


# ELLIOTT BAY SEAWALL PROJECT COMPREHENSIVE ACOUSTIC MONITORING REPORT

August 18, 2017

Prepared For:



City of Seattle Department of Transportation

Prepared By:

# THE GREENBUSCH GROUP, INC.

1900 West Nickerson Street Suite 201 Seattle, Washington 98119

## **Table of Contents**

| 1.0 | Introduction                                   | 1   |
|-----|------------------------------------------------|-----|
|     |                                                |     |
| 2.0 | Measurement Methodology                        | . 2 |
| 3.0 | Signal Processing                              | . 3 |
| 3.1 | Vibratory Pile Driving                         | . 3 |
| 3.2 | Impact Pile Driving                            | . 4 |
| 3.3 | Background Sound Levels                        | . 5 |
| 4.0 | Results                                        | . 6 |
| 4.1 | Vibratory Pile Driving                         | . 6 |
| 4.2 | Impact Pile Driving                            | . 7 |
| 4.3 | Background Sound Levels                        | 9   |
| 4.4 | Calculating Site Specific Attenuation Factors  | 10  |
| 5.0 | Appendix                                       |     |
| 5.1 | Vibratory Pile Driving Underwater Sound Levels | 11  |
| 5.  | .1.1 Steel Sheet Piles                         | 11  |
| 5.  | .1.2 Concrete Pile Removal                     | 16  |
| 5.2 | Impact Pile Driving Underwater Sound Levels    | 17  |
| 5.  | .2.1 Concrete Piles                            | 17  |
| 5.  | .2.2 Steel Sheet Piles                         | 19  |

#### **List of Tables**

| Table 3.1 Marine Mammal Functional Hearing Groups                                         | 5 |
|-------------------------------------------------------------------------------------------|---|
| Table 4.1 Range of Average Underwater Sound Levels, dB re: 1 µPa                          | 6 |
| Table 4.2 Summary of Monitored Pile Types and Driving Methods                             | 6 |
| Table 4.3 Average Daytime Underwater Background Sound Levels in Elliott Bay, dB re: 1 µPa | 9 |
| Table 4.4 Average Daytime Near Shore Underwater Background Sound Levels, dB re: 1 µPa     | 9 |
| Table 5.1 Season 1 - Box 10 Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa1 | 1 |
| Table 5.2 Season 1 - Box 4 Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa1  | 2 |
| Table 5.3 Season 2 - Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa1        | 3 |
| Table 5.4 Season 3 - Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa1        | 4 |
| Table 5.5 Season 4 - Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa1        | 5 |
| Table 5.6 Season 4 - Vibratory Pile Removal Underwater Sound Levels, dB re: 1 µPa1        | 6 |
| Table 5.7 Season 1 - Box 10 Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa1    | 7 |
| Table 5.8 Season 1 - Box 4 Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa1     | 8 |
| Table 5.9 Season 2 - Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa1           | 9 |
| Table 5.10 Season 3 - Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa2          | 0 |
| Table 5.11 Season 4 - Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa2          | 1 |
|                                                                                           |   |

# List of Figures

| igure 1.1 Construction Boxes | 1 |
|------------------------------|---|
|                              |   |

## 1.0 INTRODUCTION

This Comprehensive Acoustic Monitoring Report provides a summary of underwater sound levels measured during in-water pile driving from all four construction seasons of the Elliott Bay Seawall Project ("Project").

Consultation with the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service (USFWS) under the Marine Mammal Protection Act (MMPA) and the Endangered Species Act (ESA) requires sound level monitoring for the first five unobstructed piles of each pile type and installation method, with some exceptions. This Comprehensive Acoustic Monitoring Technical Report fulfills the requirements of the Project's Biological Opinion issued by NOAA and USFWS, and the MMPA Letters of Authorization (LOA), issued by NOAA.

Consultation with NOAA and USFWS under the MMPA and ESA also requires collection of underwater background sound levels. As a result of the September 22, 2014 coordination with NOAA, USFWS and SDOT, the parties agreed that background sound level data would be collected at two locations: near the construction area and between 500 and 1,000 meters from the construction area in Elliott Bay.

The Project construction area was located west of Alaskan Way between Virginia Street and Washington Street in Seattle, Washington. Airborne and underwater sound levels measurements were made in Boxes 4 and 10 during Season 1; Box 6 during Season 2; Box 2 during Season 3 and Box 1 during Season 4 (see Figure 1.1).



Figure 1.1 Construction Boxes

## 2.0 MEASUREMENT METHODOLOGY

Airborne sound levels were collected at 50 feet from pile driving, with the exception of Season 1 when greater distances were needed due to site layout and safety. However, Season 1 data was normalized to 50 feet, as required in the Project's LOA. Measurements were made between five and seven feet above either a pier or ground with line of sight to the pile driving.

