calculation to a point source. For example, in several cases encountered by 
the authors, SPLpp source levels had been entered into cells assigned to SPLpk, SPLrms, and even 
SEL.  

o The SPL value typically used within the geophysical survey community is SPLpp, or peak-
to-peak SPL. If the user enters a value in cell G19, the spreadsheet will then 
automatically populate the SPLpk in Cell G21 and all other cells requiring source level 
information. If the provided nominal source level is not clear as to whether the source 
level is peak-to-peak or zero-to-peak, but a waveform or frequency spectrogram is also 
provided, then the presence of a negative pressure spike in the waveform (ghost) or 
notches in the spectrum at approximate 100-150 Hz intervals are indicative of a peak-to-
peak source value (see Section C for more about the surface-reflected ghost pressure 
wave and its effects on the frequency spectrum of the pulse). Otherwise, in the absence 
of information to the contrary, the provided source level should be assumed to be a 
peak-to-peak source level (SPLpp). 

o Basis for the relationship between SPLpp and SPLpk values in the User Spreadsheet Tool 
(cell G20): The adjustment from SPLpp to SPLpk (-6 dB) is related to the reflection of the 
source sound by the air-water interface, as discussed in Section C (see page 42 et seq.). 
The user may hand-enter a different adjustment factor in Cell G20 if the actual peak-to-
peak gain is known (e.g. imperfect reflectance may only produce -4 or -5 dB gain in SPLpp 
relative to SPLpk), However, deviation from the -6 dB default is unusual and could be 
indicative of measurements obtained off the vertical axis of the array, in which case the 
source level entry and resulting SEL and energy spectrum may not be consistent with 
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the default assumptions of the spreadsheet tool. Array output at different angles from 
the array vertical axis is discussed in detail in section C (see page 38 et seq.).  

o Tab F section “F1: Method to Calculate PK and SELcum (using RMS SPL Source Level)” 
which starts on Row 26 of the NMFS User Spreadsheet Tool v.2 is unnecessary in the 
revised Spreadsheet Tool, and has been deleted. The RMS source level is approximately 
6 dB below SPLpk, although differences as great as 10-12 dB have been recorded (see 
Section C.); 6 dB is therefore a conservative, precautionary value for the difference 
between SPLpk and SPLrms. Since SPLrms is only used to predict SEL, and since we know the 
relationship between SPLpk, SPLrms and SEL we can skip Section F1 of the old Tab F 
altogether and simply derive an Unadjusted (i.e. unweighted) SEL value from SPLpp (-22 
dB) or SPLpk (-16 dB). Again, this is a conservative value, since differences of 20-25 dB 
between SPLpk and SEL are not uncommon in the literature (e.g.see McPherson et al, 
2018). 
 

 
Figure 1. User entered data in Tab F, Step 2 for nominal SPLpp or SPLpk is indicated by the red arrows. Either a peak-to-peak SPL 
or a zero-to-peak SPL should be entered. All other values will populate automatically. 

• Users may replace default spreadsheet values in cells B27-29 if desired, but since the equipment 
and practices of marine geophysical surveys are very consistent, using the default values is likely 
to deliver a result near what would be obtained from any one particular survey-specific set of 
values. 

 
Rationale for Using Array Parameters in the Vertical Direction 
 
The sound field produced by a planar array is complex, and difficulties can arise from using 
measurements taken at an angle other than directly below the array and applying those values to the 
source parameters in Tab F, Step 2. The most common source of errors in the use of the NMFS AM User 
Spreadsheet Tool is combining nominal vertical source level values with pulse durations and frequency 
spectra obtained at an angle and some distance from the array. In other words, a received level of 200 
dB recorded at 1000m and back-calculated to obtain a nominal source level of 245 dB also requires that 
the user not use the recorded pulse duration of 0.1 s measured at 1000m, but must also back-calculate a 
pulse duration and spectrum at the source that would have produced the observed duration and 
spectrum 1000m from the source. 
 
The above properties measured at any angle and distance can be back-calculated by an expert user to 
generate a nominal source pressure level, duration, and spectrum at any other selected angle (assuming 
there is good information about the propagating environment). It is important that the user of the 
simplified spreadsheet tool understand this relationship between the properties of the sound that was 
emitted and the location at which measurement or modeling was conducted, and to be consistent in the 
values entered into Tab F.  
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The default assumptions of the User Spreadsheet Tool (amplitude, duration, spectrum) are for sound 
emitted in the vertical direction for several reasons. First, because the spreadsheet tool is intended to 
use conservative, precautionary maximum sound source level for the array, and second, because this is 
the standard default information provided about the source of interest by an operator in the planning 
phase of a survey. (See Section C for more detailed discussion.) 
 
Using parameters from the vertical axis of the source array also eliminates the frequency-specific 
interference patterns between array elements observed in horizontal sound fields around an array. Use 
of the vertical axis parameters substitutes a smooth circular boundary around the array rather than the 
more irregular, star-like patterns that would result from off-axis propagated sound (see e.g., BOEM, 
2016). The smoother circular isopleth predicted by the vertical data exceeds predictions that would be 
generated by using data from other angles and is thus a further conservative, precautionary decision 
point embedded in the simplified Alternative Methodology of the User Spreadsheet Tool (and is just one 
of several reasons why the User Spreadsheet Tool should not be considered an alternative to full ocean 
acoustic modeling of the sound field). 
 
Sound Propagation 
 
The default sound propagation value is spherical spreading (Source Level in SPLpk – 20*log(r)), as in the 
NMFS v.2 version of the User Spreadsheet Tool. This spreading loss formula is most appropriate for 
resulting isopleth values that are less than 2 times the water depth, or less than 1000-2000 meters 
horizontal distance in deep water. If the site of interest is in shallow water (less than 200 meters) or 
other special sound transmission conditions apply, such as occur in partially ice-covered areas, in 
strongly downward or upward refracting sound speed profiles of the water column, or in sites 
containing frontal boundaries such as Gulf Stream waters of the Atlantic or freshwater inflow, then the 
user is strongly encouraged not to use the predictions of the User Spreadsheet Tool, but instead to 
proceed directly to full ocean acoustic modeling to more accurately capture the decay of sound levels 
over distance. Predicted isopleths greater than 1000-2000m are also problematic due to chemical 
absorption of high frequency sound (see Figure 4). The absence of a correction factor for chemical 
absorption in the User Spreadsheet Tool can be a major source of error, especially for the High 
Frequency hearing group. 
 
Minimum Isopleths 
 
Boundary Source Level (cell G23) and Boundary SEL Level (cell G24): Because the nominal peak source 
level is a function of back-calculation treating the array as a point-source and not a real, measurable 
sound pressure level from anywhere inside the array, the most appropriate and realistic maximum far-
field source value should be a number outside the boundaries of the array itself. Array dimensions are 
typically 12-20 m on each side, so 30 m from the center of the array was chosen as a range to achieve a 
realistic coherent far-field array output. Higher frequencies take longer to align than lower frequencies, 
but rather than set a boundary condition of 100 m or more for all frequencies to enter far-field 
conditions, we chose 30m as the minimum distance at which most of the acoustic energy from the pulse 
will become coherent. The Boundary Source Level indicates that if the isopleth value returned by the 
User Spreadsheet is less than 30 m, then a minimum value of 30 m will be substituted automatically in 
the Resultant Isopleth cells of the Revised Tab F.  
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This default conservative, precautionary isopleth value of 30 m means that such 30 m isopleth values 
cannot then be used to estimate MMPA Level A takes, since takes would be overestimated by a factor 
proportional to the ratio of the actual calculated range to threshold versus 30 m (see example in the 
following section). 
 
Why use 30 m instead of the actual distance from the center of the array when that distance is less than 
30 m from the center of the array? Obtaining a calculated PTS isopleth within or very near the edges of 
the array is not a realistic scenario for two reasons. One is that the array sound field is not evenly 
distributed at those close ranges, as shown in Section C. For example, an animal could be at a safe range 
near the front of the array, but not at the back of the array. The exact location of “hotspots” within the 
array varies with array configuration, i.e., the locations of larger and smaller sources within the array 
grid. The second reason is that the physical dimensions of the array make it impractical to set a range to 
threshold that would lie within the box encompassed by the ten to 20 square meter horizontal 
dimensions of most arrays, including the typical vertical depth of the array at 5-10 m below the surface. 
For example, for an array with a nominal source level of 245 dB SPLpk, the range at which PTS onset is 
predicted from SPLpk for a dolphin (MF Cetacean) or sea lion (OW pinniped) is only 5 meters from the 
center of the array, which is within the actual physical dimensions of the array. This is problematic from 
a safety perspective as well as a hearing injury perspective: even if an animal might be hearing-safe at 5 
m from the center of the array, common sense dictates that it is not safe for animals to be swimming 
within the physical structure of the array itself. The same logic is applied to the SEL isopleth: a minimum 
safe range of 30m is applied if the range to the weighted SELcum is less than 30 meters. 
 
Returned isopleth ranges of 30 m must not be used in estimating Level A takes from sound exposure 
modeling. To do so would result in over-estimation of Level A takes due to the volume of water 
encompassed by the 30 m minimum isopleth along an entire survey trackline. Even a modest over-
estimate of range to PTS of 30 m rather than, for example, a 5 m range to PTS for a 245 dB SPLpk source, 
would translate to a vastly increased volume of water for an entire trackline of hundreds or thousands 
of km.  
 
What might superficially appear to be a trivial 25 m increase in the radius from the array out to PTS 
isopleth could mean a significant over-prediction of takes, both because the Spreadsheet Tool offers an 
isopleth greater than what was mathematically predicted and because the Spreadsheet Tool assumes 
that a cylindrical volume of water (all animals exceeding threshold regardless of depth) is ensonified 
instead of what is actually a hemispherical volume (having vertical as well as horizontal limits).  
As a simple example of the over-estimation of ensonified area by using a default minimum 30m radius 
isopleth versus a 5 m isopleth: a 30 m isopleth creates a 60 m wide swath that over a total trackline of 
100 km would encompass an area of 60 m x 100,000 m = 6 km2, while a 5 m isopleth over the same 
distance would encompass an area of 1 km2 (10 m by 100,000 m = 1 km2). The difference in predicted 
ensonified area means that any attempt to predict Level A takes based on the 30m default isopleth 
would also be at least 6 times larger than would have been predicted by the actual, but unrealistic 
isopleth. 
 
The problem of multiplicative interactions between precautionary variables has been brought to NMFS 
attention in the past (IAGC, 2017; Zeddies et al., 2017), and should always be considered when making 
what seem like “simple” precautionary decisions that end up interacting multiplicatively to generate 
estimates of acoustic exposures or MMPA takes that are thousands or even millions of times higher than 
the most probable outcome. We endeavored to minimize the number of interactive precautionary 
assumptions, although the outcome of the User Spreadsheet Tool will still be several orders of 
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magnitude more precautionary than a full ocean acoustic model using the same acoustic threshold 
criteria and animal distribution data.  
 
Calculating SPLpk and SELcum Isopleths 
 
The Unadjusted single pulse SEL value (Tab F, cell B27), was a required user-entered value in the User 
Spreadsheet Tool v.2, but is automatically generated from the user-entered SPLpk or SPLpp in Section F1 
of the revised User Spreadsheet Tool (see Figure 2). This value may be overridden by the user if the 
unadjusted SEL measurement is available, though this is unlikely to be more readily available than SPL 
values. 
 
Formerly-required user-entered values for source velocity and inter-pulse intervals (1/Repetition 
rate^(seconds)) are populated automatically in cells B28 and B29 based on the most common values 
found in most geophysical surveys (Figure 2). However, user-provided values can be substituted. For 
example, if the source vessel speed was known to be 2.3 m/s instead of the default 2.5m/s or the inter-
pulse interval (pulse repetition rate) was known to be 20 seconds instead of 10s, these values can be 
entered by the user. 
 

 
Figure 2. Revised User Spreadsheet Tool cells B27-30, showing Default Unadjusted SEL, Source Velocity, and Repetition Rate. 

Pulse duration is no longer a user-entered value since it gives unrealistic estimates of SEL from SPL. The 
value for Pulse Duration at the source (0.02 s) will give unrealistically low SEL values relative to 
measured SPL/SEL relationships as documented in Section C. Therefore, a default typical relationship 
between SEL and SPLpk is used instead of multiplying SPLrms by 0.02s, which would give SEL values more 
than 25 dB below SPLpk. The selected precautionary relationship between SPL measurements and SEL 
allows for some spreading in the duration of the pulse as it travels, as well as accounting for energy 
outside the duration of the primary pulse alone. The adjustment factor between SPL and SEL can be 
replaced with a user-entered value, but care should be taken to avoid basing the adjustment on a pulse 
duration from data measured at large distances from the source (>1000 m), since the other parameters 
in the isopleth calculation are based on the properties of the pulse at its point of origin. The two 
properties of amplitude and duration are physically linked, and pairing a high SPL at the source with a 
longer duration at distance will yield incorrect isopleth values. As noted, the selected default SPL to SEL 
relationship is already highly conservative (by an order of magnitude) relative to the SEL that would be 
predicted by a primary pulse duration of 0.02 s. 
 
The result is consistent with the NMFS 2018b (Appendix C) default pulse duration of 100 msec, which 
would also yield an SEL -10 dB below SPLrms. However, we believe our rationale is more robust and is 
based directly on large amounts of measured data rather than relying on a fictive “typical” pulse 
duration that is an average of pulse durations obtained at widely varying distances and measurement 

NMFS does not concur with all of the content of IAGC's public comments. This posting should not be considered an endorsement of the full document.



conditions. Since all other aspects of the model are based on metrics at the source, applying a mix of 
source values and values at distance creates greater opportunities for errors. We believe that the choice 
of an empirically derived relationship between SPL and SEL that is robust in free-field propagation out to 
1-2 km is preferable to mixing SPL that is back-calculated to the source with other values affected by 
highly variable propagation metrics dependent on local water depth, seasonal sound speed profiles, 
azimuth relative to the source and even data recording and measurement factors. Since the outcome is 
the same for the SPL to SEL relationship in both this proposed revised AM and the NMFS (2018b) User 
Spreadsheet, this distinction between methods for generating the generic pulse duration may largely be 
a moot point, but consistency in the methodology for selecting data values is important to user 
confidence in the model and its output. 
 
System pressurization is an invisible default value, as it was in the original 2018b Spreadsheet Tool and 
there is no cell for entering system pressurization. For this reason, neither the 2018 Spreadsheet Tool or 
the proposed Revised Spreadsheet Tool should be used to estimate isopleths for CA sources pressurized 
to levels other than 1800-2200 psi (nominal 138 bar). Even if the user has a measured or modeled SPLpp 

or SPLpk value to enter into cell G19 or G21, the emitted frequency spectrum from an under-pressurized 
or over-pressurized CA source will likely differ from the Generic Pulse spectrum in the Revised 
Spreadsheet Tool and as a consequence incorrect weighted SEL and cumulative SEL values would be 
generated by the spreadsheet tool. For example, many CA sources used in laboratory settings are not 
pressurized to 2000 psi and will exhibit different relationships between SPLpk and SPLrms with resulting 
differences in the spectrum and weighted SEL. 
 
Resultant Isopleths  
 
The Resultant Isopleths section (rows 35-40) automatically returns isopleth values based on the user-
entered source level, combined with the Generic Spectrum in Tab F4 and the Hearing Group weighting 
functions in Tab F3. The pink highlighted cells convey NMFS 2018a PTS threshold values for each hearing 
group (C37-G37 for cumulative SELcum thresholds, and C39-G39 for SPLpk thresholds).  
 
The blue/yellow highlighted cells convey the calculated isopleth for each hearing group: cumulative SEL 
isopleths in cells C38-G38 and SPLpk isopleths in cells C40-G40. Both the SPLpk isopleth calculation and SEL 
calculations are the same as in the NMFS 2018b User Spreadsheet Tool. As noted previously, if a 
calculation returns an isopleth value of less than 30 m, the spreadsheet will automatically return a 
minimum value of 30 m and the cells will turn yellow to denote the use of the minimum isopleth. Figure 
3 shows an example calculation where the isopleth was less than 30 meters for some hearing groups. 
 

 
Figure 3. An example calculation showing calculated isopleths (blue) and isopleths less than the 30 m minimum in which a value 
of 30 is automatically returned.  
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The Cumulative SEL (SELcum) calculation in the revised User Spreadsheet Tool is the same as the 
calculation used in the NMFS User Spreadsheet Tool v.2. That said, there are several points of serious 
concern about the SELcum calculation that should adversely impact user confidence in the predictions of 
the AM User Spreadsheet Tool as a substitute for full modelling of exposure using individual-based 
modeling or similar methods (e.g., BOEM, 2016). 
 
First, the NMFS 2018b methodology for calculating SELcum assumes that the animals are passing directly 
through or very near the single pulse SEL isopleth. An animal that only crosses the SELcum threshold 
briefly would not in fact accumulate sufficient SEL to exceed PTS. Whether the number of animals that 
do not in fact achieve the cumulative SEL equals the number which pass inside or near the single pulse 
SEL and therefore not only meet but exceed the nominal PTS exposure level is unclear. It might be 
advisable to provide both a single pulse SEL isopleth as well as the multiple pulse SELcum isopleth as 
metrics of a gradation of risk probability that occurs between the single pulse PTS isopleth and the 
cumulative pulse PTS isopleth. 
 
 
Second, there is no correction for received sound below Effective Quiet levels. Effective Quiet refers to a 
level of tolerated continuous sound exposure that does not produce TTS or PTS. In other words, all 
exposures below the threshold of Effective Quiet should not be added to the SELcum calculation. In 
humans, Effective Quiet is approximately 70 dB SPL re 20 μPa (Ward et al, 1976), roughly comparable to 
132 dB SPL re 1 microPascal in water. We do not yet have directly measured values of Effective Quiet for 
marine mammals, though values at or slightly higher than 130 dB were recently reported by Jim 
Finneran at the 2019 Aquatic Noise conference in Den Haag as failing to produce TTS in bottlenose 
dolphins. Received pulses below the level of Effective Quiet are not factored out of the accumulation of 
SELcum in the current NMFS AM. This relationship between TTS, PTS and Effective Quiet should not be 
confused with thresholds of audibility or the potential for a received sound below Effective Quiet to 
elicit a behavioral, or Level B response. Effective Quiet refers only to the level of sound that the ear can 
process continuously without incurring TTS or PTS, and which also allows for recovery from above-TTS 
exposures even in the presence of sound below the level of Effective Quiet. 
 