Unless otherwise noted, hydroacoustic monitoring was conducted using two hydrophones located approximately 33 feet (10 meters) from pile driving activities. The distances between the piles and hydrophones were measured using a laser distance measurement device. Hydrophone locations were selected based on site access and to achieve an unobstructed acoustical transmission path between the hydrophones and piles where possible.

Generally, one hydrophone was positioned 3.3 feet (1 meter) below the surface and the second hydrophone was positioned 3.3 feet (1 meter) above the sea floor. Water depth was measured at the hydrophone deployment locations. In addition to water depth measurements, tidal information was obtained from NOAA Station #9447130 and was used to track tidal changes during construction and to calculate the resulting distance between the two hydrophones.

During Season 1, one hydrophone located approximately 33 feet (10 meters) from pile driving was used to collect underwater sound levels from impact and vibratory pile driving in Box 10 due to shallow water depths. Hydroacoustic data measured from vibratory pile driving in Box 4 during Season 1 was conducted using four hydrophones. Two hydrophones were located approximately 3.3 feet (1 meter) below the surface, while the other two were deployed 70% to 85% of the total water depth. Far field measurements were not conducted during Season 1.

Underwater sound levels measured from impact pile driving during Season 3 were measured simultaneously at two different monitoring locations, one near the pile and the other near a buoy in Elliott Bay to determine whether underwater sound levels generated by pile driving were above the disturbance and injury thresholds for pinnipeds. Near shore measurements and measurements made near the buoy were made with one hydrophone deployed at mid-water depth, allowing for the estimation of a site-specific attenuation factor for obstructed piles in Box 2. Near shore measurements were made approximately 50 feet (15 meters) from impact pile driving due to limited site access and to maintain an unobstructed acoustical path between the hydrophone and the piles.

Hydroacoustic measurements of impact pile driving during Season 4 were made using four hydrophones. Two hydrophones were deployed approximately 33 feet (10 meters) from impact pile driving at 3.3 feet (1 meter) below the surface and 3.3 feet (1 meter) above the seafloor. Two additional hydrophones were located at mid-water depth at various distances from pile driving to determine a site-specific attenuation factor for obstructed piles in Box 1.

Near shore and far-field background sound levels were measured using one hydrophone deployed at mid-water depth.

August 18, 2017 Page 3 of 21 EBSP Comprehensive Acoustic Monitoring Report

#### 3.0 SIGNAL PROCESSING

The Project's LOAs and Biological Opinion require reporting of underwater sound levels generated by the first five unobstructed piles of each pile type and driving method. These reported sound levels must include the frequency spectrum, ranges, means and standard deviation for the peak and RMS sound pressure levels for each marine mammal functional hearing group, as well as the estimated distance required for the RMS values to reach the marine mammal thresholds and background sound levels. During impact pile driving, the pile strike resulting in the absolute highest peak sound pressure level must be used to calculate the cSEL of the pile drive.

The Season 1 LOA did not specify that the sound levels should be measured from unobstructed piles, but did require monitoring of the first five piles of each pile type and driving method. Measurements of unobstructed piles were included in the LOAs for Seasons 2 through 4. Monitoring of obstructed piles was permitted during Season 3 to allow for measurements of sound levels near a buoy to determine whether pile driving was exceeding the relevant marine mammal threshold criteria at the location of the buoy.

As requested by NOAA during a conference call on September 22, 2014, sound levels measured during ramp-up activities are reported separately from sound levels measured during pile driving under full power. In addition, NOAA requested sound level data to include the range of SEL values.

Consultation with NOAA and USFWS under the MMPA and ESA also requires collection of underwater background sound levels. As a result of the September 22, 2014 coordination with NOAA, USFWS and SDOT, the parties agreed that background sound level data would be collected between 500 and 1,000 meters from the construction area to verify that sound levels reported by WSDOT in 2011 had not changed.

#### 3.1 Vibratory Pile Driving

Hydroacoustic data collected during vibratory installation of steel sheet piles and removal of concrete piles from all four construction seasons was analyzed to determine the range, average and standard deviation of 10-second RMS, peak and SEL values for each marine mammal functional hearing group. Periods during the pile drive when pile installation was not occurring under full power are excluded from the analysis.

Data was analyzed for each functional hearing group by applying a band pass filter to remove frequencies from the signal that are not included in the functional hearing group being analyzed. SEL values were calculated using 1-second RMS values.

The reported maximum and minimum values are the maximum or minimum value from either of the two hydrophones located approximately 10 meters from vibratory pile driving. The standard deviation was calculated using decibel values. Average sound levels were calculated using the mean sound pressure from each hydrophone, converted to decibels and taking the logarithmic average of the two values.

Airborne sound data collected during vibratory installation of the steel sheet piles and removal of concrete piles was analyzed to determine the range and average of unweighted 10-second RMS values while piles were installed under full power. These 10-second RMS values were calculated over a frequency range of at least 10 Hz to 20 kHz.

August 18, 2017 Page 4 of 21 EBSP Comprehensive Acoustic Monitoring Report

## 3.2 Impact Pile Driving

Underwater sound data collected during the impact driving of steel sheet piles were analyzed to determine the range, average and standard deviation of peak, RMS<sub>90</sub>, and SEL values as well as the cSEL of each pile for each marine mammal functional hearing group as required by the ESA and MMPA consultation. Periods when pile driving was not occurring under full power were excluded from this analysis. Ramp-up activities were separated from the full power pile driving analysis and are presented separately.

Standard deviation was calculated using the decibel values and the average sound levels were calculated using the mean sound pressure levels.

Data analysis was conducted for each marine mammal functional hearing group by applying a band pass filter to remove frequencies from the signal that are not included in the functional hearing group being analyzed. This filter provides a roll off of more than -40 dB per decade.

The RMS<sub>90</sub> was established between the 5<sup>th</sup> percentile and 95<sup>th</sup> percentile of each recorded pile strike. SEL values for impact pile driving of steel sheet piles were calculated for each pile strike over the duration of the strike containing 90% of the acoustic energy using the following formula:

$$SEL = RMS(dB) + 10 \log_{10}(\tau)$$

Where  $\tau$  is the time interval containing 90% of the acoustic energy in each pile strike.

cSEL values where calculated using the SEL value corresponding to the maximum peak pile strike using the following formula, which is required by the ESA documents:

$$cSEL = SEL_{single} + 10 \log_{10}(n)$$

Where  $SEL_{single}$  is the SEL value corresponding to the pile strike which produced the highest peak sound pressure and *n* is the total number of pile strikes included in the analysis.

An unobstructed path between the piles and microphone used to collected airborne sound levels was maintained throughout the duration of all impact pile driving wherever possible. The range and average unweighted RMS values were calculated over periods of full power pile driving using either 100-millisecond or 1-second RMS values calculated over a frequency range of at least 10 Hz to 20 kHz.

## 3.3 Background Sound Levels

Background sound levels reported from Season 1 were calculated from broadband 1-hour RMS sound levels and background sound levels reported from construction Seasons 2 through 4 were calculated using 10-second RMS background sound data collected during daytime hours. This data was used to calculate the cumulative distribution function (CDF) of each marine mammal functional hearing group in accordance with the NOAA Guidance Document: "Data Collection Methods to Characterize Underwater Background Sound Relevant to Marine Mammals in Coastal Nearshore Waters and Rivers of Washington and Oregon" dated January 31, 2012. The marine mammal functional hearing groups are presented in Table 3.1.

#### **Table 3.1** Marine Mammal Functional Hearing Groups

|                          | <u> </u>      |                |
|--------------------------|---------------|----------------|
| Functional Hearing Group | Low Frequency | High Frequency |
| Low-Frequency Cetaceans  | 7 Hz          | 20 kHz         |
| Mid-Frequency Cetaceans  | 150 Hz        | 20 kHz         |
| High-Frequency Cetaceans | 200 Hz        | 20 kHz         |
| Pinnipeds                | 75 Hz         | 20 kHz         |

Note: Underwater sound levels from pile driving as well as background sound levels measured during Season 1-4 were analyzed using NOAA's previous Guidance Documents dated January 31, 2012. Data collected from pile driving during Season 4 was also analyzed using the updated technical guidance issued in July, 2016.

Source: NOAA Guidance Document: "Data Collection Methods to Characterize Underwater Background Sound Relevant to Marine Mammals in Coastal Nearshore Waters and Rivers of Washington and Oregon" dated January 31, 2012

The overall broadband background sound levels for each hearing group described in Table 3.1 are reported as the 50<sup>th</sup> percentile of the CDFs.

## 4.0 RESULTS

Underwater sound levels measured during all four construction seasons are provided in the Appendix of this Report. It should be noted that underwater data collected during Season 1 was reanalyzed at the request of NOAA to include additional metrics. These data was re-analyzed after the issuance of the Season 1 Report and as a result Season 1 sound levels included in the Appendix of this report differ from those provided in the Season 1 Report.