Third, no adjustment is provided to the SELcum calculation for hearing recovery between pulses. At 
present the energy from all pulses above ambient baseline within a 24-hour period are assumed to 
accumulate as if they were one continuous sound (e.g., 100 above-ambient received pulses of 0.02 s 
duration are treated as one pulse of 2 s duration, even though those 100 pulses may have occurred over 
a span of 25 to 50 minutes, or longer. It is widely understood from the study of humans and other 
terrestrial mammals that some recovery takes place in the hearing system when exposed to intermittent 
signals (Finneran et al., 2010). The accumulation of all sound exposures over a 24 hour period as 
currently applied by NMFS may not be particularly biologically realistic, and is one of several 
conservative assumptions embedded in the NMFS risk assessment process that contributes to a 
considerable overprediction of risk from exposure to low duty cycle impulse sources like CA arrays (duty 
cycle refers to the ratio of time when sound is produced to time when no sound is produced; the duty 
cycle for CA arrays is lower than for any other intermittent sound source, and is less than 1%).  
 
Fourth, the SELcum calculation assumes no avoidance response, by which the animal would actively 
reduce its accumulated sound exposure. We know that some or all individuals of populations tested 
thus far will avoid the sound source at levels below the PTS threshold (e.g., Stone et al., 2017). Even if 
only a fraction of animals produced some level of avoidance when exposed to near-threshold PTS 
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values, the predictions of the current SELcum isopleth would over-estimate incidences of PTS or related 
Level A take estimates by a considerable percentage. 
 
Fifth, the ability of animals to invoke reflexive or conditioned suppression of loud sound entering the 
auditory system is not accounted for in the current model of cumulative SEL. Both reflexive mechanisms 
(e.g., stapedial reflex; Møller, 2012) and anticipatory cognitively mediated mechanisms (Nachtigall and 
Supin, 2015) are known to exist in marine mammals as well as in humans and common laboratory 
species. Some level of hearing self-protection could reasonably be expected, especially for populations 
familiar with CA survey activity in their region. Such self-protective, or “gain control” mechanisms would 
further reduce the effect of repeated exposures to intermittent and highly predictable impulse sound 
sources such as sounds from CA arrays. Like behavioral avoidance, the degree of hearing protection 
invoked by the animals is not directly known, but by assuming that there is no effect from behavioral or 
physiological hearing protective mechanisms, the cumulative SEL model in the AM User Spreadsheet 
Tool is adding to a long list of precautionary over-estimating factors. 
 
Important Caveats Regarding Calculated Isopleths 
  
As noted previously, calculated isopleths less than 30 m will return a default value of 30m to the 
Resultant Isopleths section and these values should not be used in estimating MMPA Level A takes, for 
reasons described above.  
 
 
AM spreadsheet isopleths in excess of 2000m should not be used in MMPA Level A take calculations, 
and are a sign that more sophisticated isopleth calculation methods are necessary. As sound propagates 
over distances greater than 1-2 km from the source, environmental propagation effects exert an 
increasing influence on isopleth determination, and these factors are not incorporated into the simple 
calculations of the AM User Spreadsheet Tool.  
 
The confounding factors involved in long range propagation of seismic survey pulses beyond 2 km 
include but are not limited to reflection and refraction of sound by the bottom and water column, as 
well as chemical absorption of sound at high frequencies. Surface and bottom roughness tends to 
differentially affect shorter wavelengths (higher frequencies) as the sound undergoes multiple 
interactions with the sea surface and seafloor. Chemical absorption of sound becomes a major cause of 
declining received levels at distance for frequencies above 1 kHz (Figure 3). For example, sound in the 10 
kHz band will be attenuated at the rate of 10 dB/km by chemical attenuation alone, and sound in the 20 
kHz band will be attenuated at the rate of 40 dB/km. 
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Figure 4. The frequency-specific chemical absorption coefficient for sound in seawater. For example, sound at 1 kHz loses 0.001 
dB per m or 1 dB per km, while sound at 20 kHz loses 0.04 dB per m or 40 dB per km from chemical attenuation alone 
(Richardson et al., 1995). 

 
Calculation Details 
   
The Weighting Functions Calculations section in the spreadsheet (Tab F, rows 45-51; Figure 5) displays 
the weighting function parameters a, b, f1, f2, and C from NMFS 2018a in cells C46:G50. These numbers 
are not used in calculating the Adjustment Factors in Tab 4, cells C51-G51, but are provided simply to 
validate the weighting parameters used to calculate the weighting value for each TOB center frequency 
in the Weighting Values Table in Tab F3. The weighting values table in Tab F3 is called up by Tab F2 when 
calculating each Hearing Group’s weighted SEL.  
 

 
Figure 5. Weighting function parameters and calculated adjustment (dB) values from NMFS v.2 user spreadsheet tool.  

The Adjustment Factors in Tab F, cells C51-G51 are the difference in dB between the unadjusted pulse 
SEL in tab F cell B27 and the Hearing Group Weighted SEL as calculated in Tab F2. 
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Tab F1 
 
Tab F1 is a simple user tool to enable users with source levels in bar or Pascals to convert the sources 
levels to dB SPL re 1 μPa. Similar conversion tables are available on the internet, but we felt it would be 
more convenient to the user to have such a conversion tool available in the User Spreadsheet Tool 
bundle. The user will need to either hand enter the resulting and Paste Value the resulting SPL value in 
cells E11 or E14 or use the Copy and Paste Value tools in Excel to copy the resulting SPL value into Tab F, 
cell G19 (assuming that the source value is a peak-to-peak measurement). (Note: Using “Paste” instead 
of “Paste Value” will return an error message in Tab F, since cells E11 and E14 are formulas and not 
numeric values.) 
 

 
Figure 6. Tab F1: conversion tool for CA array source levels in bar (bar-m) or Pascals. 

Tab F2 
 
Tab F2 is used to calculate the weighted SEL value from the Unadjusted SEL value in Tab F, cell B27. The 
calculations performed in Tab F2 to generate a hearing weighted SEL are explained column by column, 
and an example is provided in Figure 6. There are six of these tables in Tab F2, one for each of the five 
Hearing Groups (Hearing Group is found in the table headers in Rows 1-2), and one unweighted for 
reference only. Grayed-out rows in each table are frequencies outside the hearing range of that Hearing 
Group. For example, all frequencies below the 160 Hz TOB band are outside the range of hearing for 
Mid-Frequency Cetaceans (MF Hearing Group) and are therefore not included in the calculation of the 
hearing-weighted SEL value (Figure 7). A graphical representation of the pulse with weighting for each 
hearing group is included below the table (Figure 8).  
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Figure 7. Hearing-weighted SEL calculation for the MF Cetacean Hearing Group. 

 
Figure 8. Graphical representation of weighted pulse for MF cetaceans.  
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The first column in each table contains the center frequency value for each TOB. These are the ISO and 
ANSI standard center frequencies for 1/3 octave bands. In the second column, the 1/3 octave band 
(TOB) center frequency SEL values are imported automatically from Tab F4, column O.  
 
Note that not all cells are populated in the tables for the different hearing groups in Tab F2. Frequencies 
outside of the nominal hearing range of the Hearing Group (NMFS 2018a) are not included in the 
Weighted SEL calculation and these cells are grayed out in the appropriate Hearing Group tables in Tab 
F2. Frequencies above 20 kHz are also not included in the calculation of the weighted SEL value because 
they are a very small fraction of the total pulse SEL. For example, the TOB SEL for the 20 kHz band would 
be 179 dB for a total pulse SEL of 238 dB, or about 60 dB below the total pulse SEL; that is, the 20 kHz 
band contributes about 0.1 per cent of the total pulse energy. The third column in each table performs a 
bandwidth adjustment to the center frequency SEL: [=IF(B45>0,B45+(10*LOG(bandwidth))," ")]. Note 
that as bandwidth increases, the adjustment factor applied to the center frequency SEL gets larger. The 
fourth column converts the bandwidth-adjusted SEL for each band into its anti-log so that the numbers 
can be added arithmetically at the bottom of the column (row 46). This number is then re-converted 
back its log (dB) value in row 48. (The anti-log conversion is necessary because the dB values from each 
TOB cannot be added directly because the decibel scale is logarithmic.) The resulting sum at the bottom 
of each Hearing Group table is the unweighted pulse SEL within the hearing range of the selected 
hearing group. The fifth column applies the appropriate Hearing Group weighting adjustment to each 
TOB SEL from the third column. The weighting adjustments are drawn from Tab F3. Since weighting 
functions change smoothly from frequency to frequency, applying the weighting correction for the 
center frequency of each TOB is equal to the average weighting for the entire band and saves the effort 
of calculating the weighted SEL for each single frequency. The sixth column displays the weighted SEL 
values for each TOB. The seventh column converts the weighted TOB SEL to its anti-log so that the 
numbers can be added arithmetically, as was done for the unweighted TOB SEL values in the fourth 
column. The anti-log values are summed at the bottom of the column (row 46) and then converted back 
to a decibel value on row 48, which is the weighted total pulse SEL within the hearing range of that 
Hearing Group.  
 
The results in the sixth column are displayed graphically in a bar graph below the table (Figure 8 above). 
While both single frequency and 1/3 octave spectra are often displayed as line graphs, with lines 
connecting the SEL value at the center of the band, we believe that the more appropriate way to 
present these data is with a bar graph, since the SEL value actually represents the summed sound 
energy across a range of frequencies within the band. 
 
Generation of the Adjustment parameter for Tab F 
 
The hearing-weighted SEL value in row 48 of Tab F2 is then subtracted from the unweighted SEL in Tab 
F, cell B27 to produce the Adjustment (dB) parameter on line 51 of Tab F. The adjustments on Tab F, line 
51 are subsequently used in the formulae in row 38 of Tab F to calculate the cumulative SEL isopleth  
 
Tab F3  
 
Tab F3 is a look-up table of calculated weighting values for each TOB in Tab F2. The information in Tab 
F3 is called-up by Tab F2 during the calculation of the Hearing Group weighted SEL values that are then 
used to calculate SELcum isopleths in Tab F. The weighting function look-up table uses the Hearing Group 
Weighting Function parameters a, b, f1, f2, and C.  
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Tab F4 
 
Tab F4 documents the derivation of a Generic Pulse Spectrum. Tab F4 enables any total pulse value 
obtained from Tab F, cell B27 to generate the relative energy per TOB based on the Generic Pulse 
Spectrum, which is then exported to Tab F2 (the user would enter a peak-to-peak SPL for the source in 
Tab F and an SEL 22 dB lower than that value would automatically be populated into cell R3 of Tab F4). 
Alternatively, if the user substitutes their own Unadjusted SEL in Tab F, cell B27, then both Tab F4 and 
Tab F2 will automatically generate TOB SEL values and hearing-weighted isopleths based on the entered 
SEL value and the Generic Pulse Spectrum (Figure 9 and 10). If the user also wishes to substitute a 
different spectrum than the generic spectrum, those TOB values may be entered directly into the sage 
cells in column O of Tab F4. The user would need to provide data and calculations to support the 
alternative spectrum and verify that the summed TOB SEL values are consistent with the nominal source 
total SPL and SEL also provided by the user.  
 
Tab F4 also creates a graphical representation of the values in column O (Figure 10). The plotted points 
create a smoothed pulse spectrum, without the peaks and valleys of an off-axis or peak-to-peak 
spectrum. The smoothing is a product of the spectrogram sampling method described in Appendix A and 
the averaging of multiple sample spectra as described below. The result is another conservative, 
precautionary step in the isopleth calculation process, because the choice of TOB SEL relative to the 
total pulse SEL slightly increases the sum of TOB SEL values relative to the original pulse SEL. This is done 
to capture energy from outside the primary pulse itself and to elevate higher frequency values in 
particular. This “inflation” of the summed TOB SEL values is necessary in order to account for the 
contribution of energy from bubble oscillations and cavitation bubbles following the primary pulse.  
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Figure 9. Tab F4 generates TOB center frequency SEL values based on a Generic Spectrum derived from the geometric mean of 
the five spectra cited in the table. 

 
Figure 10. Graphical representation of TOB dB SEL from Tab F4.  

NMFS does not concur with all of the content of IAGC's public comments. This posting should not be considered an endorsement of the full document.



The Generic Pulse Spectrum is derived from five sample data sets, detailed in Appendix A and listed in 
Columns B through H of Tab F4. In two cases, Gardline (2004) and MacGillivray (2018), the obtained 
values were not in dB/Hz and a second step converts the original TOB SEL to a center frequency SEL 
(Gardline, 2004) or, for MacGillivray (2018), the conversion of a spectrum scaled in Pascals to a 
spectrum scaled in dB re 1 μPa. 
 
In columns I-M of Tab F4 the directly measured TOB SEL values are scaled relative to the total pulse SEL 
of each spectrum. The relative scale values in columns I-M of Tab F4 are generated by subtracting the 
TOB center frequency SEL from the total pulse SEL for each sample data set. This calculation effectively 
produces the relative proportion or percentage of the total pulse energy per TOB when adjusted for 
bandwidth in Tab F2. The relative scale values for each sample pulse in cells I-M are then subjected to a 
geometric mean calculation in Column N to produce a Generic Pulse TOB center frequency SEL for each 
TOB. A geometric mean method of averaging is required because the dB scale is not linear, but 
logarithmic. 
 
In column O of Tab F4, the relative TOB scaling factor in Column N is subtracted from the total pulse SEL 
in cell R3 to produce a relative SEL value for each TOB. The resulting TOB center frequency SEL values 
are then exported to Tab F2. The total pulse SEL in Tab F4 cell R3 is imported from Tab F, cell B27. 
   
User-entered values may be entered into Column O in place of the geometric mean of the five sample 
data sets. The user-entered value would be the difference of the measured TOB center frequency SEL 
from the total pulse SEL entered into cell B27 of Tab F. The same caveat applies as for any user-entered 
substitution for default values in Tab F: the spreadsheet should be saved under a different name to 
avoid corrupting the template spreadsheet, and the user should archive supporting materials justifying 
the user-entered substitution(s). 
 
As more spectra become available and standards of practice in recording and presenting the data are 
improved, spectra are likely to become more consistent. Updating the Generic Spectrum every few 
years would likely be a useful and worthwhile undertaking. (See Appendix A for a more in-depth 
discussion of currently available spectrum data from CA arrays.) 
 
Tab F5 
 
Tab F5 is a list of ISO/ANSI standard 1/3 octave band center frequencies and bandwidths, used in 
calculating the unweighted TOB SEL values in Tab F2. Because most tables of standard 1/3 octave center 
frequencies and bandwidths only cover the frequencies of human hearing (20 Hz to 20 kHz), we felt a 
look-up table for the frequency bands used in SEL-based isopleth calculations might be useful to the 
user, and the values in the table are needed in calculations.  
 
Precautionary Simplifying Assumptions 
 
Multiplicative interaction between the many precautionary assumptions in the User Spreadsheet Tool 
leads to over-prediction of risk by several orders of magnitude (IAGC, 2017; Zeddies et al., 2017). 
The simplicity of using the Spreadsheet Tool instead of a full modeled sound field comes with a price: 
the Spreadsheet Tool contains at least nine simplifying assumptions, all erring on the conservative or 
precautionary side (detailed below). The resulting prediction of range to threshold (isopleths) and 
related risk expressed in MMPA take or other metrics will be orders of magnitude greater than the 
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actual likely outcome (in other words, not double or triple, but more than 100, 1000, or even 10,000 
times higher than the best available data-based risk analysis).  
 
Few non-expert users of multivariate models like this acoustic exposure model fully appreciate the 
multiplicative effects of interaction between multiple precautionary assumptions. But in fact, 
interactions between precautionary assumptions within the User Spreadsheet Tool generate a highly 
elevated estimate of risk. The multiplicative interactions between model variables mean that the 
precautions do not add up, but multiply.  
 
That said, the User Spreadsheet Tool can give the user some confidence regarding some very basic 
decisions: 
 

• Isopleth predictions below or around 500m from the source indicate that risk can be effectively 
mitigated by the application of current commonly-employed risk mitigation practices;  

• Isopleth predictions below or around 30 m are predictions of near-zero risk, since above-
threshold exposures may not exist at all or exist only at small spots within the actual physical 
boundaries of the sound source itself. Since we know that the Spreadsheet Tool is over-
predicting risk already, assuming zero risk inside 30 m is a reasonable metric of risk; and 

• Predictions of isopleths exceeding 2 km, most often encountered for the HF cetacean hearing 
group, should signal that full-scale modeling is required, since factors like chemical attenuation 
of high frequency sound and long-range ocean propagation effects make the actual range-to-
threshold unpredictable by use of the User Spreadsheet Tool alone. 

 
For these and other reasons detailed below, the User Spreadsheet Tool should not be considered an 
“Alternate Methodology” to fully-realized modeling of sound exposure, but can only appropriately be 
considered an initial “rough” tool as an aid to decisions about the scope of additional effort needed to 
clarify points of concern that might be raised by the Spreadsheet Tool.  
 
There are, at minimum, nine conservative, precautionary assumptions built into the User Spreadsheet 
Tool:  

• The Permanent Threshold Shift (PTS) criteria themselves are precautionary, conservative 
estimates of the level of sound exposure likely to produce small losses of hearing ability across a 
narrow frequency range (NMFS 2018a; Southall et al 2007; Southall et al 2019). Actual range to 
PTS is likely several dB higher than the values used by NMFS and therefore 10s to 100s of meters 
nearer the source than predicted by the current PTS threshold criteria. 

• The relationship between SPLpk and SPLrms is assumed to be -6 dB. Actual measured SPLrms values 
15-25 dB lower than SPLpk have been reported (e.g. McPherson et al, 2019). The relationship is 
affected by whether recordings are made off the vertical axis of the array, whether the pulse has 
spread in time during propagation away from the source, and the measurement time window 
used by the data analyst. Ten dB is a conservative, precautionary relationship between SPLpk and 
SPLrms with larger adjustment factors being within the realm of reported values.  

• The relationship between SPLpk and SEL is similarly conservatively assumed to be –16 dB. 
Impulse sound sources like CA arrays produce very short duration sound waves, << 1 second in 
duration, but SEL is a measure of energy flux over time and the standard reference for SEL is 1 
second. Therefore, the energy required to produce a pressure pulse much less than 1 second 
long is also much less than the stated SPLpk or SPLrms. Near the source, the pulse is only 0.02 s in 
duration, which would predict an SEL 56 dB lower than the SPLpk. Use of an SEL value only 16 dB 
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lower than the SPLpk is highly conservative, and was based on measured relationships between 
SPLpk, SPLrms, and SEL at a distance from the source, and which includes sound energy produced 
by the array outside of the actual primary pulse, as well as differential propagation effects for 
different frequencies in different environmental conditions. 