The range of average peak, RMS and SEL sound levels measured over the duration of the Project are provided in Table 4.1 below.

| Driving<br>Method |                            |           | Obstructed |           | Unobstructed |           |           |  |  |  |
|-------------------|----------------------------|-----------|------------|-----------|--------------|-----------|-----------|--|--|--|
|                   | Pile Type                  | Peak      | RMS        | SEL       | Peak         | RMS       | SEL       |  |  |  |
|                   | Sheet Pile                 | 163 – 171 | 147 – 164  | 147 – 164 | 164 – 186    | 147 – 168 | 148 – 168 |  |  |  |
| Vibratory         | Concrete Pile<br>(removal) | 148 – 157 | 129 – 147  | 129 – 147 | -            | -         | -         |  |  |  |
| Import            | Sheet Pile                 | 184 – 194 | 171 – 182  | 157 – 167 | 192 – 198    | 180 – 185 | 166 – 170 |  |  |  |
| Impact            | Concrete Pile              | 159 – 181 | 145 – 170  | 134 – 158 | 172 – 194    | 155 – 183 | 146 – 168 |  |  |  |

**Table 4.1** Range of Average Underwater Sound Levels, dB re: 1 μPa

Note: Underwater sound levels were measured 32 to 40 feet (10-12 meters) from piles or were normalized to 33 feet (10 meters)

The number of piles and driving methods monitored during all four construction seasons is summarized in Table 4.2.

| Driving   | Pile Type               | Seas  | son 1  | Season 2  | Season 3 | Season 4 |
|-----------|-------------------------|-------|--------|-----------|----------|----------|
| Method    | гие туре                | Box 4 | Box 10 | 3eas011 2 | Season 5 | Season 4 |
| Vibrotory | Sheet Pile              | 5*    | 7      | 5         | 5        | 5*       |
| Vibratory | Concrete Pile (removal) | 0     | 0      | 0         | 0        | 5*       |
| Impost    | Sheet Pile              | 0     | 0      | 5         | 5*       | 5*       |
| Impact    | Concrete Pile           | 6*    | 5      | 0         | 0        | 0        |

**Table 4.2** Summary of Monitored Pile Types and Driving Methods

Note: "\*" indicates obstructed piles

The results of hydroacoustic monitoring conducted over the duration of the Project are discussed in the Sections below.

#### 4.1 Vibratory Pile Driving

Steel sheet piles were installed using an APE Model 250 Variable Moment Vibratory Driver/Extractor during all four construction seasons. Hydroacoustic monitoring took place during the installation of at least five sheet piles during each construction season, totaling 27 steel sheet piles over the duration of the project. The same vibratory hammer was also used to remove concrete piles in Box 1 during Season 4. Hydroacoustic monitoring was conducted during the removal of the first five concrete piles.

Vibratory pile driving was monitored in Box 4 on February 12 and 13, 2014 during Season 1. However, because the sheet piles were obstructed by Waterfront Dock, further measurements were made in Box 10 on February 24, 2014. Reported sound levels from Box 4 have been normalized to 33 feet (10 meters) from the pile using the practical spreading model.

August 18, 2017 Page 7 of 21 EBSP Comprehensive Acoustic Monitoring Report

During vibratory pile driving in Box 10, the vibratory hammer operated at a reduced energy setting during the monitoring of sheet piles three through seven, which led to a reduction in underwater sound levels. The reduced energy setting appeared to be most effective in mid and high-frequency cetacean and pinniped marine mammal hearing groups. Noise mitigation was not implemented during any other vibratory pile driving over the duration of the project.

Unobstructed measurements of vibratory pile driving were conducted in Box 6 on October 30 and 31, 2014 and November 7, 2014 during Season 2. During Season 3, unobstructed vibratory pile driving was monitored on January 14 and 15, 2016 in Box 2. Vibratory pile driving was also monitored on December 28, 2016 in Box 1 during Season 4. However, all piles driven during Season 4 were landward of Pier 62/63 and an unobstructed path between the hydrophones and piles was not able to be established during all pile driving.

Additional measurements were made in Elliott Bay while vibratory pile driving was underway during Seasons 3 and 4. The Season 3 measurements were used to determine whether underwater sound produced by pile driving exceeded relevant marine mammal thresholds near a buoy approximately 10,000 feet (3,048 meters) to the southwest of the project area. Measurements in Elliott Bay during Season 4 were made to allow the site specific attenuation factor from obstructed pile driving to be calculated (see Section 4.4). However, due to high background sound levels in Elliott Bay during Seasons 3 and 4 sound levels produced by vibratory pile driving did not appear to significantly increase during periods of vibratory pile driving and it was difficult to attribute contributions in underwater sound levels specifically to pile driving.

The highest underwater sound levels measured during vibratory pile driving occurred during Season 2, likely the result of the water depth and substrate conditions at the pile locations.

## 4.2 Impact Pile Driving

Concrete piles were driven with an APE Model D62-42 Single Acting Diesel Impact Hammer during Season 1. Hydroacoustic monitoring took place on February 22 through 24, 2014 of five concrete piles installed with the impact hammer in Box 10. Additional monitoring also occurred during the installation of six concrete piles in Box 4 on February 22 and 23, 2014. No additional concrete piles were installed during the project.

In the event that the vibratory hammer was unable to drive piles to the required embedment depth, an impact hammer was used to complete the drive. Impact pile driving of sheet piles occurred during Seasons 2 through 4. Hydroacoustic monitoring of unobstructed sheet piles driven with an APE Model 6-2 Hydraulic Impact Hammer was conducted on November 7 and 8, 2014 in Box 6 during Season 2. During Season 3, obstructed hydroacoustic data was collected on February 8, 2016 during impact pile driving of steel sheet piles with an APE Model D50-42 Single Acting Diesel Impact Hammer. Impact pile driving with an APE Model D50-52 Single Acting Diesel Impact Hammer was monitored in Box 1 on December 28, 2016 during Season 4. However, because Box 1 was obstructed by Pier 62/63 pilings, an unobstructed acoustical transmission path was not able to be achieved during all impact pile driving. Underwater sound levels were measured during the impact pile driving of 15 steel sheet piles during Seasons 2 through 4 of the Project.

During Seasons 3 and 4, hydroacoustic measurements were made at multiple distances from impact pile driving and were used to determine whether underwater sound generated by impact

pile driving exceeded relevant marine mammal thresholds. These measurements were also used to estimate the site specific attenuation factors (see Section 4.4).

The loudest underwater sound levels measured from impact pile driving of steel sheet piles were recorded during Season 2, likely due to water depth and substrate conditions. It should be noted that the rated energy of the APE Model 6-2 Hydraulic Impact Hammer used during Season 2 is 24,000 foot-pounds, which is less than either of the diesel impact hammers used to drive sheet piles.

At least one 6-inch wooden pile pad was used during all impact pile driving of concrete piles. Multiple sound attenuation measures were tested during impact pile driving in Box 4. The third pile was driven with one 6-inch pile pad at a reduced fuel setting, the fourth and fifth piles were driven with a reduced fuel setting and a new pile pad was inserted part of the way through each pile drive. The sixth pile was driven at a reduced fuel setting with two new 6-inch pile pads.

## 4.3 Background Sound Levels

Background sound levels were collected in the absence of in-water construction during all four construction seasons. During Season 1 long term background sound levels were measured in Box 10. However, due to the proximity to Coleman Dock it is unlikely the measurements accurately represent background sound levels in Elliott Bay. Additional short term measurements were made in Box 4.

As a result of coordination with NOAA, USFWS and SDOT, short term background sound level measurements were made in Elliott Bay during Seasons 2 through 4 in addition to 72-hour background measurements made near the construction areas.

The results of short term background sound level measurements in Elliott Bay and 72-hour measurements made near the construction areas are summarized in Table 4.3 and Table 4.4.

Table 4.3 Average Daytime Underwater Background Sound Levels in Elliott Bay, dB re: 1 µPa

|                             | _                  | Background Sound Levels <sup>1</sup> |       |        |     |     |       |        |     |     |       |        |     |  |
|-----------------------------|--------------------|--------------------------------------|-------|--------|-----|-----|-------|--------|-----|-----|-------|--------|-----|--|
| Functional<br>Hearing Group | Frequency<br>Range | S                                    | eason | 2 (201 | 5)  | S   | eason | 3 (201 | 6)  | S   | eason | 4 (201 | 7)  |  |
|                             | Range              | Min                                  | Max   | SD     | Avg | Min | Max   | SD     | Avg | Min | Max   | SD     | Avg |  |
| Low-Frequency<br>Cetaceans  | 7 Hz–20 kHz        | 122                                  | 170   | 9      | 140 | 113 | 152   | 8      | 126 | 112 | 147   | 7      | 128 |  |
| Mid-Frequency<br>Cetaceans  | 150 Hz–20 kHz      | 111                                  | 141   | 6      | 120 | 105 | 142   | 6      | 119 | 109 | 145   | 8      | 124 |  |
| High-Frequency<br>Cetaceans | 200 Hz–20 kHz      | 110                                  | 140   | 6      | 120 | 105 | 141   | 6      | 118 | 108 | 145   | 8      | 124 |  |
| Pinnipeds                   | 75 Hz–20 kHz       | 114                                  | 142   | 6      | 123 | 106 | 145   | 6      | 120 | 110 | 146   | 8      | 126 |  |