• The maximum source level (directly below the source) is used to calculate the range to effect 
rather than a lower source level obtained from measurement at other angles. It is hard to 
predict which aspect of the array will contribute most to the observed far-field pulse properties 
at distance. Propagation factors like shallow water and refraction (bending) of the spectrum by 
the sound speed properties of different layers of water can all affect what the “horizontal” pulse 
looks like. Since all angles other than vertical are lower in amplitude than the vertical pulse, use 
of the vertical pulse properties is a conservative, precautionary assumption of the User 
Spreadsheet Tool. 

• Because the User Spreadsheet Tool can return unrealistic isopleth values shorter than the actual 
dimensions of the array itself, a precautionary conservative minimum distance of 30 meters is 
returned by the Spreadsheet Tool. This conservative assumption also means that isopleth values 
at or near 30 m should not be used to estimate MMPA takes, in combination with a related 
conservative precautionary assumption: 

• The Spreadsheet Tool only uses a horizontal isopleth dimension, meaning that all animals within 
the specified cylindrical volume of water are ensonified equally. In fact, the sound field around 
the source in deep waters is hemispherical and animals less that the isopleth distance 
horizontally may be beyond the isopleth distance vertically. This is especially true for deep 
divers like elephant seals, sperm whales, beaked whales and others. The amount of 
precautionary overestimation of MMPA takes based on the predicted isopleths would depend 
on the species, water depth at the site, and other variables not accounted for in the simplified 
Spreadsheet Tool. 

• The Spreadsheet tool uses a simplified metric of sound propagation (-20 dB per doubling of 
distance) that is only true for short ranges in deep water. Shallow water sites, sites with sound 
ducts or frontal boundaries can offer propagation constants ranging from -10 to -30 dB per 
doubling of distance. Points at multiples of the water depth can offer interactions between the 
wavefront and its reflection that can produce sound levels several dB higher or lower than 
predicted by simple straight-line propagation. For high frequencies above approximately 1 kHz, 
chemical absorption of sound by dissolved salts in sea water further reduces propagation 
distance. For 20 kHz sound, the absorption coefficient alone is -40 dB per km. Because of the 
simple assumptions of the propagation formula used in the Spreadsheet Tool, users are advised 
to use additional modeling tools for User Spreadsheet Tool predictions of isopleths > 1-2 km, 
especially for HF cetaceans because the frequencies to which they are most sensitive are highly 
attenuated by chemical attenuation. 

• The weighting functions for some hearing groups are based on little or no directly measured 
data. Weighting functions for PW Pinnipeds (phocid seals) and for LF Cetaceans in particular are 
unusually broad and offer reduced weighting compared to most other marine and terrestrial 
mammals for which the weighting functions are backed by good supporting data. It is likely that 
the LF Cetacean weighting function in particular will be found to be less broad and with greater 
drop-off in hearing ability at both the low and high frequency limits, relative to the current 
conservative, precautionary weighting function. 

• The derivation of SELcum, the cumulative SEL from exposure to multiple pulses as the paths of the 
vessel and animal cross, contains multiple precautionary conservative assumptions. The 
difficulties are detailed in Section A (see page 6 et seq.) and again, in Section B (see page 26), 
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but the amount of precautionary conservatism in the SELcum calculation is high, especially when 
compounded with the other conservative assumptions of the User Spreadsheet Tool, listed 
above.  

 
Summary of Caveats Associated with the Use of the User Spreadsheet Tool 

 
• This Guidance and associated revised User Spreadsheet Tool are applicable to only a limited set 

of geophysical survey methods using arrays of compressed air sound sources (“air guns”): 
o Use of the Alternative Methodology Tab F may not be appropriate for smaller specialty 

arrays and clusters used in applications such as Vertical Seismic Profiling (VSP) or High-
Resolution Geophysical Surveys (HRG) (e.g., see Crocker and Fratantonio, 2016).  

o Non-standard survey methods, such as distributed or “popcorn” sources (Wu et al., 
2015; Abma and Ross, 2013) would also not be conformable to the worksheet. 

o Tonal sound sources such as multibeam sonars or Marine Vibrators should not use Tab 
F.  

o Other commonly used impulse sources for geophysical surveys such as electro-
mechanical sources (e.g., sparkers, boomers,) will not present the same amplitude, 
pulse duration and pulse spectrum as a typical CA array and should not use the 
spreadsheet.  

• Total array volume alone is not a reliable or consistent predictor of array source level or 
frequency spectrum.  

• While animals may be exposed to seismic array output at various angles, it is difficult to know 
what angle represents the best, most appropriate, or average exposure scenario. The vertical 
output, as the highest amplitude output of the array, is widely used as the precautionary 
default source level, duration and spectrum, even though this will result in an over-prediction of 
exposures when using the simple assumptions of the Alternative Methodology and User 
Spreadsheet Tool.  

o The term “horizontal” sound field is often used (e.g. BOEM, 2016) to refer to 
measurements made laterally from the array, but these measurements do not 
represent the true straight-line horizontal field of the upper 10 m of the water column 
where the source is located, but are instead laterally measured refracted or multi-path 
arrivals, measured at depths greater than 10 meters, but at distances where the 
angular difference between receiver depth and true horizontal direct propagation is 
small (e.g., McPherson et al. 2019). 

o Care must be taken to not mix back-calculated point-source values of the array (SPL, 
SEL, and pulse duration) with measured values at some distance where propagation 
effects have modified the SPL, the frequency structure of the pulse, and the duration of 
the pulse. The User Spreadsheet Tool should only be used with measured or back-
calculated source parameters. If values measured at some distance from the array are 
used, then an appropriate ocean acoustic model is needed to project forward or 
backward from the measurement point to the SPLpk and hearing-weighted SEL at 
appropriate PTS isopleth distances. 

• Certain environmental sound propagating conditions may affect received levels as much or 
more than the source properties. At short ranges, where most of the PTS isopleth estimates will 
occur, the spherical spreading propagation model of the Alternative Methodology is 
appropriate. But for longer ranges, in shallow water, and/or under other unusual propagating 
conditions, the simple assumptions of the Alternate Methodology and User Spreadsheet may 
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give incorrect ranges to the PTS threshold. Any of the following conditions should trigger a full 
propagation model and abandonment of the Alternate Methodology: 

o Shallow water depths of 10-100 meters 
o Predicted PTS isopleth ranges greater than 1000 meters 
o Potential for unusual propagating conditions, such as surface ducts, polar water 

conditions or mixing of water masses of different temperature and salinity such as 
freshwater intrusions, frontal boundaries between currents or upwelling conditions 

o Care should also be taken when propagating the higher frequency component of the 
pulse (above 5 kHz) due to attenuation of those higher frequencies by seawater. 

• Based on data from a variety of sources (see Section C) made at 70-1000+ m from the source, 
we consider -6 dB to be a conservative, precautionary factor for deriving SPLrms from SPLpk and -
16 dB to be a similarly conservative and precautionary relationship between SPLpk and SEL. At 
greater ranges or under the limiting propagation conditions mentioned earlier, SPLpk and SPLrms 

will approach equality, as will SEL, but it is also true that as SPLpk, SPLrms, and SEL approach 
equality the total energy within the pulse will have spread, dissipated and been absorbed to a 
considerable degree. 

• A conservative pulse duration at the source of 0.1 s is recommended as the default in the 
current AM User Spreadsheet model, even though multiple data sources indicate actual primary 
pulse durations of 0.01 to 0.03 s at the coherent boundary of the array output. A small fraction 
of the total acoustic output of the array comes after the primary pulse, due to oscillations of the 
air bubbles and cavitation bubbles created by interaction of the pulse with the surface reflected 
pulse. This energy is factored into the spreadsheet SEL and spectrum by using conservative 
values for SPLpk to SEL scaling (-16dB), and by adding relative value to the high frequency bands 
of the pulse spectrum.  

• The simplifying use of 1/3 octave SEL values to generate weighted pulse SEL values carries two 
important caveats: 

o The selected center-frequency SEL value for the 1/3 octave band should be 
representative of the average SEL across the band (smoothing peaks and nulls in the 
spectrum), and 

o A correction for bandwidth must be applied, since bandwidth increases with increasing 
frequency. 

• The spreadsheet tools should not be applied to systems pressurized to more than or less than 
1800-2200 psi (138 bar). 

• The methodology for deriving cumulative SEL isopleths involves a number of conservative and 
precautionary assumptions that lead to overestimation of above-threshold acoustic exposures 
and thus MMPA Level A take estimates. However, the task of developing an alternative to the 
current User Spreadsheet v. 2 methodology is beyond the scope of this current proposed 
revision of the NMFS AM and will require further effort by a larger expert community. As with 
the other caveats in this list, users should consider using a full ocean-acoustic, individual-based 
model to produce more realistic estimates of SELcum. 
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SECTION B: COMPARATIVE OVERVIEW OF THE NMFS v.2 USER SPREADSHEET TOOL  
 
User Inputs 
 
First and foremost, the current NMFS AM User Spreadsheet Tool (v.2) (2018b) requires far too many 
user-entered values. Requiring the user to enter information they may not possess or fully understand 
offers the potential for possible errors in the user-required entries (highlighted in red in Figure 23). 
Because a considerable level of subject matter expertise is needed by the user to ensure correct entries 
in the proper cells of the Spreadsheet Tool, the current User Spreadsheet Tool is not as “user-friendly” 
as it should be for non-expert users (Figure 11). 
 

 
Figure 11. A snapshot of the NMFS v.2 Spreadsheet Tool with required user-entered values flagged by red arrows. 

The user is required to enter no fewer than five separate values (indicated by red arrows), most of which 
would not typically be available from current permit application materials or survey planning documents 
used in environmental risk assessments. The most common problem encountered thus far arises from 
the user incorrectly entering the nominal peak-to-peak source level (SPLpp) into the data boxes for SPLpk 
(or even in some cases for SPLrms or SEL). Depending on user expertise and the information available to 
that user, the user may not be able to derive other user-entered values such as RMS SPL or single pulse 
SEL from the available nominal source level.  
 
Understanding the difference between SPLpp and SPLpk  
 
The TTS/PTS metrics from which impulse sound thresholds were derived in the NMFS 2018 guidance are 
based on SPLpk data, so it is very important to distinguish between impulse sound metrics that are 
derived from peak-to-peak measurements versus zero-to-peak measurements. The default standard-of-
practice in the geophysical industry is to report SPLpp, but this can lead to a 6 dB over-prediction of the 
source level of regulatory interest, SPLpk. The reader is referred to figures 25 and 26 and the discussion 
of the relationship between SPLpp and SPLpk in Section C. In the proposed revised Alternative 
Methodology (section A), the SPLpp to SPLpk conversion is performed automatically to prevent this 
potential source of errors. 
 
 

NMFS does not concur with all of the content of IAGC's public comments. This posting should not be considered an endorsement of the full document.



System pressurization, source velocity 
 
Aside from the crucial value of SPLpk, all the other user entries (source velocity, pulse duration, and pulse 
interval, along with system pressurization) are highly standardized for seismic surveys because the 
equipment is designed with those parameters in mind for optimal data collection. For example, system 
air pressure is an important part of array performance, but that is standardized at 2000 psi (138 bar). 
That may be the reason why NMFS 2018b, v.2 of the User Spreadsheet Tool omits that system 
parameter from the data entries requested of the user. Research sources and some specialized surveys 
may employ lower system air pressures, which would result in a lower SPLpk than one might expect from 
the same array volume operated at 2000 psi.  
 
The vessel speed for almost all surveys is typically 4.5 to 5.0 knots or 2.3 to 2.5 m/s. The speed of travel 
is crucial to the spacing of the data samples, which in turn is crucial to subsequent geophysical data 
processing. This is made a default value in the proposed Revised User Tool spreadsheet using the higher, 
or precautionary, velocity of 2.5 m/s, but the value can be changed by the user if needed.  
 
Pulse Duration 
 
The typical pulse duration is 0.02 s, as described in Section C, but the user may not possess this 
information or may only have pulse duration information at some distance from the array when 
propagation effects have increased the spread of acoustic energy over time. Since the calculations in the 
spreadsheet depend on metrics at the source (source level, pulse duration, etc.) it is important to be 
consistent and not apply durations measured at several hundred meters from the source in combination 
with modeled or back-calculated SPL values at the source. In the 2018 Optional User Spreadsheet Tool 
v.2, this is a user-entered value and the subsequent calculation of SELcum is very sensitive to variations in 
duration. The Revised IAGC User Spreadsheet Tool does not require entry of a pulse duration value, but 
instead offers a conservative relationship between SPL and SEL that is more consistent with a pulse 
duration of 0.1s instead of 0.02s.  
 
Users who offer a different relationship between SPL and SEL should be prepared to justify the basis for 
their selection in terms of pulse duration and how it was derived. The standard metric for pulse duration 
is 90% of the pulse energy, to avoid including ambient noise in the derivation of SPLrms and SEL. The 
duration of the primary pulse at or near the source is very short; 0.02s, which would make the SEL 
values derived from that duration about 10-20 dB lower than the relationship offered in the revised 
Spreadsheet Tool. However, small contributions of sound from the array come from bubble oscillations 
following the primary pulse and from cavitation bubbles created by the interaction of the primary pulse 
with its surface-reflected “ghost”. For this reason, the default duration was altered to account for the 
mostly high frequency energy emitted after the primary pulse. Alternatively, a pulse duration obtained 2 
km from the source in shallow water might be as long as 1 s, making SEL equal to SPLrms. But it would not 
be appropriate to apply that relationship between SPLpk and SEL to the SPL/SEL relationship at the 
source. 
 
Pulse Repetition Rate and Derived Duty Cycle 
 
The user-entered value of “1/repetition rate^seconds” may not be immediately clear but the 
1/repetition rate^seconds data entry is simply asking for the time, in seconds, between pulses. This 
value typically ranges between 10-20 seconds, but intervals as short as 6 seconds may be found, and 
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longer intervals >20 seconds have also been used. A default of 10 seconds is provided in the proposed 
Revised User Spreadsheet, but a user-entered value may be substituted. 
 
Estimation of SEL 
 
The NOAA Spreadsheet Tool asks the user to enter a value for SPLrms and SEL, but these are difficult 
values to estimate if measured values are not available, which is most often the case. And, as noted 
earlier, mixing measured values at distance from the array with source values back-calculated to the 
center of the array will produce incorrect isopleth distances. Fortunately, measured SEL, SPLRMS and 
SPLpk values are available from a number of arrays (see Section C). Therefore, SPLRMS and SEL are 
automatically populated in the revised User Spreadsheet Tool discussed in Section C of this guidance 
document, reducing the risk of user-entered values not consistent with the known SPL-SEL relationships 
for CA arrays. 
 
The SPLrms is an average sound pressure over some period of time, and as such, the reference time 
period must be clear. The standard for impulse sounds like explosions, piling strikes and CA arrays is 
SPLrms0.9 which refers to the time over which 90% of the pulse energy is emitted. This is a useful standard 
since pulse durations vary with the impulse source (explosions are shorter in time than piling strikes, and 
piling strikes are shorter in duration that CA pulses). However, other time metrics for calculating SPLrms 

may be used in different situations. For example, McPherson et al. (2018), in measuring CA pulses in 
shallow water at distance from the source used an SPLrms-125msec, or a sliding time window of 125 
milliseconds intended to replicate the approximate energy integration time of the mammalian ear. The 
absence of a clearly stated standard for measuring SPLrms is another argument for not making SPLrms a 
user-entered value. Just as source SPL often omits whether it is zero-to-peak (omitting the surface-
reflected ghost) or peak-to-peak (including the surface-reflected ghost), SPLrms without specifying units 
should be assumed to be the industry default of SPLrms0.9. 
 
Weighting Factor Adjustment (WFA) 
 
Once project information is entered in Step 1 of the User Spreadsheet v.2, the user must also enter a 
Weighting Factor Adjustment in Step 2. One can either create a source-specific WFA oneself, obtained 
from an information source outside of the Spreadsheet Tool, or use the NMFS-recommended default 
value obtained from the Introduction tab of the NMFS 2018b v.2 Spreadsheet Tool (Figure 12).  
 

STEP 2: WEIGHTING FACTOR ADJUSTMENT

Specify if relying on source-
specific WFA, alternative 
weighting/dB adjustment, or 
if using default value

Weighting Factor Adjustment (kHz)¥

¥ Broadband: 95% frequency contour 
percentile (kHz) OR Narrowband: frequency 
(kHz); For appropriate default WFA: See 
INTRODUCTION tab † If a user relies on alternative weighting/dB adjustment rather than relying upon the WFA (source-specific

 or default), they may override the Adjustment (dB) (row 71), and enter the new value directly. 
However, they must provide additional support and documentation supporting this modification.

 
Figure 12. User-entered value in the NMFS Spreadsheet Tool: Weighting Factor Adjustment (WFA). 
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The default value for seismic sources, obtained from the Introduction tab of the NMFS Spreadsheet 
Tool, is the weighting function for 1 kHz, and will vary with marine mammal hearing group (LF cetacean, 
HF cetacean, OW pinniped, etc.). For LF Cetaceans, 1 kHz is within their range of best hearing and there 
is essentially no weighting applied at any frequency when using the Default WFA. For HF Cetaceans, 1 
kHz is outside their range of best hearing and some weighting is applied, although not as much as the 
signal should be given, since more than 99% of the energy in a seismic pulse is below 1 kHz. The default 
WFA value therefore tends to under-weight the signal and thus over-predict the range to threshold.  
In the NMFS User Guidance for the Spreadsheet Tool (NMFS 2018b), Table 4 on page 13 indicates how 
much of a penalty the user pays by using the default WFA versus using the actual weighted spectrum 
from a real seismic source. We have further quantified the default WFA penalty to impress upon the 
user the degree of conservatism embedded in the default WFA for risk estimates derived from the NMFS 
Supplemental User Guide and Spreadsheet Tool.  
 