1. The median was used to report the average background sound levels

| Table 4.4 Average Daytime Near | Shore Underwater Background Sound Levels, dB re: 1 µPa |
|--------------------------------|--------------------------------------------------------|
|                                |                                                        |

|                             |                    |     |       |        | E   | Backgr | ound S | Sound  | Levels | 1   |       |        |     |
|-----------------------------|--------------------|-----|-------|--------|-----|--------|--------|--------|--------|-----|-------|--------|-----|
| Functional<br>Hearing Group | Frequency<br>Range | S   | eason | 2 (201 | 5)  | S      | eason  | 3 (201 | 6)     | S   | eason | 4 (201 | 7)  |
|                             | Range              | Min | Max   | SD     | Avg | Min    | Max    | SD     | Avg    | Min | Max   | SD     | Avg |
| Low-Frequency<br>Cetaceans  | 7 Hz–20 kHz        | 118 | 157   | 4      | 128 | 115    | 142    | 5      | 127    | 119 | 142   | 4      | 127 |
| Mid-Frequency<br>Cetaceans  | 150 Hz–20 kHz      | 114 | 144   | 3      | 123 | 110    | 142    | 5      | 125    | 117 | 141   | 4      | 125 |
| High-Frequency<br>Cetaceans | 200 Hz–20 kHz      | 114 | 143   | 3      | 123 | 109    | 141    | 5      | 125    | 116 | 140   | 4      | 124 |
| Pinnipeds                   | 75 Hz–20 kHz       | 115 | 150   | 3      | 123 | 113    | 142    | 5      | 126    | 117 | 141   | 4      | 126 |

1. The median was used to report the average background sound levels

These data collected from near shore and far field measurements in Elliott Bay during Seasons 2 through 4 suggest that background sound levels in Elliott Bay remained consistent with the background sound levels measured by WSDOT in 2011.

## 4.4 Calculating Site Specific Attenuation Factors

Far field hydroacoustic measurements were conducted in Elliott Bay during Seasons 3 and 4 in addition to measurements made near vibratory and impact pile driving.

The Season 3 measurements were made near a buoy located approximately 10,000 feet (3,048 meters) southwest of the project area to determine whether underwater sound generated by impact and vibratory pile driving exceeded relevant marine mammal thresholds. This data was also used to calculate the site specific attenuation factor from pile driving in Box 2.

The site specific attenuation factor of Box 1 was calculated from simultaneous hydroacoustic measurements conducted at three different distances during impact pile driving during Season 4. Two hydrophones were located at different depths approximately 33 feet (10 meters) from pile driving as required by the Project's LOA and additional hydrophones were located at mid-water depth approximately 220 feet (67 meters) and 340 feet (104 meters) from impact pile driving. Hydroacoustic data was also collected in Elliott Bay at multiple distances from vibratory pile driving and removal of concrete piles in Box 1 during Season 4.

Due to elevated sound level in Elliott Bay and contributions from sound sources not related to pile driving during far field measurements of vibratory pile driving during Seasons 3 and 4, the site specific attenuation factors were not able to be calculated from vibratory pile driving. However, the site specific attenuation factors were calculated from impact pile driving in Box 1 and Box 2 during Seasons 3 and 4.

The resulting attenuation factors from obstructed impact pile driving were calculated to be 19 for Box 2 and between 36 and 39 for Box 1. These attenuation factors suggest the sound pressure levels could be reduced by 6 dB per doubling of distance in Box 2 and 11 to 12 dB per doubling of distance in Box 1. Sound likely attenuates more rapidly beneath piers due to obstructions caused by piles supporting the pier than unobstructed acoustical paths found further away from shore. The attenuation factor in Box 1 was calculated using only obstructed data collected under Pier 62/63, whereas the attenuation factor calculated for Box 2 included obstructed data as well as the unobstructed acoustical path between the west side of the pier and buoy resulting in a composite of obstructed and unobstructed attenuation.

These site specific attenuation factors suggest that underwater sound produced by obstructed pile driving attenuates more rapidly than predicted by the practical spreading model currently used by WSDOT and NOAA.

August 18, 2017 Page 11 of 21 EBSP Comprehensive Acoustic Monitoring Report

#### 5.0 APPENDIX

## 5.1 Vibratory Pile Driving Underwater Sound Levels

#### 5.1.1 Steel Sheet Piles

|         | Frequency     |     | Pe  |    |     |     |     | IS |     | ,   | SE  | •  |     |
|---------|---------------|-----|-----|----|-----|-----|-----|----|-----|-----|-----|----|-----|
| Pile ID | Range         | Min | Max | SD | Avg | Min | Max | SD | Avg | Min | Max | SD | Avg |
|         | 7 Hz-20 kHz   | 173 | 189 | 3  | 177 | 156 | 166 | 2  | 161 | 154 | 168 | 2  | 161 |
| VIB-1   | 75 Hz-20 kHz  | 173 | 189 | 3  | 177 | 156 | 166 | 2  | 160 | 154 | 168 | 2  | 161 |
| VID-I   | 150 Hz-20 kHz | 173 | 189 | 3  | 177 | 156 | 166 | 2  | 160 | 154 | 168 | 2  | 161 |
|         | 200 Hz-20 kHz | 173 | 189 | 3  | 177 | 156 | 166 | 2  | 160 | 154 | 168 | 2  | 161 |
|         | 7 Hz-20 kHz   | 173 | 186 | 3  | 179 | 149 | 165 | 3  | 162 | 146 | 165 | 2  | 162 |
|         | 75 Hz-20 kHz  | 173 | 187 | 3  | 179 | 149 | 164 | 3  | 162 | 154 | 165 | 2  | 162 |
| VIB-2   | 150 Hz-20 kHz | 173 | 187 | 3  | 179 | 149 | 164 | 3  | 162 | 152 | 165 | 2  | 162 |
|         | 200 Hz-20 kHz | 173 | 187 | 3  | 179 | 148 | 164 | 3  | 162 | 151 | 165 | 2  | 162 |
|         | 7 Hz-20 kHz   | 169 | 183 | 3  | 177 | 147 | 167 | 4  | 161 | 152 | 167 | 3  | 161 |
|         | 75 Hz-20 kHz  | 168 | 183 | 3  | 176 | 146 | 167 | 4  | 160 | 150 | 167 | 3  | 161 |
| VIB-3   | 150 Hz-20 kHz | 167 | 183 | 3  | 176 | 146 | 167 | 4  | 160 | 150 | 167 | 3  | 161 |
|         | 200 Hz-20 kHz | 167 | 183 | 3  | 176 | 146 | 167 | 4  | 160 | 150 | 167 | 3  | 161 |
|         | 7 Hz-20 kHz   | 165 | 177 | 3  | 173 | 145 | 165 | 4  | 160 | 148 | 166 | 3  | 160 |
| VIB-4   | 75 Hz-20 kHz  | 162 | 176 | 3  | 170 | 142 | 161 | 4  | 155 | 148 | 162 | 3  | 155 |
| VID-4   | 150 Hz-20 kHz | 163 | 176 | 3  | 170 | 141 | 160 | 3  | 154 | 147 | 161 | 3  | 155 |
|         | 200 Hz-20 kHz | 164 | 176 | 3  | 170 | 141 | 160 | 3  | 154 | 147 | 161 | 3  | 154 |
|         | 7 Hz-20 kHz   | 162 | 177 | 3  | 169 | 143 | 163 | 4  | 157 | 144 | 164 | 4  | 157 |
| VIB-5   | 75 Hz-20 kHz  | 160 | 176 | 3  | 167 | 146 | 157 | 3  | 151 | 143 | 157 | 3  | 151 |
| C-DIV   | 150 Hz-20 kHz | 159 | 176 | 4  | 167 | 145 | 156 | 3  | 150 | 142 | 157 | 3  | 150 |
|         | 200 Hz-20 kHz | 158 | 176 | 4  | 167 | 144 | 156 | 3  | 150 | 142 | 157 | 3  | 150 |
|         | 7 Hz-20 kHz   | 167 | 178 | 2  | 172 | 152 | 166 | 3  | 159 | 151 | 168 | 3  | 159 |
| VIB-6   | 75 Hz-20 kHz  | 161 | 178 | 3  | 170 | 146 | 161 | 2  | 155 | 144 | 162 | 2  | 155 |
| VID-0   | 150 Hz-20 kHz | 161 | 178 | 3  | 170 | 144 | 161 | 2  | 154 | 143 | 162 | 3  | 154 |
|         | 200 Hz-20 kHz | 161 | 178 | 3  | 170 | 144 | 161 | 3  | 154 | 143 | 162 | 3  | 154 |
|         | 7 Hz-20 kHz   | 165 | 177 | 3  | 171 | 149 | 167 | 4  | 162 | 154 | 168 | 3  | 162 |
|         | 75 Hz-20 kHz  | 159 | 177 | 4  | 165 | 138 | 155 | 3  | 151 | 144 | 156 | 2  | 151 |
| VIB-7   | 150 Hz-20 kHz | 156 | 177 | 5  | 164 | 131 | 153 | 4  | 147 | 154 | 138 | 4  | 148 |
|         | 200 Hz-20 kHz | 156 | 177 | 5  | 164 | 130 | 153 | 5  | 147 | 137 | 154 | 4  | 148 |

Table 5.1 Season 1 – Box 10 Vibratory Pile Driving Underwater Sound Levels, dB re: 1  $\mu$ Pa