Quantifying the Over-Prediction of Take Due to Use of the Default WFA Value 
 
To illustrate the difference between isopleths to PTS that would be predicted by the default WFA versus 
a WFA based on the one-third octave spectrum from a seismic array, Table 2 (below) compares the 
outcomes obtained by applying either the default WFA or a one-third octave-based weighting value 
based on the example provided in the NMFS 2018(b) Supplemental User Guide. Although the spectrum 
offered in NMFS 2018b is a modeled spectrum from a hypothetical CA array not used in research or 
industrial applications, the sample spectrum offered by NMFS (2018b) is useful for illustrating the 
magnitude of difference in outcome obtained by using the default WFA rather than a spectrum-
weighted WFA. All other variables in the comparison offered in Table 1, below, were set the same in 
both examples (source level, duration, source velocity, pulse repetition rate, etc.). The last line of Table 
1, Increase in Exposure Area, was obtained by deriving the area, in meters2, for the Range to Threshold 
isopleths and then subtracting the smaller exposure area predicted by the frequency weighted WFA 
from the area obtained by using the default WFA. Thus, using LF cetaceans as an example, an area of 
53,100 m2 (or 0. 053 km2) was ensonified using a weighted frequency spectrum, whereas the area 
ensonified was increased to 978,179 m2 (0.98 km2) by using the default WFA, an 18-fold increase in area 
ensonified if the default WFA is used, with a corresponding 18-fold increase in resulting predicted Level 
A takes, all other variables being equal (animal distribution, density and behavior). This is clearly not 
within the realm of reasonable precaution, especially when considered in combination with the nine or 
more other precautions detailed in Section A.  
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Hearing Group Low-Frequency 
Cetaceans

Mid-Frequency 
Cetaceans

High-Frequency 
Cetaceans

Phocid 
Pinnipeds

Otariid 
Pinnipeds

NMFS 
Threshold 183.00 185.00 155.00 185.00 203.00

Source (SEL) 
no weighting

238.00 238.00 238.00 238.00 238.00

WFA default 
weighting -0.06 -29.11 -37.55 -5.90 -4.87

NMFS 1/3 
octave 

weighting
-12.7 -57.4 -65.7 -28.7 -33.6

Difference in 
weighting (dB) -12.64 -28.29 -28.15 -22.80 -28.73

Range to 
threshold 

(single pulse), 
unweighted

562.34 446.68 14,125.38 446.68 56.23
10^((NMFS 
Threshold - 
SEL)/-20)

Range to 
threshold 

(single pulse), 
WFA default

558.19 15.64 187.39 226.55 32.09

Range to 
threshold 

(single pulse), 
1/3 octave wtg

130.32 0.60 7.33 16.41 1.17

Increase in 
exposure area 
(default/calc)^2 925,492.81 767.67 110,148.47 160,398.73 3,229.99

Default Penalty 
(area/takes)

 
Table 1. A comparison of the resulting range to threshold (“isopleth”) and corresponding area ensonified (as an indicator of 
relative MMPA takes): default WFA versus frequency-weighted WFA based on the BOEM 8000 cubic inch array example in the 
NMFS Guide to Users. 

Caveats when using alternatives to the default WFA.  
 
It should be noted that the value that the user enters in cell B16 of the v.2 Spreadsheet Tool for default 
weighting (1 kHz in the case of seismic sources) is then used in an “invisible” set of calculations in cells 
C73 to G76 which produce the weighting functions subsequently displayed in C71-G71. Care needs to be 
taken not to inadvertently delete or write over the calculations hidden in cells C73-G76.  
 
As the NMFS User Guide notes, if the spreadsheet is used with something other than the default WFA, 
then the contents of cells C71 through G71 need to be cleared, and values for cells C71 through G71 
must be hand-entered from another sheet of calculations (in the above example the values come from 
Table 4, p. 13 of the NMFS User Guide). A spreadsheet that is thus altered by using hand-entered values 
for cells C71-G71 will then need to be saved under a different name than the original spreadsheet 
template (“Acoustic Guidance 2018 BLANK USER SPREADSHEET (508)”) in order to prevent the blank 
spreadsheet from being rendered unusable as a default master spreadsheet for subsequent calculations.  
B.3. Calculation of Cumulative SEL (SELcum).  
 
The User Spreadsheet (v.2) employs a mathematical model originally developed by Sivle et al. (2014) for 
behavioral disturbance of a schooling fish (herring) by sonar, adapting the Sivle (2014) formula to derive 
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a cumulative SEL value. Several aspects of the model offer considerable opportunities for overestimating 
the likelihood of inducing PTS through repeated exposures to a moving seismic array. 
  
How Much Does the SELcum calculation over-estimate the range-to-exposure and resulting number of Level 
A takes?  
 
Calculation of the magnitude of over-estimation of PTS exposures using the SELcum method based on 
Sivle et al. (2014) is beyond the scope of this exercise, and would likely require many iterations of a 
randomized individual-based model to approximate (with confidence limits) the likely overestimates for 
different marine mammal species with different movement and diving patterns. However, like the 
default WFA, the SELcum calculator probably adds, at minimum, one or two orders of magnitude (10 – 
100+ times) to the conservatism of the User Spreadsheet Tool predictions. In other words, a simple 
model that already overpredicts risk by several orders of magnitude due to other conservative 
assumptions (source level, onset of PTS, default weighting function) is pushed even further away from 
the best available science estimate by conservative assumptions in the estimation of cumulative sound 
exposure. As such, the User Spreadsheet Tool v.2 (NMFS, 2018b) cannot reasonably be treated as an 
“Alternative” Methodology to the full modeling of sound exposure in a 4D ocean acoustic model. 
 
Summary of Problems with the current Supplement User Guide and Spreadsheet Tool (v.2): 
 
Requiring multiple user-entered values creates more opportunities for incorrect data entries. When 
using Version 2 of the Spreadsheet Tool, care must be taken to avoid incorrect user-entered values. 
Section C of this Supplemental Guidance offers a data-based rationale for default entries used in the 
proposed revised Spreadsheet Tool in Section A. All default values in the revised Spreadsheet Tool offer 
the option of substituting user-entered values for default values. 
 
The Default WFA used to generate weighted SEL values greatly over-estimates the range to PTS 
threshold and thus, potentially, MMPA Level A takes. Users of the current NMFS “Alternative 
Methodology” (2018b) are strongly advised to NOT use the default WFA. A simple one-third octave 
(TOB) weighting tool is provided in the revised Spreadsheet Tool and is described in Section A of this 
document. 
 
The methodology for deriving cumulative SEL isopleths involves a number of conservative assumptions 
that will lead to overestimation of isopleths and associated MMPA Level A take estimates. This problem 
is not corrected in the proposed revised Supplement User Spreadsheet Tool.  
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SECTION C: TECHNICAL AND ACOUSTIC ASPECTS OF THE CA SOUND SOURCE 
 
How does a Compressed Air (CA) source work? 
 
The CA source is filled with air drawn from the atmosphere and compressed, typically to 2000 pounds of 
pressure per square inch (psi) (ambient air pressure is about 14.7 psi). Upon activation of an electronic 
release, the reservoir of air within the CA source is released through ports spaced equidistantly around 
the perimeter of the cylindrical device to create a spherical acoustic pressure front (not to be mistaken 
for the escaping air bubble itself, which expands more slowly than the speed of sound). A typical CA 
source is shown in Figure 13.  
 

 

Figure 14 illustrates the rapid time sequence of the creation of the primary acoustic pulse. Maximum 
pressure is reached within about 10 milliseconds of the opening of the ports, during the initial push of 
the escaping compressed air on the surrounding water. A second, smaller acoustic pressure pulse occurs 
as the air bubble itself grows to its maximum expansion. The elastic properties of water then exert a 
pressure rebound of the surrounding water on the air bubble, re-compressing the air bubble, which then 
produces more sound as the bubble partially rebounds a second time. During this time, the air bubble is 
rising to the surface and will typically reach the surface after the third or fourth oscillation, where the air 
bubble and the force it exerted on the surrounding water are dissipated into the atmosphere. 

Figure 13. Photograph of a CA source (air gun) and schematic diagram of its operation (Jack Caldwell, Geospace Engineering 
Resources International). 
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Figure 14. Chronology of the acoustic output of a single CA source. The primary pulse, which contains more than 90% of the 
energy produced by the release of the compressed air, occurs within 10-20 milliseconds (msec) of the opening of the ports as 
the air is just starting to escape. A second, much smaller pressure pulse is created by the expansion of the air bubble, which 
takes about 100 msec and again with the second re-expansion from about 150-200 msec, etc. The time period of bubble 
expansion is correlated to the volume of air released: larger CA sources create pressure traces with longer periods between the 
bubble pulses because a larger bubble takes longer to fully expand. Using different sized CA sources in an array thus helps 
reduce the contribution of sound from the bubble oscillations, due to interference effects between the timing of the different 
sized bubbles from multiple CA sources of different sizes (though this effect is strongest perpendicular to the plane of the array, 
or in the vertical direction). 

Individual sources can be placed in close proximity to each other (about 1 m apart) in what is called a 
cluster. Clustered sources are used to create a pulse and combined bubble volume comparable to a 
single source having the same volume as the combined sources. For example, a cluster of three 90 cubic 
inch CA sources would have the same output as a single 270 cubic inch source. 
 
Why are CA sources combined in arrays? 
 
The acoustic output of an individual CA source or a cluster of sources increases as the cube root of the 
source volume, meaning that volumes much above 2000 cubic inches (32 liters) do not significantly 
increase acoustic output (doubling the pressure amplitude of a 2000 cubic inch source from, say, 225 dB 
SPLpk to 231 dB, would require a CA source with an 8000 cubic inch or 128-liter internal volume). 
Instead, multiple smaller CA sources can be arranged in a geometrical array like the ones pictured below 
in Figure 15-16 in order to achieve the desired nominal source level and to optimize the shape and 
frequency content of the sound field for geophysical imaging.  
 
While a single string of two or more elements is technically an ‘array’, optimal array gain and 
concentration of the array output directly below the array is most commonly achieved by an array of 
two, three or more parallel rows, with each row containing a series of four or more elements, made up 
of either a single CA source or a cluster of 2-3 sources (Figure 16). In Figure 15, the ship is towing two 
such arrays of three strings each. During a geophysical survey, the vessel will alternate the release of air 
(and therefore production of sound) between the two sets of three strings, so that one set of three is 
refilling with air while the other is discharged. The arrays are activated alternately, with one discharged 
every 10-20 seconds, typically. (There is a tremendous variety to the number of elements in an array and 
their arrangement: another array configuration is illustrated in Figure 17.) 
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Figure 15. A typical array shown as it would be towed (the photo at upper left) illustrates the standard seismic survey operating 
procedure with two side-by-side identical arrays of 18 elements, activated alternately every 10-20 seconds in an A-B-A-B 
pattern). The photo at the upper right show a typical single compressed air source or array element. The geometry of the three 
strings in a typical array is shown schematically at center right, with each element or cluster of elements spaced at 3 m 
intervals, and each string separated from its neighbor by 6-8 meters, forming a rectangular or ‘planar’ array that may range 
from 10 to 20 m on a side, depending on the number of strings and the number of elements in a string. 

 
  

 
Figure 16. A single string of sources is shown, as it would look suspended below its float, with the elements usually hanging 5-10 
m below the float. (Llandro et al., 2013). In this example, from left to right there are four clusters of two CA sources each (1&2, 
3&4, 5&6, 7&8) and then two single CA sources (9, 10). The total length of this string is 15 meters, with 3m spacing between 
each source or cluster (the sources in a cluster are typically separated by 1 m). 
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Figure 17. A schematic diagram of a different array than the one shown in Figure 14, (above). The sources shown in green are 
“clusters” or groups of 2 or 3 sources that can be treated as a single source equal to the summed volume of the individual 
elements in the cluster (e.g., a cluster of two 45 cubic inch sources acts as a single 90 cubic inch source). The pairings of black 
and white elements indicate that only one source is activated and the other is a spare. The use of spares is quite common, and 
enables the spare source to be activated when the source previously in use fails, allowing for fewer interruptions in the survey 
for repairs and replacements. The sources in this example are arranged in three strings, with each string having six evenly 
spaced single or clustered elements. The floats (dashed outline) are generally spaced 5 meters apart, with the single or 
clustered elements separated by 3 m along each string. The dimensions of this array are therefore 15 x 18 m. 

NOTE: Use of the Alternative Methodology Tab F may not be appropriate for smaller specialty arrays and 
clusters used in applications such as Vertical Seismic Profiling (VSP) or High-Resolution Geophysical 
Surveys (HRG) (e.g. see Crocker and Fratantonio, 2016). These arrays do not achieve the suppression of 
high frequency energy obtained from a full array, and thus the Generic Spectrum described in Section A 
and Appendix A may not predict the correct hearing-weighted SEL. On the other hand, VSP and HRG 
sources typically do not achieve as much signal gain in the vertical direction, so nominal source level 
values are more-or-less omnidirectional, unlike the challenges offered by two and three string arrays. 
Operators of tonal sound sources used in geophysical research and surveying, such as Multibeam sonars 
or Marine Vibrators should also not employ Tab F to estimate ranges to PTS. Other commonly used 
impulse sources for geophysical surveys such as explosive or electromechanical sources (e.g., sparkers, 
boomers) will not present the same amplitude, pulse duration and pulse spectrum as a typical CA array, 
and the assumptions embedded in the supplemental tools presented in Section A of this guidance 
should not be applied to those non-CA sources. 
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While this introduction to CA source arrays uses examples of the most common array configurations, 
there are numerous variations on this theme, far beyond what can be explored in this brief introduction, 
though the general principles are consistent. A single float (“string”) may carry four to eight sources 
each to create arrays of anywhere from 12 to over 40 individual sources (some in clusters). Some 
surveys may employ simultaneous activation of both the port and starboard (A and B) arrays to double 
the source level of the output signal (+6 dB SPL). Given the tremendous variety in array configurations 
and the technological ingenuity that is part of marine geophysical survey technology, it is not possible to 
predict a nominal array source level based on simple metrics like total array volume or the number of 
elements in an array.  
 
NOTE: The possibility of using total array volume to predict an approximate array source level was 
explored during development of this guidance, but proved to not be a good predictor of array source 
level. 
 
Acoustic Properties of CA Arrays 
 
Single element acoustics  
 
As described previously, a single CA source produces an omnidirectional expanding spherical “shell” of 
sound (or wave front) when the compressed air is released into the surrounding water. The sound 
produced by the primary pulse of the CA source should not be confused with the visible presence of the 
air bubble itself. The air bubble oscillations after the primary pulse do produce sound, but they produce 
so little sound relative to the primary pulse that less than 10% of the total acoustic energy produced by 
the release of air from a single CA source occurs after the primary pulse. In the next section on CA array 
acoustics, we will see that the arrangement of multiple CA sources of different sizes causes interference 
between the sound fronts generated by the individual source elements, thus reducing the contribution 
of the bubble oscillations to about 1% or less of the total acoustic output of the array, most of which 
would not be discernable above the ambient background noise (which is not included in the “noise free” 
example in Figure 18).  
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Figure 18. Graphical representation of the time/amplitude structure (top graphic) of sound produced by a single compressed air 
source with the resulting frequency spectrum (lower graphic) (Zhang et al., 2017). 

Figure 18 shows that most of the acoustic energy (more than 90%) produced by a CA source is contained 
in the primary pulse, which has a pressure rise time of less than 10 msec and a total duration of less 
than 30 msec. This aspect of CA source sound production is important, because expressions of pulse 
duration in the literature often vary, depending on the reference time window used. For the standard 
impulse integration time of 90% of the total energy, the pulse duration is around 0.2 to 0.3 s (within the 
0-30 msec segment of Figure 16, shown in red).  
 
A small amount of additional energy comes from the oscillation of the air bubble during the time period 
of 30-300 msec (in green dashed box), as well as from interactions of the pulse and its surface-reflected 
inverse pressure pulse or “ghost”. The horizontal dashed black line at -6 dB illustrates the contribution 
of the surface-reflected pulse: the surface reflected pulse increases the peak-to-peak amplitude of the 
pulse by 6 dB, but also creates frequency-specific interference patterns based on the two-way travel 
distance of the surface-reflected pulse. The surface reflected acoustic pressure front is commonly 
referred to as the “ghost” because it is the almost-perfect inverse or reflection of the pulse emitted by 
the CA source. In Figure 18 above, we can deduce that the array was at 5 m depth, since the two-way 
distance (10 m) is the wavelength of a 150 Hz tone and that is where the interference effects from the 
ghost appear in the frequency spectrum.  
 
The term “effective bandwidth” in Figure 18 refers to the frequency range most useful for deep 
geophysical imaging (about 2-100 Hz): the individual CA sources, and the arrays of those CA sources, are 
designed to reduce as much as possible sound in frequencies outside the effective bandwidth. One of 
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the challenges in constructing the Generic Pulse in the revised User Spreadsheet Tool was that 
frequencies above 200-300 Hz are not of interest for geophysical research and surveying, and were 
therefore seldom included in historical models or recorded data sets prior to about 2010. 
 
Array acoustics versus single element acoustics 
 
Compared to the output of a single source, the sound from an array shows suppressed contributions 
from oscillations of the air bubbles following the primary pulse and a smoother distribution of energy 
across the frequencies used in geophysical imaging (around 2 to 100 Hz) (Figure 19). Note too that the 
cumulative energy in the pulse (blue line in the figure on the right) reaches 90% around 200 Hz and 
energy above 1 kHz contributes less than 1% of the total pulse energy. 
  

          
Figure 19. A measured pulse from a 3397 cubic inch array, as measured in the vertical direction (below the array). The surface-
reflected “ghost” is included, but the sound from bubble oscillations following the primary pulse is suppressed due to 
interference between bubbles of different size produced by larger or smaller elements in the array. The spectrum of the array 
pulse shows the “ghost” notches at multiples of the depth of the sound source (6m depth = notches at multiples of 125 Hz) 
(OGP/IAGC, 2011). 

Figure 20 illustrates how the amplitude fluctuations over time from the different sized elements in the 
array interact to create a stronger, sharper initial primary pulse (array gain) while suppressing sound 
production following the initial primary pulse. Figure 20 also illustrates how the nominal source level can 
simply derived from the combined source levels of the individual elements (shown in bar rather than 
decibels so that the source levels can be added arithmetically). The table on the right of the figure shows 
actual measured data obtained from hydrophones mounted 1 m from each of the individual array 
elements, as well as the measured sound pressure at a hydrophone suspended 33 m below the array 
(Fontana, 2018). The sum of the individual source levels from each element provides the nominal point 
source level of 66.9 bar or 256.5 SPLpk. The actual measured value obtained at 33 m below the array was 
226 dB SPLpk, or about the same as if we had projected a nominal source level from a single point at the 
geometric center of the array to 33 m below the array, using simple spherical spreading:    
 

𝑆𝑆𝑆𝑆 − 20 ∗ log(𝑟𝑟) = 256.5 − 20 ∗ log(33) = 226.13 𝑑𝑑𝑑𝑑 
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Figure 20. Measured source levels for each source element in the array, expressed as peak pressure in bar at one meter (table 
on the right side of the figure). The nominal source level can then be derived by simply adding the source levels of the 
individual elements, expressed in bar-m in this case) and converting the summed bar-m value to dB re 1 μPa-m. A far-field 
measurement was made by a hydrophone placed 33 m below the array, and conforms well with 20 log r (spherical) spreading of 
a point source of 256.5 dB located at the center of the array (even though there was no actual sound source at the geometric 
center of the array). The image on the left of the figure is the modeled individual time/amplitude fluctuations of the individual 
elements superimposed on each other. The resulting interference between the wavefronts from each individual element in the 
array produces the white composite time/amplitude signature of the array in the far field (as seen in the vertical direction, 
directly below the array) (Fontana, 2018). 

An important and difficult concept about the acoustics of the array is that there is no actual physical 
location within the array where the nominal (single point) source level is achieved. We say that the 
nominal source level expresses what the source level would be, if the sound came from a single point, 
but in terms of actual measurable achieved sound pressure levels at points within the array itself, the 
nominal source level cannot be found. This geometrical effect of the CA array not being a point source 
becomes important when ranges to PTS thresholds are smaller than the range at which the signals from 
the separate elements in the array come together, which is a function of sound frequency as well as 
array dimensions.  
 
Predicted thresholds less than 30 to 100 m from the center of the array should be treated with caution, 
since the actual received sound pressure level at such close ranges is likely lower than predicted by a 
model that treats the entire array as a single point source. At greater distances of 100-plus meters from 
the array the array can be treated as a point source for most calculations, although the effect of receiver 
angle from the array must also be considered, and will be discussed in more detail below. 
 
The physical geometry of the CA array also means that the array achieves its increased nominal source 
level only at some distance from the array where pressure wavefronts from multiple physically 
separated sources come together (recall the array geometry shown previously). Because the alignment 
between the separate acoustic wavefronts can only take place at some distance from the individual 
point sources, the energy of the expanding wavefront from each source is spread thinner and the sound 
pressure level decreases in proportion to the doubling of distance, even before the wavefronts come 
together.  
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As illustrated in Figure 21, this near-field distance (variable ‘a’ in the equation) where the pulses have 
not yet aligned in space and time, is a distance equivalent to the longest horizontal dimensions of the 
array. For example, for an array that is 15 m by 15 m, the wavefronts from the separate elements would 
not align and behave as a single unified pressure front (and produce array gain in amplitude) until the 
sound had traveled at least 15 m (in this case). There is a frequency/wavelength dependent aspect of 
the far-field array gain (variable ‘f’), but for the purposes of this discussion, almost all of the pulse 
energy, being at lower frequencies (longer wavelengths), has aligned and behaves like a single acoustic 
wavefront coming from a point source at ranges that are just a little larger than the array dimensions ‘a’. 
 

 
Figure 21. Measurements in the near field will necessarily contain arrivals that are not simultaneous (i.e., greater than 1 digital 
sample period). Note that the far-field distance (d) is dependent on array dimensions (a), and that any measurement at a 
distance less than the dimensions of the array will not produce a received SPL consistent with the nominal point source SL due 
to unequal contributions from the array elements (Fontana, 2018). 

Keep in mind, too, that the expanding acoustic “shells” are not to be confused with the visible 
expression of the expelled air bubbles, and that the acoustic wavefronts (the acoustic “shells”) are 
expanding at 1500 m/s or almost a mile per second; much faster than the physical expansion of the 
actual air bubbles themselves. 
 
The acoustic space within the array is not uniform 
 
As we noted earlier, the individual elements in the array are not all the same size (volume). Not only do 
they have different periodicities of bubble oscillation, but their different volumes mean that some are of 
higher amplitude than others. As a result, the acoustic space within the array is very uneven: a given 
point near a small source might yield a relatively low received level, while another point within the 
bounds of the array might be near a larger source and therefore receive a relatively higher peak SPL. 
This point is illustrated in Figure 22, showing a modeled fine-scale sound field as seen from above and 
from the side. In this particular example, the largest element(s) are at and behind the center front of the 
array (at 0,0 and 0, -5), but different array geometries will have different “topographies” of relatively 
higher and lower sound energy levels within the array. Again, there is no point in the center of the array 
where the pressure equals the nominal array source level. In fact, there is typically no actual sound 
source at the geometric center of the array, and the largest sound source may be before or behind or to 
the left or right of the geometric center of the array. 
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Figure 22. Inhomogeneities within the dimensions of the array, from the horizontal view (a, above) and vertical (b, from the 
side). One can see that the highest amplitude source is not always at the center of the array and that the familiar downward 
projected gain from the interaction of the individual elements is not achieved until about 20 meters, or outside the dimensions 
of the array (the figures from the IOGP/IAGC 2011 document were originally generated by Dr. Robert Laws for Schlumberger). 

How is the nominal source level derived? 
 
In addition to adding up the sound levels produced by each individual element in the array, the nominal 
source level of the array can be derived by back-calculating from measurements at different distances 
from the array. Back-calculation of source levels can be problematic, however, because a) we may not 
always be confident about the transmission loss during propagation through the water, and b) the shape 
of the array, a rectangular plane, means that the interaction between the elements in the array will 
differ with the slant angle between the receiver (animal or hydrophone) and the array. 
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The model below (Figure 23) illustrates how measurements at different distances in the far-field are 
used to back-calculate the nominal source level. Inside the near field of the array (at 10m or less from 
the center of the array), some rays show achieved levels of as much as 242-243 dB, corresponding to 
sound from the single largest single source within the array, but those sound pressure levels are still far 
short of the nominal 256 dB point source level we obtain in Figure 18 by adding up the contributions of 
the individual elements in the array.  
 
Interaction effects with the other nearby CA sources within the near-field will also affect the received 
sound level from the array in the far-field, leading to the differing predictions of array source level, 
depending on the angle between the array and receiver. At near-horizontal angles (e.g. 70 degrees) the 
far-field received levels would predict a nominal point source level for the array that would seem to be 
10 dB lower than the source level back-calculated on the vertical axis (252 dB SPLpp versus 262 dB SPLpp). 
 

 
Figure 23. Modeled computations of received peak-to-peak sound pressure levels at different ranges and angles from a full 
seismic array. The figure illustrates how the nominal point source level is derived by back-calculating from far-field 
measurements, whereas the actual measurable values in the near-field fall some 20 dB or more below the nominal source level. 
At angles other than vertical (0 degrees) the acoustic wavefronts from the different elements in the array are not time-
synchronous and the achieved peak or peak-to-peak SPL levels are thus considerably lower than they are on the vertical axis. 
(Courtesy of Robert Laws, with modifications.) 

Another way of conceptualizing the somewhat conical downward focused sound field produced by the 
array is to view the received levels recorded by receivers at three depths (100m, 200m and 400m) as the 
array approaches the receivers (Martin et al. 2017; their Figure 11, reproduced as our Figure 24, below). 
The figure is best explained by the original wording in Martin et al. (2017): 
 
“Seismic arrays concentrate sound in the vertical direction with an angular beam width that depends on 
frequency (Fig. S-9). As the vessel approached within 1 km of the recording station, the deepest 
hydrophone “entered” the beam first, and therefore as the vessel approached the received sound level at 
400m depth rose before the levels at the 200 and 100m depths (Fig. 11). At the closest point of approach, 
all three hydrophones were almost entirely in the main lobe of the seismic array, so that the 100m deep 
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hydrophone had the highest sound levels since it was closest to the array and had the lowest geometric 
spreading loss.” 
 

 
Figure 24. An illustration of the downward-looking conical shape of a CA array’s output. As noted by the authors, the receiver at 
the greatest depth “sees” the outer edge of the conical sound field first and the receivers closest to the array do not generate 
higher received levels until the source is nearly overhead within about 100 meters horizontal distance from the array. 

Source Level on the Vertical Axis is the Most Conservative, Precautionary Source Level 
 
Since the User Spreadsheet Tool makes the most conservative, precautionary assumption that all 
animals are exposed to a “worst case scenario” equivalent to being directly below the array, estimates 
of range to threshold isopleths and corresponding MMPA takes will be higher than actual results for 
animals distributed normally around the array at different distances and depths. Alternatives of using 
the source level as propagated at some angle other than vertical mean that the source level will be 
lower, but also that the time course of the sound pulse and the resulting spectrum will also be different.  
 
“Horizontal” Source Properties are not Truly Horizontal  
 
The alternative option, as employed in BOEM (2016) and others, has been to use the source level and 
pulse spectrum from some angle between source and receiver other than the vertical, an angle that 
might better express what the majority of animals would experience since most marine mammals, even 
deep divers, spend the majority of their time in the upper 10-20 m of the water column. However, a 
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different set of complexities arise when seeking a “more typical” angle at which to express array output. 
The term “horizontal” is often used to refer to pulse metrics that might better capture the exposures 
experienced by the majority of animals. However, the “horizontal” source metrics offered by BOEM 
(2016) and others are not truly horizontal, since the source and receiver would need to be very close to 
the surface: typically, less than 10 m depth. As seen above in Figure 23, truly horizontal pathways at 80-
90 degrees from vertical produce a powerful reduction of received sound near the surface (around -40 
dB) due to surface release phenomena (change of sound energy from pressure to particle motion near 
the air-water interface), Lloyd’s mirror effects in which surface-reflected sound interferes with incoming 
sound from below, scattering by air bubbles and biological structures in near-surface waters, and other 
propagation effects. This 40-plus dB reduction in apparent source level near the surface of the water is 
believed to be why dolphins are often seen bow-riding on the vessel and even the towed array floats 
themselves while the sound sources are active.  
 
This problem with truly horizontal propagation pathways is also why recording instruments are almost 
never placed in the upper 10-20m of the water column, especially when recording low frequency 
sources like CA sources, where the majority of the sound occurs at wavelengths greater than the depth 
of the source (10-20 m corresponds to the wavelength of frequencies around 150-300 Hz). For 
frequencies lower than 150-300 Hz the upper 10-20 m of the water column is a kind of “shadow zone” 
where particle motion exceeds sound pressure. Since both marine mammals and hydrophones are 
pressure transducers and do not detect the particle motion component of sound, the perceived sound 
level is greatly reduced for low frequencies in the upper portion of the water column near the surface. 
Thus, reference to “horizontal” measurements of CA array output are not true horizontal sound 
measurements, but are most often a reference to complex multipath sound recordings made at 
distances several times the water depth and therefore seemingly “horizontal” because the depth of the 
receiver (e.g., at 100 m) seems nearly horizontal to the source when the source is 10,000 m away. At 
that point the sound is not a horizontal direct path product of the array, but the product of sound that 
has bounced off the surface and bottom multiple times, has entered the underlying geology and been 
re-introduced into the water and has been bent or refracted by the sound speed profile of the water. 
The received “horizontal” sound is actually made up of arriving sound from many pathways between 
source and receiver, and can only be unraveled to a nominal point source by complex ocean acoustic 
modeling.  
 
Thus, the recommended option for simplified modeling without full animal movement and ocean 
propagation modeling, is a “worst case” prediction based on the vertical properties of the acoustic 
output. This choice of which alternative angle from the array other than vertical is a topic that clearly 
deserves careful consideration, but that discussion would need to involve complex and site-specific 
propagation factors like water depth, bottom type, seasonal sound speed profiles and proximity of 
recording devices to the surface or bottom, all of which cannot be fully explored in the context of the 
simple mathematics of the User Spreadsheet Tool. 
 
Data from different distances and angles should not be mixed 
 
One of the reasons why the revised User Spreadsheet Tool reduces the number of required user-
entered values is to minimize the risk of users inadvertently mixing duration, source level, or spectrum 
values for different angles between source and receiver. Animals encountering the acoustic output of 
the array at angles other than directly below the array will receive a lower SPLpk, but the receiver will 
also experience a different pulse duration (since the wavefronts from the different elements will be 
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arriving at different times), and thus a different frequency structure, resulting in a different SPLpk and 
hearing-weighted SEL.  
 
Figure 25 illustrates how reduced alignment between the spatially separated sound sources in an array 
affects the time-amplitude signature of the array at angles departing from the vertical even before the 
confounding variable of propagation effects is introduced. For the vertical signature all sources are 
aligned in time, producing a single clear pulse. At a more horizontal angle, the contributions from the 
individual sources are not aligned in time (some are closer to the receiver, others are farther away) and 
this results in a “messier” series of smaller peaks, as well as a smaller reflected component (“ghost”).  
 

  
Figure 25. A recorded pulse from a 4550 cubic inch array used in the Gulf of Mexico EARS Buoy Study (SWSS), courtesy of Jack 
Caldwell, GeoSpace Engineering Resources International and obtained originally from Tashmukhambetov et al. (2004). The 
recording of the waveform in the upper figure was made at 1000 meters range directly below the array (Vertical Signature, 
above) while the recording in the lower figure was made at a similar distance, but at an angle near horizontal (about 60-70 
degrees from vertical) in the lower graph. The x-axis, or time in ms is the same for both figures, but note that the signal 
amplitude on the Y-axis is different, with the lower scale being three orders of magnitude less for the horizontal signature 
relative to the vertical signature (+0.1 bar vs +0.0001 bar). Leaving the same scale on the Y-axis of both graphs would have 
produced a pulse of such small amplitude on the lower graph as to be nearly invisible at the scale used for the vertical pulse in 
the upper graph. 

This complex aspect of a geometrical array like the standard seismic array can be illustrated in several 
ways that are relevant to considering how a biological receiver would be perceiving and processing the 
sound from the array at different angles. These are shown in Figure 26, below. Note that the low grazing 
angle received sound (at 70-80 degrees from vertical) is some 18-20 dB lower than the signal on the 
vertical axis (0-10 degrees), consistent with the data shown earlier. As we shall see in Appendix A for the 
derivation of a generic pulse spectrum, measurements at angles other than vertical may include more 
relative energy at higher frequencies, but the absolute levels are still so low (some 10-20 dB lower) that 
the decreased source level counters any potential increase in the hearing-weighted SEL that might be 
anticipated due to there being relatively more high frequency energy at more horizontal angles. 
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Figure 26. The difference in array gain obtained at representative angles from the vertical is illustrated in different ways from 
these three figures. The figure at upper left illustrates the maximum achievable received level for a receiver at different angles 
relative to the array. The figure at lower left illustrates the distance from the center of the array at which these levels are 
achieved. Since there is no appreciable array gain at horizontal angles, the maximum RL is achieved very near the array, 
whereas maximum amplitude below the array occurs at a great distance after the output of the spatially separated elements 
has aligned. And, finally, the figure at lower right illustrates that the direct path to a given regulatory range (in this case 500 m) 
yields received levels differing by as much as 19 dB from each other, depending on what angle the receiver is from the array at 
500 m distance. In this example the values are dB SPLrms re 1 μPa for the full peak-to-peak pulse (the primary pulse plus surface-
reflected “ghost”). 

Propagation Effects of the Environment 
 
Certain sound propagating conditions in the ocean environment may affect received levels as much or 
more than the source properties. At short ranges (less than 1 km), where most of the PTS isopleth 
estimates will fall, the spherical spreading propagation model is usually appropriate for deep water 
environments. But for longer ranges, and/or in shallow water, or under other unusual propagating 
conditions, the simple assumptions of the Alternate Methodology and User Spreadsheet may give 
inaccurate ranges to the PTS threshold. Among the conditions that should trigger a full propagation 
model and abandonment of the User Spreadsheet Tool are: 
 

• Shallow water depths of less than 100 meters; 
• Predicted PTS isopleth ranges greater than 1000 meters; 
• Potential for unusual propagating conditions; including but not limited to warm unmixed surface 

water layers (surface ducts), ice covered waters, or mixing of water masses of different 
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temperature and salinity such as freshwater intrusions, frontal boundaries between currents or 
upwelling conditions at shelf edges; and 

• When propagating the higher frequency component of the pulse (above 5 kHz) more than 1 km, 
propagation should be reduced due to attenuation of those higher frequencies by the molecular 
properties of dissolved salts in seawater. 

 
Relationships Between Sound Pressure Level (SPL) Metrics: Peak-to-Peak SPL (SPLpp), Zero-to-Peak SPL 
(SPLpk) and Root-Mean-Squared Average SPL (SPLrms) in the Output of a CA Source Array 
 
The relationship between the most commonly presented metric for array amplitude, Sound Pressure 
Level (SPL), either peak-to-peak, zero-to-peak, or averaged (rms), is referenced to 1 microPascal (μPa) 
and other metrics of acoustic properties such as SEL (Sound Exposure Level) are highly consistent for CA 
array acoustics, due to the highly standardized academic and industry process for interpreting the 
geophysical data produced by the CA sound pulses.  
 
Peak-to-peak SPL (SPLpp) is typically 6 dB higher than (i.e., double) zero-to-peak SPL (SPLpk), due to the 
nearly perfect reflection of the source energy in the vertical direction by the sea surface above the array, 
as illustrated in Figures 17, 18, and 23, as well as in another way in Figure 25, below. Surface roughness 
due to wind, waves, or other causes might reduce the contribution of reflected high frequency energy in 
some cases: for example, McPherson et al. (2019) obtained measured differences between SPLpp and 
peak SPLpk in the range of 5.3 to 5.7 dB for shallow water measurements and Sidorovskaya et al. (2019) 
obtained measured SPLpk values that were 5.1 dB lower than SPLpp. But for the wavelengths that 
comprise most of the energy in the pulse (e.g., 150 m wavelength for 10 Hz, 15 m for 100 Hz), the sea 
surface is a nearly perfect reflector, regardless of roughness created by wind and ocean swells. 
 
Since the most common practice in the geophysical industry is to include the surface reflected energy in 
their source description, the user should assume that the operator-provided nominal source level is the 
peak-to-peak SPL (SPLpp) unless otherwise stated. Inclusion of a time-amplitude waveform showing the 
characteristic inverse pressure pulse following the primary positive pulse is also an indicator that the 
nominal source level is a peak-to-peak value.  
 
Peak pressure or zero-to-peak pressure (SPLpk) refers to the energy directly produced by the array itself, 
without inclusion of the surface-reflected pulse. Since the start and finish of the pulse is difficult to pick 
out against the ambient background noise, the standard of practice is to define the peak amplitude of 
the pulse in terms of the time over which 90% of the total pulse energy is produced (SPL0.9). Some 
practitioners, most notably JASCO (e.g., in BOEM, 2016 and McPherson et al., 2018), omit the reflected 
energy as a propagation effect and not a source property, as seen in Figure 28, which does not include 
an SPLpp value.  
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Figure 27. Relationship of SPLpp (red), SPLpk (blue), and SPLrms (green and black) (Sidorovskaia, 2019 JIP 3D array project GOM). 
 

 
Figure 28. Measured SPLpk, SPLrms and SEL for a 3000 cubic inch array. Measurements began at 200 m for passage of the source 
over a receiver and continued out to 50 km from the source (a; endfire); and for a series of sensors perpendicular to the source 
at 100, 200, 800, 1100 meters, as well as 10 and 70 km (Blees et al. 2010). 
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Root-mean squared Sound Pressure Level or SPLrms is the averaged pressure over a given time span. 
Root mean square refers to the fact that sound pressure levels in decibels are on a logarithmic scale and 
cannot be simply added up to obtain an average, but must first be squared, before being divided by the 
number of samples. The RMS average pressure is the square root of the resulting number. This is a 
calculation that will not be familiar or easy for the non-expert user, making the revised Supplemental 
Guidance and User Tool a handy way to quickly generate an approximation of the relationship between 
SPLpp, SPLpk, SEL, and SPLrms. 
 
The current NMFS v.2 Spreadsheet Tool (see Section B) provides a place for the user to enter a value for 
SPLrms, but since SPLrms is not used directly in the NOAA 2018 threshold criteria for impulse sound, it is 
not directly relevant to the isopleth calculation for impulse sound sources and has therefore been 
omitted from the revised AM User Spreadsheet Tool. SPLrms does bear a direct relationship with SEL, 
which is also a function of the averaged pressure over a given surface area (typically one square meter) 
during a reference timespan, typically one second of time. Since SPLrms and SEL are both functions of 
SPLpk together with pulse duration, we actually only need to provide either SPLpp, or SPLpk, to generate 
both SPLrms and SEL. While the standard practice for presenting SPLrms for an impulse is to use the 5% and 
95% boundaries (90% of the signal energy), or SPLrms90, some authors (e.g., McPherson et al. 2018) may 
use different averaging methods like averaging across a 125 msec window that they assumed to roughly 
approximate the integration time of the mammalian ear. The fact that SPLrms measurement practices 
may vary among authors is another reason for not using SPLrms as a data entry in the User Spreadsheet 
Tool. 
 
Figures 27 and 28 above illustrate the consistent empirical relationships between peak-to-peak SPL, 
zero-to-peak SPL, average or RMS SPL, and SEL. Just as SPLpk is almost always -6 dB lower than SPLpp, so 
SPLrms tends to fall another 6 dB or more below SPLpk, depending on the breadth of that peak in time. 

This difference between SPLpk and SPLrms can vary between -6 to -12 dB, depending on how well-aligned 
the pulses are and how far the signal has propagated from the source, since both alignment in time and 
distance traveled tend to broaden the pulse and thus reduce the difference between SPLpk and SPLrms. 
Based on measurements made at 70-1000m from the source, we consider -6 dB to be a conservative, 
precautionary factor for deriving SPLrms from SPLpk. At greater ranges or in limiting oceanographic 
conditions mentioned earlier, SPLpk and SPLrms will become equal. This relationship is reinforced by the 
analysis by McCauley et al. (2016) (Figure 29), which compiled 49 data sets obtained from 24 different 
seismic arrays. SEL approximately follows SPLpp -22 dB, or the sum of the – 6 dB difference between 
SPLpp and SPLpk, the -6 dB difference between SPLpk and SPLrms, and the -10 dB difference between SPLrms 

and SEL.  
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Figure 29. McCauley et al. (2016) provided synthesized measurements from 49 separate data sets for 24 different source arrays. 
Only SPLpp and SEL are shown, but they exhibit the same relationships illustrated by Blees et al. (2010) and Sidorovskaia et al., 
(2019). SEL is approximately 22 dB lower than SPLpp. Note the different scales on the Y-axis for peak-to-peak SPL (top) and SEL 
(bottom). 

Sound Exposure Level (SEL) Metrics: Pulse Duration and SEL; Cumulative SEL (SELcum) 
 
Sound Exposure Level (SEL) is a function of SPL and pulse duration, as a measure of the energy over time 
required to maintain a specified sound pressure level. In ISO and ANSI standard terminology SEL is 
standardized relative to a 1 second constant, and SPLrms = SEL for a one second duration sound. We 
therefore need to adjust SEL relative to SPLrms for sounds shorter than 1 second, since less energy is 
required to produce the specified SPLrms for a duration less than 1 second. At short ranges (less than 500-
1000 m in most cases) measured SEL tends to fall between 16-20 dB below SPLpk, or 10-14 dB below 
SPLrms. Based on the short duration of the primary pulse (see following section) we might expect, and 
sometimes observe, differences between SPLrms and SEL of -20 dB or more. However, the small 
contribution of acoustic energy from bubble oscillations following the primary pulse, along with 
spreading of the pulse in time as it propagates, combined with other factors such as imperfect array 
alignment, all argue for -10 dB as the more conservative and precautionary relationship to apply when 
generating nominal source SEL from SPL. This conservative approach (-10 dB) has been confirmed by 
three large independent high-quality data sets illustrated above.  
 
Fortunately, we have a large data set of very precise measurements of pulse durations at short range 
from a real operational 3D survey array (Figure 30, Sidorovskaia et al., in prep. – these data are not 
published yet but are part of a contract project by JIP and will be available to support the uptake of the 
revised guidance in a timely manner when needed).     
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Figure 30. Durations of recorded pulses from a full 3D array. Pulse durations below 0.01 s in this figure are most likely include 
misfires and ambient noise spikes that triggered the data recorders (Sidorovskaia, in prep). 

Similar results were obtained by JASCO Applied Sciences (Austin et al., 2016); see Figure 31 below. Note that the 
pulse duration near the source is between 0.01 s and 0.02 s, then at a range of about 500 m in this shallow water 
environment, the sensor begins to pick up multiple peak arrivals from surface or bottom-reflections and gets 
“confused” about the pulse duration before settling into a consistent pattern of increasing pulse duration from 
around 2 km (pulse duration = 0.2 s) to 20 km (pulse duration = 3.0 s). Note too, however, that the SPLrms at 500m 
is about 175 dB and that therefore most, if not all NOAA 2018 (a) PTS threshold values would likely occur at ranges 
less than 500 m in this example. 
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Figure 31. Measurements of SPLrms and pulse duration from Austin et al, 2016. Measurements are from a shallow water 
environment in the Chukchi Sea. 

For our purposes in this discussion, and as a default for the User Spreadsheet Tool, we adopt 0.1 s as the 
typical pulse duration near the array, which is highly conservative and precautionary, since the median 
values actually fall closer to 0.02 s. 
  
That said, reported pulse durations in the literature vary considerably, due to differences in the range 
from the source at which the pulse is recorded and the methodology used to determine pulse length 
(e.g. compare Hildebrand et al. (2009) to Zhang et al. (2017). As we saw earlier in Section C, small 
contributions to the total acoustic output of the array occur up to 300 msec after the primary, and even 
at longer delays after the primary pulse for array output sampled at near-horizontal angles, where 
sound from array elements furthest from the receiver may arrive 300-800 msec after the sound from 
the array elements closest to the receiver, depending on the dimensions of the array and position of the 
receiver. 
 
Acoustic Energy outside of the Primary Pulse 
 
The energy from the late arriving bubble oscillations described above, as well as from cavitation bubbles 
created by interaction between the pulse and its reflected “ghost” all collectively comprise only a tiny 
fraction of the total acoustic output. These smaller contributions are separated from the >90% of energy 
in the primary pulse by 100-200 msec periods dominated by ambient noise. This means that a non-trivial 
amount of ambient noise will also be incorporated into pulse SPL and SEL metrics if longer pulse 
durations are employed. For that reason, we recommend that the default pulse duration should only 
include the primary pulse, recognizing that a small percentage of the total acoustic energy (less than ten 
per cent) is not included in the duration of the primary pulse, but is more than compensated in the 
precautionary assumptions applied to the SPL and derived SEL and frequency spectrum. A correction 
factor, described below, is applied to prevent the data from the primary pulse alone producing 
underestimates of high frequency energy (above 300 Hz) produced by bubble oscillations following the 
primary pulse. 
 
For example, if SEL is calculated only from the primary pulse, the relationship between SPLpk and SEL 
would not be SEL = SPLpk-16 dB (pulse duration 0.1 s), but closer to SPLpk - 26 dB (pulse duration ≈ 0.01 s) 
at the source. But empirical measurements of SPLpk and SEL even at short distances of a few hundred m 
show that the relationship between SPLpk and SEL includes energy after the primary pulse and therefore 
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SPLpk -16 dB is the more conservative, precautionary relationship to apply in the simplified calculations 
of the Alternative Methodology. 
 

 
Figure 32. Khodabandeleroo (2016) band-pass filtered the high frequency energy from an array pulse to illustrate where in time 
most of the high frequency energy in an array impulse occurs. As Khodabandeleroo notes, most of the high frequency energy is 
due to tiny cavitation bubbles generated within the array space due to the interaction of the source pressure pulse and the 
reflected pulse that is 180 degrees out of phase with the source pressure pulse, resulting in points where the negative pressure 
is great enough to produce cavitation (tiny voids or vacuums within the volume of the water). The cavitation bubbles are very 
small and therefore produce high frequency sound as a result. 

Use of the primary pulse alone would not convey the added high frequency energy from the pulse that 
occurs 8 to 300 msec after the primary pulse. As a consequence, the relative proportion of high 
frequency 1/3 octave bands in the received pulse is greater than would be predicted by the Fast Fourier 
Transform of the primary pulse alone. The proposed generic spectrum applies a lower-than-predicted 
difference between SPLrms and SEL, which also provides higher-than-predicted values for higher 
frequency bands, thus allowing for the small but non-trivial contributions from higher frequency bands 
generated by bubble oscillations and cavitation interactions following the primary pulse. This is one of 
several conservative, precautionary assumptions of the revised User Spreadsheet Tool that contribute to 
the likely over-prediction of risk, especially for the HF Cetacean Hearing Group that is most sensitive to 
high frequency sound. 
 
An alternative rationale to that provided by Khodabandelaroo (2016) (Figure 32) is offered in an analysis 
by Carr et al. (2010), which also arrives at a simplified -10 dB relationship between SPLrms and SEL.  
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“For in situ measurements the SEL, pulse duration, and 90% rms SPL can all be measured, and SPL is 
related to SEL via a simple relation that depends only on the rms integration period T: 
 
SPLrms90 = SEL – 10log(T) – 0.458 
 
Here the last term accounts for the fact that only 90% of the acoustic pulse energy is delivered over the 
standard integration period. In the absence of in situ measurements, however, the integration period is 
difficult to predict with any reasonable degree of accuracy, for the reasons outlined above. The best that 
can be done is to use a heuristic value of T, based on field measurements in similar environments, to 
estimate a rms level from the modeled SEL. Safety radii estimated in this way are approximate since the 
true time spreading of the pulse has not actually been modeled. For this study, the integration period T 
has been assumed equal to a pulse width of ~0.1 s resulting in the following approximate relationship 
between rms SPL and SEL: SPLrms90 = SEL + 10 
 
In various studies where the SPLrms90, SEL, and duration have been determined for individual airgun 
pulses, the average offset between SPL and SEL has been found to be 5 to 15 dB, with considerable 
variation dependent on water depth and geo-acoustic environment (Greene et al. 1997; Austin et al. 
2003; Blackwell et al. 2007; MacGillivray and Hannay 2007).” 
 
The same relationship is applied between SPLrms and SEL by Blees et al. (2010) in a slightly different 
formulation: 
 

LE = LP90 + 10 log(T90 ) + 0.458. 
 

For example, a measured SPLpk of 260 dB for a primary pulse duration of 0.02 s, would yield an SPLrms of 
254 dB and an SEL of 254 +10*log(0.02) = 237 dB if we used primary pulse duration alone. But, as noted, 
the chosen convention for the revised Alternative Methodology is to simply use SPLrms – 10 dB = SEL, 
yielding an estimated SEL of 244 dB, which is more conservative (precautionary) than calculating SEL 
using the primary pulse duration (0.02sec). This conservative relationship between SPL and SEL is 
consistent with a large body of measured data cited earlier in this section and carries the added 
advantage of providing conservative precautionary over-estimates of SEL in the high frequency bands 
contributed by events after the primary pulse (bubble oscillations and cavitation bubbles produced by 
the interaction of the primary pulse and surface-reflected pulse or “ghost”). 

  
Frequency Spectrum of The Pulse and Hearing Weighting Functions. 
 
How do we get frequency structure out of an impulse sound?   
 
One of the most difficult concepts for non-acousticians to grasp about impulse sound is how an impulse 
sound, which has only one or a very few pressure oscillations over a very short time, can have frequency 
or pitch as we understand those terms. Pitch and frequency refer to the number of pressure oscillations 
per second in a sound, like the Middle C on a piano, which is produced by a sound frequency of 262 Hz 
or 262 pressure oscillations in a second. So how can a seismic sound with only one pressure oscillation 
that takes place over a tiny fraction of a second have frequency content as we understand that term?  
The answer is that the pulse can be mathematically transformed into a set of oscillations of different 
rates of pressure fluctuation (frequency) that, when combined, would produce the pressure time course 
we see in a brief impulse sound. Even an introductory text can be daunting (e.g., Cohen, 1995), so we 
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take the unusual step of also referring to a basic Wikipedia definition in the hope that this will help the 
non-expert reader gain some basic understanding of spectral analysis and the tools used for 
transforming an impulse into a frequency structure like the Fast Fourier Transform (FFT): 
https://en.wikipedia.org/wiki/Time%E2%80%93frequency_analysis 
 
There is also a practical reason for going to the trouble of performing a frequency transform on an 
impulse sound: the ear also transforms the pulse into “component frequencies” just like a mathematical 
transform; apportioning the signal energy differentially to different parts of the hearing structures of the 
ear. In other words, our ears hear the same mix of frequencies in an impulse sound that a mathematical 
transform of the pulse, like a Fast Fourier Transform (FFT), would produce.  
 
For that reason, a pulse that is mathematically transformed into its “component frequencies” is the 
foundation of the weighted SEL criteria in the NMFS (2018a) guidance, and is intended to replicate the 
auditory experience of the impulse sound by the ears of a particular marine mammal hearing group 
(e.g., otariid pinnipeds, or low frequency cetaceans). As explained in NMFS 2018a, the use of dual 
criteria, both SPLpk and SEL, is intended to capture both the mechanical effects on the structural 
anatomy of the ear (the SPLpk threshold) as well as the neurosensory fatiguing effects from stimulation 
of the cochlea and auditory nerve (the weighted SEL threshold). 
 
The differential calculus required to generate an FFT from an impulse sound, and the tens of thousands 
of calculations required to apply frequency-specific weighting functions across the more than 20,000 
single Hz frequency values in a CA array pulse would require the user to know how to use software that 
can perform an FFT (MatLab is just one of many examples of such software toolkits2) and to then apply 
the appropriate weighting function calculation to each frequency. Software such as MatLab or the 
statistics software R can be used to create an automated process for running these calculations, but that 
implies a level of expertise in the use of such software that many concerned stakeholders and regulatory 
agencies may not possess, and for which the User Spreadsheet Tool may be a helpful means of obtaining 
a rough, preliminary idea of the potential risk posed by a given sound source, and the further effort 
needed, including more expert modeling, in order to make sound, science-based decisions about a given 
manmade sound source.  
 
Example of a CA array frequency spectrum & proposed way forward 
 
In its User Guidance for the Optional User Spreadsheet Tool v.2, NMFS (2018b) offers an example of 
one-third octave (TOB) integration of the energy spectrum of the pulse as a means of reducing the 
calculations required to generate a weighted SEL. The spectrum is taken from the CA array specifications 
used in the BOEM PEIS for the Gulf of Mexico (BOEM, 2016). However, NOAA did not offer a tool to 
enable the user to apply this one-third octave methodology in their initial 2018b User Spreadsheet Tool. 
The proposed revised User Spreadsheet Tool (see Section A) enables users to calculate a hearing-
weighted SEL threshold that is either based on the user’s specific source of interest, or a default Generic 
Spectrum derived from several examples of CA array spectra from the literature (see Appendix A for 
details of the process by which a generic pulse spectrum was derived). 

2 Mention of a specific commercial product does not imply endorsement. 
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Figure 33. When using 1/3 octave bands (blue) the SPL or SEL at the center frequency of the band should represent an average 
of the SPLs or SELs of the individual frequencies in the band (green line). That is, the pressure or energy values above and below 
those at the center of the band should be equal, as in this example. (https://www.comsol.com/blogs/new-octave-band-plot-
for-acoustics-simulations-in-version-5-2/)  

 
One-Third Octave Bands 
 
One-third octave bands are used not only for simplifying the burden of calculations, but also because 
1/3 octave bands are more biologically relevant than single frequency SPL or SEL values, since the 
mammalian ear tends to also process the incoming acoustic energy in approximate one-third octave 
bands3.  
 
There are a couple of assumptions in using 1/3 octave bands instead of single frequency weighting. One 
assumption is that the amplitude differences between the single frequencies within a band are such that 
the SPL or SEL at the center of the band closely corresponds to the average across all frequencies within 
the band (e.g., Figure 33). The default spectrum offered in Appendix A is a smoothed spectrum 
composed of the averages of multiple measured spectra, thus eliminating the potential for selection of a 
non-representative value for a given band (e.g., selection of the SEL at a “ghost notch”). Users providing 
their own one-third octave values must be aware of this issue. An example of this “smoothing” is shown 
in Figure 34.  

3 A more recently proposed alternative decimal band system, the deci-decade (ISO, 2016), also closely aligns with the one-third 
octave banding structure (within 0.08%). 
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Figure 34. The bars outlined in blue represent standard 1/3 octave band and their center frequencies. The green line tracks the 
actual single frequency spectrum. This simplified illustration highlights the need for the center frequency of the band (in this 
example 1000 Hz) to be representative of an average of the band (i.e., the area of the red triangle, SEL values above that of the 
center frequency) should equal the area of the blue triangle (SEL values below that of the center frequency). Selecting a value 
to be representative of the band as a whole should include an equal number or area of values over the representative value 
and under the representative value. This is especially important for a complex impulse sound output as from a CA array, due to 
the peaks and valleys of constructive and destructive interference between the different elements and between the direct 
downward signal and the surface-reflected signal. 

The second consideration is that the SEL metric is an energy metric and not a pressure metric, and 
therefore the amount of energy in a one-third octave band is a function of the band’s width or its range 
of included frequencies. To calculate the one-third octave SEL, the center frequency SEL must be 
corrected for bandwidth, using the formula:   
 

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹. + 10 ∗ log (𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏ℎ) 
 
In other words, an SEL value of 200 dB SEL at the center of the band (1000 Hz) would need to be 
adjusted for the sum of single-frequency energy values across the width of the band (891 Hz to 1122 Hz) 
by the addition of 23.6 dB (=10*log(1122-891)), and not the 200 dB SEL value for the center frequency 
alone. The result, as one can see in Figures 35 and 36, is that a TOB spectrum should present larger SEL 
values than a single frequency spectrum, especially at higher frequencies, where the 1/3 octave 
bandwidth is broader than at lower frequencies (i.e., there are more single frequency SEL values being 
added together within the TOB at 2000 Hz than there would be at 20 Hz). Figure 35 illustrates the 
increase in 1/3 octave band SEL relative to the single frequency SEL values. 
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Figure 35. Example of the difference in single-frequency SEL levels (ESD) and one-third octave band SEL values. The one-third 
octave band levels are higher than the single frequency values because there is energy from more than one frequency within 
each band. This is especially true at higher frequencies where the bandwidths are wider and therefore sum up the energy from 
more frequencies. (Tolstoy et al., 2009). 
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Figure 36. In this comparison of broadband ship noise displayed in 1 Hz (single frequency) bands (bottom row), 1/3 octave 
bands (middle row) and 1 octave bands (top row) from McKenna et al (2012), the effect of broader bandwidths at higher 
frequencies can be seen. Note that the 1/3 octave values at the far right (for frequencies above 500 Hz) are elevated relative to 
the single frequency values. Ideally, the one third and full octave band figures would be presented as bar graphs and not line 
graphs, since each point actually represents a range of frequencies. Also note that the scales on the Y axes are not the same, 
with the 1/3 octave band scale being 160-180 while the single frequency scale is 140-170 (McKenna et al., 2012). 

In Section A of this document, we explain how to use an accessory tool, the Generic Pulse tool (Tab F4), 
to enable the user to input their own 1/3 octave SEL values to generate a weighted SEL for each Hearing 
Group in the NMFS guidance or to use a default generic spectrum derived from multiple sources. 
Because all seismic arrays are designed for a very similar purpose there is actually relatively little 
variation in the pulse spectrum for different CA arrays, especially when parsed into 1/3 octave bands, 
which tend to smooth out minor fluctuations in individual array spectra.   
 
Resources for Additional Background Information  
 
For further information on the basics of seismic sound sources the interested reader is encouraged to 
consult the website of the International Association of Geophysical Contractors (www.iagc.org) or 
experts in the commercial and academic marine geophysics community such as the Lamont-Doherty 
Earth Observatory (LDEO) (https://www.ldeo.columbia.edu/), and the Society for Exploration 
Geophysics (SEG) (https://seg.org/).   
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APPENDIX A: DERIVATION OF THE GENERIC CA SPECTRUM 
 
Methods 
 
Capturing Data Points from a Spectrogram 
 
Spectra of geophysical signals are rarely available in numeric formats, but are sometimes published in 
visual form. Accordingly, we utilized a graph digitization program to translate these figures into numeric 
data suitable for compilation into a generic spectrum.  
 
To generate the parameters of a generic CA array spectrum, we digitized openly available spectrograms 
using the free software GetData Graph Digitizer4 (http://getdata-graph-digitizer.com/). The digitized 
files used to generate the amplitude of the 1/3 octave center frequencies have been archived for 
inspection if desired, but will need to be opened using the GetData software. GetData allows the user to 
use a variety of standard image formats (e.g., JPEG or similar), to set the locations of the axes and the 
ranges, and then to manually select points. If a 1/3 octave center frequency falls on a ghost notch or 
peak, a point intermediate between the two surrounding center frequencies was used, essentially 
smoothing the frequency spectrum.  
 
Images saved as .jpg, .tf, .bmp, or .pcx files may all be used with the GetData software, either directly 
(i.e., downloaded as an image online) or by taking a screenshot of the image of interest. To import the 
image into GetData, the user selects the ‘file open’ icon (circled in green) and then browsing to the 
location where the file is saved. This example (Figure 37) uses a published spectrogram from Tolstoy et 
al. (2009).  

4 Mention of a commercial software product does not imply endorsement.  
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Figure 37. Screenshot of the GetData file import screen. 

Once the spectrogram is opened, the axes are designated using the “set the scale” button, circled in 
green in Figure 38. To set the lower limit of the x-axis, use the cursor to hover over the general area of 
the point. The box in the lower right provides a magnified view (indicated in the purple box in Figure 38). 
Once the cursor is in the general vicinity, holding the Ctrl key allows for precise positioning. Click to set 
the point, and then enter the appropriate value (in this case “1”) in the pop-up box. Repeat for the 
upper limit of the x-axis, and the upper and lower limits of the y-axis. Once complete, a pop-up window 
will show the entered values, where the axes values can be corrected if necessary. Tick the box to 
indicate a logarithmic scale as appropriate, and then click “OK” (Figure 39).  
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Figure 38. Screenshot of the GetData tool for setting X and Y axis value scales. 

 

 
Figure 39. Screenshot of the GetData data point selection process. 
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Once the axes are set, select the “point capture” button (circled in green below, Figure 41). Points can 
then be manually selected using the same method used to set the minimum and maximum values for 
the axes. On a click, the x and y coordinates of the point populate in the window in the upper right, 
shown in the purple box of Figure 41. (For this example, these points correspond to the 1/3 octave line 
in deep water at 0.3 km; upper red line.)  
 
In order to digitize the figures utilized for the analysis, a point with the x-coordinate approximately 
corresponding to the center frequency of each third octave band was selected as accurately as 
permitted by the resolution of the spectrogram figure being used. In places where a notch or irregularity 
in the data was apparent, the slope was visually smoothed relative to the neighboring TOB to provide a 
conservative estimate of average energy in the band (Figure 41). Not all sample spectra provided a full 1 
Hz to 20+ kHz spectrum. These spectra were digitized within their given range without extrapolation, 
and bands with no data were omitted from the calculation of the geometric mean for the generic pulse 
(i.e., not all TOB values in the generic spectrum were derived from the same number of exemplars).  
 
All selected references provided data up through 20 kHz TOB at the high end of the spectrum. The 
amount of energy in a pulse from a CA array above the 22.3 kHz upper boundary of the 20 kHz TOB is 
less than 0.01% of total pulse energy and would not contribute significantly to the derivation of 
isopleths, and is therefore not included in the generic spectrum tool. 
 
Parameters of the array acoustic output were based on the vertical (maximum SPL) parameters. 
“Horizontal” spectra or slant angle spectra were avoided. We have outlined our rationale for preferring 
to use the nominal vertical array parameters in Sections A and C of the proposed revised guidance. 
 
That said, a spectrum other than vertical can easily be generated, if concurrence is reached within the 
expert community about an appropriate angle from the array to use as the standard for simplified 
modeling purposes. Selecting an option other than vertical means that the relationships between pulse 
SPL, SEL, spectral distribution of energy, and pulse duration will all co-vary. As noted earlier, whatever 
the chosen standard, the peak source level, pulse duration and spectrum all need to match. Mixing 
parameters from different angles and ranges will lead to incorrect isopleth predictions: e.g., a vertical 
maximum source level should not be combined with a pulse duration or derived spectrum from some 
other slant angle from the array. 
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Figure 40. Back-calculated nominal vertical waveforms (left) and spectra (right) from McPherson et al. (2018). The “horizontal” 
endfire and broadside spectra are derived from multipath data in very shallow water (80 m or less) at ranges much greater than 
2x the water depth. The McPherson et al. (2018) data were not used in the Generic Pulse table in Tab F4). 

 

 

 

Figure 41. Smoothing process for avoiding peaks and valleys in center frequency value selections with spectra containing 
multiple peaks and valleys. This is an illustrative hypothetical example only. 
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Smoothing peaks and valleys in raw spectra 
 
As Figure 40 above illustrates, the vertical pulse (green line), without the interference of the surface-
reflected “ghost”, is a smooth curve, lacking the peaks and valleys in energy distribution that result from 
interference between the vertical pulse and its surface-reflected inverse (“ghost”). Some spectra used to 
create the generic curve were peak-to-peak spectra, with the characteristic “ghost notches” at 
interference frequencies between the pulse and reflected pulse. For our TOB calculations notches (and 
peaks) were smoothed to avoid generation of unrepresentative center frequency SEL values. A point in 
line with the two adjacent TOB center frequency SEL levels to either side of the TOB in question was 
used to smooth the variance in single frequency values within the band. The peaks appear less dramatic 
than the valleys due to the logarithmic decibel scale, but it is nevertheless important not to simply 
bridge peak to peak, or select a point midway between the highest and lowest points, but to 
approximate a true geometric mean, as illustrated by the smoothed spectra provided by Sidorovskaia 
(unpublished) in Figure 42.  
 
The greater uncertainty or variance in SEL values below 5 Hz in Figure 42 is due to FFT calculation 
uncertainties at very low frequencies. This phenomenon of time/frequency trade-offs in derivation of 
spectra from a time/amplitude waveform is beyond the level of discussion for this analysis, but is due to 
the time resolution versus frequency resolution trade-offs inherent in frequency-transformation 
equations; the need for high time resolution at higher frequency bands means poorer frequency 
resolution at low frequency bands). Since frequencies below 5 Hz fall below the range of hearing for 
marine mammals, even for LF Cetaceans, the variance at those frequencies does not affect the SEL-
based threshold calculations in the revised Spreadsheet Tool. 
 

 
Figure 42. Sidorovskaia (unpubl.) generated 26th, 50th, and 84th decile average values (in green) for 326 measured pulses from 
a 4140 cubic inch array; raw data on the left and smoothed spectra on the right. The highly variable high frequency values 
illustrate the point that metrics of central tendency for a logarithmic scale like dB SEL are not arithmetic means but geometric 
means and do not sit at the center of the distribution of individual data points but at a point consistent with the logarithmic 
scale of values. The central green line indicating the 50th or mean decile average value was used as the smoothed frequency 
spectrum applied in Tab F4. 

Distribution of Energy Across the Frequency Spectrum 
 
The  rough scale of energy distribution across the generic spectrum illustrated in Figure 43, below, is 
representative of the general energy distribution seen in all CA array pulses: nearly equal high levels of 
energy in the TOB spanning the 7-100 Hz frequency range (approximately 95% of total pulse energy, 
then a decline in energy across frequency bands from 100 – 2000 Hz (almost all of the remaining 5% of 
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pulse energy), and finally a slower, highly stochastic (varying) decline in energy at frequencies above 2 
kHz (in aggregate making up less than 1% of total pulse energy).  
 

 
Figure 43. How 1/3 octave center frequency SEL values were derived. In these examples, the total back-calculated pulse SEL was 
240 dB SEL. The green line illustrates how a smoothed spectrum was fitted to reported spectra that, like this example, included 
interference interactions with the reflected ghost. (This example is from a PowerPoint presentation by Jack Caldwell, and was 
not used in generating the generic spectrum in Tab F3). 

Precautionary Adjustment of High Frequency Bands 
 
The spectra from CA arrays can vary considerably at higher frequencies due to a number of factors, 
including:  
 

• Cavitation bubbles produced by interaction of the pulse and the surface-reflected ghost;  
• Turbulent flow from the ports through which the compressed air is released;  
• Slight variation in the time synchrony of the elements within the array; and  
• The presence of noise from other sound sources such as vessel noise, multi-beam echosounders, 

wind or rain, the properties of the propagating environment, and biological sound sources such 
as snapping shrimp.  

 
Because of this variability at the high frequency end of the spectrum, the high frequency bands of the 
generic pulse have been slightly inflated above the geometric mean as one of several precautionary 
assumptions embedded in the use of the Alternative Methodology. Our advice, as has been the case 
throughout this Guidance, is to use a fully realized model of the specific source and propagating 
environment of concern to get the best results, and to use the Alternative Methodology only when the 
cost or complexity of the fully realized model is beyond what can reasonably be expected of an 
applicant, while acknowledging that the resulting prediction is not a slight over-estimate of risk but a 
significant over-estimate of risk. 
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Scaling Metrics for the Generic Pulse spectrum 
 
In order to create a Generic Spectrum that could be scaled to any selected pulse SEL value, we 
calculated a geometric mean of differences between total SEL values and the highest single frequency 
value for our five selected exemplars and then scaled all other TOB center frequencies relative to this 
relationship. In other words, if the highest frequency-specific TOB value for a given spectrum is 210 dB 
at 50 Hz but the total pulse SEL is 230 dB then the difference between the spectrum peak and total pulse 
SEL would be 230-210 dB or -20 dB. All other TOB values are similarly scaled proportionally to the total 
unadjusted pulse SEL as illustrated in the Generic Pulse spreadsheet (Tab F4) and replicated in figure 44, 
below. 
 

 
Figure 44. The derived Generic Spectrum from the revised Supplemental User Spreadsheet Tool tab F4. 

Selection of Spectra for Inclusion in the Generic Spectrum 
 
Over 17 measured and modeled spectra were examined and are listed in the Literature Cited section 
(Section D). Ultimately, we selected five suitable spectra that were representative of CA arrays 
commonly used in geophysical exploration and research, and which provided sufficient detail about the 
way the spectra were derived to provide the user with a high level of confidence that the spectra were 
representative of actual array output near the source. 
 
Spectra are sometimes presented with different measurement units. Most examples used the standard 
metric of dB re 1 μPa2, with the squared pressure reference (μPa2) indicating that the values are not a 
point pressure measure, but are average pressure over a square area, and thus scaled to SEL. However, 
one spectrum (Gardline, 2014) provided values for TOB already adjusted for bandwidth, meaning that 
the center frequency had to be derived by subtracting the bandwidth adjustment. This was done solely 
to facilitate comparison with the other spectra that did not present bandwidth-corrected center 
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frequency values and did not affect calculation of individual and averaged weighted TOB values 
employed in the User Spreadsheet Tool. MacGillivray et al. (2018) provided their spectrum in Pascals, 
which is easily converted to dB re 1μPa using the conversion tool in Tab F1 of the revised user 
spreadsheet tool. For our purposes the inconsistency in units does not matter because the units scale 
proportionally. 
 
Spectra from single CA sources, clusters of CA sources or the single strings of CA sources commonly used 
in VSP surveys or similar life-of-field monitoring were omitted from this the analysis because the spectra 
differed from those of a full array of two or more strings (e.g., Breitzke et al., 2008; Zykov et al., 2016; 
and Hermannssen, 2015).  
 
Other potential candidate spectra either lacked sufficient bandwidth (e.g., Gulland and Walker, 1998); 
provided data with insufficient recording amplitude range (such as the ‘clipped’ values reported in 
Tronstad and Hoven, 2011), or provided spectra for some unspecified angle other than vertical (e.g., 
BOEM, 2016).  
 
We selected five spectra that were representative of CA arrays commonly used in geophysical 
exploration and research, and which provided sufficient detail about the way the spectra were 
measured and/or modeled to provide the user with a high level of confidence that the spectra were 
representative of actual array output near the source. 
 
The spectra selected for inclusion in the creation of the generic spectrum are described one-by-one in 
detail below, accompanied by notations about the array parameters. Table 2, below, lists all references 
reviewed in developing the generic spectrum, and indicates whether the spectrum was included or 
excluded.  
 

Reference Array 
Volume 
(CUI) 

nominal 
source level  

source level 
units 

How SL 
derived: 
Model, 
Back-calc? 

spectrum 
units (Y 
axis) 

spectrum 
resolution 

lower f limit upper 
f limit 

closest 
recording 
distance 

used in 
generic 
spectrum? 
Y/N 

Caldwell (2005) 3590 not 
provided 

n/a Back-calc 
w/ on site 
prop data 

dB SPL re 1 
uPa2/Hz 

1 Hz 10 Hz 24 kHz 730 m Y 

Caldwell 
(unpubl.) 

3590 240 dB SPL re 1 
uPa2/Hz 

Back-calc 
w/ on site 
prop data 

dB SPL re 1 
uPa2/Hz 

1 Hz 1 Hz 40 kHz 730 m N 

Gardline (2014) 3397 247 dB SPL pk Back-calc 
w/ on site 
prop data 

dB SPL re 1 
uPa2/Hz 

1/3 octave 40 Hz 25 kHz 100 m, 
380 m 

Y 

Blees et al (2010) 3000 244 SPLrms Back-calc 
w/ on site 
prop data 

dB SPL re 1 
uPa2-s/Hz 

1 Hz 1 Hz 24 kHz 90 m Y 

MacGillivray et al  
(2018) 

3333 90.1 bar 
(259 dB) 

barm peak to 
peak 

model Pa-m/Hz 1 Hz 1 Hz 25 kHz model Y 

Sidorovskaia et al 
(unpubl.) 

4140 262 SPLpp Back-calc 
w/ on site 
prop data 

dB re (uPa-
m)2s/Hz 

1 Hz 1 Hz 20 kHz 122 m Y 

Coste et al (2014) 3300 n/a n/a model dB re (uPa-
m)2s/Hz 

1 Hz 5 Hz 24 kHz n/a N 

Khodabandeleroo 
(2018) 

2730 n/a n/a   dB re (uPa-
m)2s/Hz 

1 Hz 3.5 Hz 62.5 
kHz 

60 m N 

McPherson et al 
(2018) 

2380, 
2495 
and 
3090 

249 SPLpk Back-calc 
w/ on site 
prop data 

dB re (uPa-
m)2s/Hz 

1 Hz 1 Hz 2 kHz 74-130 m N 

BOEM (2016) 8000 232 SEL model dB SPL re 1 
uPa2/Hz 

TOB 10 Hz 1 kHz 
(5 kHz) 

model 
only 

N 
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OGP/IAGC publ 
448 (2011) 

3397 n/a n/a model? db re J/m2. 1 Hz 2 Hz 60 kHz model? N 

Breitzke et al 
(2008) 

n/a n/a n/a Back-calc 
w/ on site 
prop data 

dB re 1 
uPa and re 
J/m2 

1 Hz 2 Hz 70+kHz 
(single 
guns 
only) 

263-564 
m 

N 

Gulland and 
Walker (1998) 

3090 118 barm peak to 
peak 

model relative dB 
(0-60) 

1 Hz 1 Hz 250 Hz model N 

Hermannssen et 
al (2015) 

40                 N 

Martin et al 
(2017) 

3480     measured         0.1-
150+km 

N 

Tolstoy et al 
(2009) 

6600 259 SPL pk measured dB re (uPa-
m)2s/Hz 

1 Hz and 
TOB 

5 Hz 25 kHz 300-
360m 

N 

Tronstad and 
Hovem (2011) 

3460 255 SPL pk modeled           N 

Wisloff et al 
(2014) 

4135 n/a               N 

Diebold et al 
(2010) 

                  N 

Breitzke et al 
(2010) 

                  N 

Llandro et al 
(2013) 

2730       relative 
normalized 
amplitude 
zero to 
minus 60 
dB 

        N 

Llandro et al 
(2011) 

                  N 

Matthews and 
MacGillivray 
(2013) 

n/a n/a n/a             N 

McCauley et al 
(2016) 

                  N 

SAE Inc, (2013)                   N 

Table 2. List of all reviewed references for development of the generic spectrum.  
 

CA Array Spectra Used to Develop the Generic Spectrum in Tab F4 
 
Caldwell (2005) 
 
Caldwell (2005) provides data from the collection of a high-quality operational data set in deep water in 
the Gulf of Mexico in 2003. The spectrum (Figure 45) was derived from measured data collected at a 
distance of 730 m directly below the array. The array was a 31 element, 3590 cubic inch array frequently 
used for surveys in the Gulf of Mexico. The maximum recorded SPLpk was 200 dB and the corresponding 
maximum recorded SEL was 177 dB (Newcomb et al., 2005). The difference between total pulse SEL and 
the SEL at the highest frequency (62 Hz) was -19 dB, but was not used in calculating the adjustment 
factor used in the Generic Pulse because no back-calculated source level was provided, only the 
measured levels at 730 m below the array. 
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Figure 45. Caldwell (2005) spectrogram for a 3590 cubic inch array recorded at 733 m below the array. 
 

Gardline (2014) 
 
Gardline (2014) is an unpublished report submitted to the New Zealand Marine Wildlife department 
under the terms of a permit issued to Anadarko New Zealand Company and available from Gardline Ltd. 
UK. The spectrum (Figure 46) is back-calculated by the report authors from data obtained at 100 m and 
580 m from a 3397 cu in array of 32 elements. The spectrum is presented in TOB, indicated by the open 
circles in the figure below. Comparison with other single frequency spectra requires reduction of the 
TOB value by the bandwidth adjustment factor or (10log(bw)).  
 
The measured SPLpk was 196 dB at 100m, back-calculated to 247 dB at the nominal point source at the 
center of the array using measured transmission loss properties of the ambient environment recorded 
on site at the same time. The corresponding SEL can therefore be estimated to be 247-16 dB = 231 dB. 
The highest TOB SEL at 40 Hz was 217 dB. The SEL at the center frequency SEL of the 40 Hz band, 
adjusted for bandwidth, would be 207 dB, or 10 dB less than the 1/3 octave band SEL at 40 Hz. The 
difference between the SEL for the entire pulse and the SEL at the highest frequency would therefore be 
231-207 dB = 24 dB, similar to a difference obtained from the other array data sets for which both pulse 
SEL and peak single frequency SEL are known. 
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Figure 46. The back-propagated source spectrum in 1/3 octave bands for the Anadarko 3610 cui source array. (Gardline CGG, 
2014). 
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Figure 47. Measured 1/3 octave band values at two distances, 100 m and 530 m, from which the spectrum at source in Figure 
A-10 was derived. Measured values above 2 kHz in Figure 46 were not extrapolated by the authors to a nominal source value 
for those bands. 

Gardline (2014) provided measured and back-calculated 1/3 octave values down to only 40 Hz. This 
source did not, therefore, contribute to the derivation of the estimated Generic Pulse values below 40 
Hz. Gardline (2014) similarly did not provide back-calculated SEL values above 2000 Hz, though 
measurements were made up to 25 kHz. We derived values for the TOB SEL in bands between 2500 to 
20000 Hz by adjusting the directly measured 1/3 octave values shown in Figure 47, by the geometric 
mean difference between measured and back-calculated values for 1000, 1250, 1600 and 2000 Hz (the 
four bands closest to the 2500-20000 Hz bands, or 31.3 dB). For example, the 1/3 octave band value for 
10000 Hz is the measured SEL of 122 dB at 100 m, plus 31 dB = 153 dB.  
 
Blees et al. (2010) 
 
Blees et al. (2010) conducted measurements at 90 m from the array and back-calculated to a nominal 
point source using environmental data collected at the time of acoustic data collection. The back-
calculated measurements yielded a transmission loss function of 19.7*log(r), or near-spherical spreading 
(20*log(r)). The back-calculated SPLrms was 244 dB, so the comparable back-calculated SPLpk would be 
250 dB and the back-calculated SEL would be 234 dB, using the generic relationships described in 
Sections A and C of this document.   
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Figure 48. SEL for a measured pulse from a 3000 cui array at 90 m range. An anomalous spike in energy at 7-8 kHz may be a 
multibeam sonar or other sound source and was smoothed out of the values used in generating the Generic Pulse. 

The anomalous data points in the 6300 and 8000 Hz bands were smoothed as for other frequency peaks 
and valleys, though this peak was likely not due to the array and its surface-reflected ghost but possibly 
originated from a multi-band sonar or other sound source picked up in the recorded data. 
 
MacGillivray et al. (2018) 
 
MacGillivray et al. (2018) published a spectrum derived from a data set provided for a workshop on CA 
array modeling (Ainslie et al., 2016). The original data set, cited by Ainslie et al (2016) as “nlog” (2008), 
came from a Final Survey Report for a contract survey performed by CGG Veritas for Shell EPE in 
September-October 2008 and shared by Shell with the participants in a 2016 Dublin workshop in which 
MacGillivrary et al. and others participated. The link cited by Ainslie et al. (2016) to access that report 
was still active as of 23 September 2019 and a copy has been archived at IAGC as part of the support 
materials for this revised Guidance.  
 
The survey was conducted in shallow water in the North Sea, near The Netherlands coastline. The 
nominal SPLpp was 90.1 bar-m, or 259 dB re 1 μPa-m. The derived pulse SEL using the relationships 
applied in this Guidance document would be 259-22 = 237 dB SEL. The highest single frequency SEL 
values occurred in the 30-60 Hz bands at 212 dB SEL, or 25 dB below the SEL of the full pulse, again 
consistent with other spectra showing peak frequency SEL values 19-25 dB below the total pulse SEL. 
The original modeled spectrum generated by the Nucleus survey planning software is shown in Figure 
49, and the closely corresponding spectrum derived from data by MacGillivray et al (2018) is in Figure 
50. Only the MacGillivray et al. (2018) spectrum was used in the development of the generic spectrum, 
and not the Nucleus planning model spectrum. However, comparison of the two re-affirms the good 
correspondence between models like Nucleus, Gundalf, and JASCO’s AASM with the actual measured 
pulse waveform and spectrum when measured data are available. Khodabandeleroo (2018) and others 
have noted the poorer correspondence between model and measurements at high frequencies, and 
that source of variability/uncertainty has been compensated for in the generic spectrum through 
precautionary, conservative SEL values used for frequencies above 2000 Hz, as described in Sections A 
and C. 
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Figure 49. A modeled spectrum (0-160 Hz only) for the 3333 cui array used in the 2016 Dublin workshop dataset analyzed by 
MacGillivray et al. (2018). 

 
Figure 50. The analyzed data-derived spectrum produced by MacGillivray et al (2018) for the same array (S3 data set) at vertical 
(black line, Ѳ = 90o), horizontal inline/endfire (red line, Ѳ = 20o) and horizontal broadside (blue line, Ѳ = 20o). 

MacGillivray chose to present their results in Pascals (Pa), but the corresponding dB re 1μPa values are 
10 Pa = 140 dB; 100 Pa = 160 dB; 1000 Pa = 180 dB, etc. A unit conversion tool has been provided as Tab 
F1 of the revised User Spreadsheet toolkit to assist in conversion of bars or Pascals to dB re 1μPa as the 
conventional unit for expressing measures of underwater sound. 
 
Sidorovskaia et al. (Unpublished) 
 
Sidorovskaia et al. (Figure 51; unpublished) provide data from a 2014 large scale array data collection in 
the Gulf of Mexico. Although these data are not yet fully published, they will be published in the near 
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future and include the largest set of high-quality data collected to date. Their consistency with the other 
examples cited above further reinforces confidence in including the as-yet unpublished data.  
The array was a 4140 cubic inch array commonly used for deep water surveys in the Gulf of Mexico. The 
back-calculated vertical peak-to-peak source level was 262 dB SPLpp, making the total pulse SEL 262-22 
dB = 240 dB SEL. The difference between the total pulse SEL and the highest single frequency peak at 50 
Hz was 240-215 dB = 25 dB. The range of single frequency values between the highest at 215 dB and the 
lowest at 20 kHz at 143 dB is 72 dB, comparable to the distribution of energy in other CA spectra. 
 

 
Figure 51. Raw and smoothed spectrum data produced by multiple high-resolution recordings at multiple depths and ranges 
from an array in deep water in the Gulf of Mexico (Siderovskaia et al., unpubl.). 

Spectra Considered but Removed from Analysis 
 
The following examples help reinforce the consistency of CA array spectra generally, including the 
spectra chosen for inclusion, but the following cases lacked sufficient information or had other problems 
that led to their not being used in the derivation of a generic spectrum. 
 
Coste et al. (2014) 
 
Coste et al. (2014, Figure 52) offers a comparison of spectra from an array made up of standard CA 
sources and an array composed of a new source design; the Bolt e-Source, which was designed to 
produce less high frequency energy. Only the spectrum from the standard sources was used in this 
analysis, since use of e-Sources is still not widespread. If use of the e-Source expands, it may be 
desirable to offer two different generic spectra: one for an array of e-Sources and another for the 
conventional sources currently in widespread use.  
 
The Coste et al. (2014) spectrum was not based on direct measurements, but was derived using a 
common standard modeling software, most likely Gundalf (https://www.gundalf.com/), based on high 
quality near-field measurements (range = 2 m) from single CA sources of the type and size used in the 
modeled arrays. This is a common and well verified modeling methodology and has been verified 
frequently with field data, however we were somewhat concerned about acceptance of such modeled 
results by a non-expert audience. 
 
The total array volume was 3300 cubic inches. Pulse SPL and SEL values were not provided. 

NMFS does not concur with all of the content of IAGC's public comments. This posting should not be considered an endorsement of the full document.

https://www.gundalf.com/


 
Figure 52. Sample array spectrum from Coste et al. (2014). 

Khodabandeleroo (2018) 
 
Khodabandeleroo (2018, Figure 53) includes spectra for single CA sources, a single string of sources 
(“single array 1500 in3”), and a full array of 2730 cu in. Only the spectrum for the 2730 cu in full array 
was considered. The data are recorded data from a bottom mounted sensor at 60 m depth. Notches are 
present in the spectrum, so the spectrum is presumed to include both the pulse and its reflected ghost, 
necessitating fitting of a smoothed spectrum to the curve. Source SPL and SEL data were not provided. 
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Figure 53. Comparison of single element (blue), single string (red) and full array (gray) spectra (Khodabandeleroo, 2018). 

McPherson et al. (2018) 
 
McPherson et al. (2018, Figure 54) collected data with bottom-mounted receivers placed at varying 
distances from a CA array operated in shallow water (80m). As with most JASCO modeled waveforms, 
the surface-reflected “ghost” is omitted as a propagation effect, but the SPLpk, SPLrms0.9, and SEL scaling 
relationships are consistent with the material discussed in Section C of the Guidance and the spectrum 
scales similarly to the other examples used in the creation of the Generic Spectrum.  
 
The back-calculated vertical source level was 249 dB SPLpk (rounded to the nearest whole decibel value). 
A difference of -16 dB between SPLpk and SEL would predict a total pulse SEL of 233, but that is 
admittedly a conservative precautionary value and the measured and back-calculated differences 
between SPLpk and SEL in this case are -25 dB or about 224 dB SEL. The spectrum data were presented 
on a linear frequency scale instead of the standard log frequency scale, making it impossible to 
discriminate details in the frequencies of highest energy between 8 and 100 Hz. Requests to the authors 
for more details had not received a response at the time of preparation of this document. Another 
concerning detail was the use of bottom mounted hydrophones. This seems to have produced some 
anomalous values at different distances that may have corresponded to bottom-bounce or other 
propagation effects. The data were collected in very shallow water (80 m or less) so recordings at lateral 
distances more than 160 m potentially contain multiple surface and bottom reflected pulses as well as 
the direct pulse. 
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Figure 54. Spectra from McPherson et al. (2018), showing back-calculated single frequency spectra for vertical (green), and 
horizontal (red and black) source waveforms. 

BOEM (2016) 
 
In their 2016 Final Environmental Impact Statement (FEIS) for geophysical survey permitting in the Gulf 
of Mexico, the BOEM used data from an 8000 cu in array. The details of the array geometry and acoustic 
properties are provided in Appendix D of the BOEM FEIS (2016) (Figure 55). Arrays of 6000-10000 cui are 
typically achieved by simultaneous activation of two side-by-side arrays of 3000-5000 cui each instead of 
the typical alternating activation of the A then B array. Thus, the 8000 cu in array in this case would 
presumably be two identical side-by-side 4000 cui arrays activated simultaneously instead of alternately. 
Since the array parameters used in the BOEM (2016) FEIS are not from an actual operationally employed 
array, its configuration and performance are entirely hypothetical.  The array described in BOEM (2016) 
is, however, consistent with the general features of arrays used in operations in deeper water (over 
1000 m depth) and with dense geological layers over the layers of interest for possible oil and gas 
deposits, which sometimes require the use of larger arrays (in the Gulf of Mexico these dense structures 
are usually salt domes). About one third of recent surveys in the GOM have employed this double array 
technique, though the mean or median array size for all surveys is around 4000-4500 cui. 
 
The 8000 cu in array was a hypothetical array and not an array in actual use in the Gulf of Mexico. We do 
not have actual recorded acoustic data for this particular array configuration, nor has its realism as an 
actual survey tool for the geology of the GOM been verified by analyzed data. The fact that these data 
were model-only data was one of the reasons the data set was rejected from consideration, but not the 
only reason. 
 
The modeled 1/3 octave spectrum for the BOEM (2016) 8000 cui array looks similar to the data from the 
arrays selected for generic spectrum development, with peak energy in the 10-100 Hz range, frequency 
bands, and the dynamic range in TOB from 200 Hz to 4000 Hz is about the same at 40 dB. However, 
there are no modeled spectrum data above 4000 Hz, which is where the greater uncertainty/variance is 
observed in the other datasets. The stochasticity of high frequency data from CA arrays has been 
discussed in detail by the BOEM (2016) Appendix D treatment of high frequencies, which BOEM created 
statistically from data derived from single CA sources (see p. D-19). This stochastic approach to modeling 
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the variable high frequency output of CA arrays seems to hold up well against data as reviewed by 
Ainslie et al (2016), but since there are a sufficient number of examples from real data in the other 
exemplars selected for usage, we were inclined to wait for further verification and validation studies of 
this alternative protocol for deriving the high frequency content of generic CA array spectra before 
opting to include it in the calculation of a generic array frequency spectrum. 

 

 
The BOEM (2016) modeling exercise also opts to present “horizontal” rather than vertical array 
properties. The actual angle of the “horizontal” waveforms and spectrum in Figure 55 was not provided 
in BOEM (2016) and as we noted in Section C, deviations from vertical can reduce source levels by 5 to 
40+ dB, depending on angle, as well as greatly altering the position of peaks and valleys in the spectrum. 
At these more “horizontal” angles the peaks and valleys owe less to the interaction with the surface-
reflected “ghost”, but are instead increasingly influenced by the relative positions of the different sized 
elements within the horizontal plane of the array. Not only does this produce significant arrivals of 
energy 300-800 msec after the primary pulse, but the azimuthal angle of the receiver relative to the 
array track (e.g., “broadside” and “endfire”) also alters the received spectrum. As noted earlier, a 
decision will need to be made at some point about what direction of array output to use in simplified 
regulatory guidelines, but the vertically directed energy is the simplest as well as the “loudest” aspect of 
the array sound field, whereas terms like horizontal, endfire and broadside will require further 
refinement in order to produce uniform, simple guidance for regulated activities. 

 
Figure 55. The BOEM (2016) modeled horizontal array Figure waveform and spectrum. The surface-reflected signal is not 
included in the characterization of the source, but is incorporated into the environmental propagation component of the 
acoustic risk model. Not only is the source level considerably reduced relative to the vertical signal (>-5 dB), but there is also 
much more energy radiated from the source after the primary pulse (peaks at 150, 300, 400, 550 and even 700 msec) and there 
is much less energy, relatively, in the 7-100 Hz band due to the loss of constructive gain at those frequencies obtained in the 
vertical direction. 

Finally, the stated full spectrum SEL in Table 13, page D-47 is approximately 232 dB SEL, but the highest 
single TOB SEL levels in Figure 16, also on page D-7, at 10 and 16 Hz for example, are themselves very 
near or even higher than the nominal source SEL. The summed energy from the spectrogram in Figure 
16 would be closer to 255 dB, based on the relationships observed in all other spectra where the bands 
with greatest energy are typically 19-25 dB below the total SEL. There is clearly some kind of 
mathematical error or mismatch between Table 13 and Figure 16 of the BOEM (2016) Appendix D that 
would have to be resolved before the TOB spectrogram presented in BOEM (2016) and reproduced on 
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page 13 of the NMFS Supplemental User Guidance (2018b) could be used in generic spectrogram 
development. 
 
OGP/IAGC (2011) 
 
The Oil and Gas Producers Association (OGP, now IOGP) and the International Association of 
Geophysical Contractors (IAGC) produced a report in 2011 to acquaint the general user with the 
technical aspects of seismic survey sound sources and operations. Their Figure 25 (here, Figure 56) 
presents a sample energy spectrum (in Joules/m2) that looks very similar to the other spectra included in 
our development of a generic spectrum. The array properties; 3397 cubic inch volume, from 24 
elements, are provided in the 2011 report but the only reference to the original source material is a 
personal point of contact: Gary Hampson, Chevron. Without a specific report or published document 
detailing the origin of the spectrum (e.g., modeled or measured at some unspecified range and back-
calculated?) we opted to exclude this spectrum from our analysis. 
 

 
Figure 56. Spectrogram published in the IAGC publication on seismic surveys and how they work. Because the original data 
were not readily recoverable at this time, we opted not to include these data in our analysis. 

Conclusion 
 
At present, we believe we have sufficient examples of spectra from real, operating CA arrays to provide 
confidence in the general shape of most CA array spectra from a range of array sizes between 2000 
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cubic inches to over 4000 cubic inches. The current generic spectrum is updateable as more sources of 
both modeled and measured data are found. However, given the consistency across array spectra 
evaluated thus far, we are confident that the generic spectrum will not differ significantly from other 
spectra, since the constraints imposed for geophysical imaging are reflected in all CA source arrays 
designed for that purpose. The tools for creating a generic spectrum have been described in detail and 
can easily be independently replicated or added to in the future. Likewise, the generic spectrum tool for 
calculating hearing-weighted SEL values can be modified by the individual user as needed or updated as 
more information on weighting functions and CA source spectra emerge.  
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