August 18, 2017 Page 12 of 21 EBSP Comprehensive Acoustic Monitoring Report

| Pile ID                          | Frequency     |     | Pe  | ak |     |     | RM  | IS |     | SEL |     |    |     |  |
|----------------------------------|---------------|-----|-----|----|-----|-----|-----|----|-----|-----|-----|----|-----|--|
| Plie ID                          | Range         | Min | Max | SD | Avg | Min | Max | SD | Avg | Min | Max | SD | Avg |  |
|                                  | 7 Hz-20 kHz   | 151 | 192 | 6  | 171 | 134 | 172 | 6  | 154 | 135 | 174 | 6  | 155 |  |
| VIB-1                            | 75 Hz-20 kHz  | 151 | 192 | 6  | 171 | 133 | 172 | 6  | 154 | 136 | 174 | 6  | 155 |  |
| VID-I                            | 150 Hz-20 kHz | 151 | 192 | 6  | 171 | 132 | 171 | 6  | 154 | 136 | 173 | 6  | 155 |  |
|                                  | 200 Hz-20 kHz | 151 | 191 | 6  | 171 | 132 | 171 | 6  | 154 | 136 | 173 | 6  | 154 |  |
|                                  | 7 Hz-20 kHz   | 152 | 186 | 6  | 168 | 135 | 166 | 5  | 151 | 138 | 169 | 5  | 152 |  |
|                                  | 75 Hz-20 kHz  | 153 | 185 | 6  | 168 | 134 | 166 | 5  | 151 | 137 | 169 | 5  | 152 |  |
| VID-2                            | 150 Hz-20 kHz | 153 | 185 | 5  | 168 | 136 | 166 | 5  | 150 | 138 | 169 | 5  | 152 |  |
|                                  | 200 Hz-20 kHz | 153 | 185 | 5  | 168 | 135 | 166 | 6  | 151 | 138 | 169 | 5  | 152 |  |
|                                  | 7 Hz-20 kHz   | 154 | 184 | 5  | 169 | 136 | 164 | 5  | 150 | 138 | 167 | 5  | 152 |  |
|                                  | 75 Hz-20 kHz  | 153 | 184 | 5  | 170 | 137 | 164 | 5  | 150 | 137 | 167 | 5  | 152 |  |
| VID-3                            | 150 Hz-20 kHz | 155 | 185 | 5  | 170 | 138 | 163 | 5  | 150 | 137 | 167 | 5  | 152 |  |
|                                  | 200 Hz-20 kHz | 155 | 185 | 5  | 170 | 138 | 163 | 5  | 150 | 136 | 167 | 5  | 152 |  |
|                                  | 7 Hz-20 kHz   | 155 | 180 | 5  | 170 | 139 | 164 | 6  | 154 | 139 | 165 | 5  | 156 |  |
|                                  | 75 Hz-20 kHz  | 155 | 180 | 5  | 171 | 138 | 164 | 6  | 154 | 139 | 165 | 5  | 156 |  |
| VID-4                            | 150 Hz-20 kHz | 155 | 180 | 5  | 170 | 138 | 164 | 6  | 154 | 139 | 165 | 5  | 156 |  |
|                                  | 200 Hz-20 kHz | 156 | 180 | 5  | 170 | 138 | 163 | 6  | 154 | 139 | 165 | 5  | 156 |  |
|                                  | 7 Hz-20 kHz   | 160 | 189 | 4  | 181 | 139 | 169 | 4  | 164 | 139 | 170 | 3  | 164 |  |
|                                  | 75 Hz-20 kHz  | 159 | 189 | 4  | 181 | 135 | 169 | 4  | 164 | 138 | 170 | 3  | 164 |  |
| VIB-2<br>VIB-3<br>VIB-4<br>VIB-5 | 150 Hz-20 kHz | 159 | 190 | 4  | 181 | 135 | 169 | 4  | 164 | 138 | 170 | 3  | 164 |  |
|                                  | 200 Hz-20 kHz | 159 | 190 | 4  | 181 | 135 | 169 | 4  | 164 | 138 | 170 | 3  | 164 |  |

Table 5.2 Season 1 – Box 4 Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa

Note: Sound levels normalized to 33 feet (10 meters)

August 18, 2017 Page 13 of 21 EBSP Comprehensive Acoustic Monitoring Report

| Pile ID | Frequency     |     | Ре  | ak |     |     | R   | IS |     | SEL |     |    |     |  |
|---------|---------------|-----|-----|----|-----|-----|-----|----|-----|-----|-----|----|-----|--|
| Plie ID | Range         | Min | Max | SD | Avg | Min | Max | SD | Avg | Min | Max | SD | Avg |  |
|         | 7 Hz-20 kHz   | 171 | 190 | 5  | 181 | 155 | 169 | 4  | 163 | 148 | 169 | 4  | 164 |  |
| VIB-1   | 75 Hz-20 kHz  | 171 | 190 | 4  | 181 | 155 | 169 | 4  | 163 | 147 | 169 | 4  | 164 |  |
| VID-I   | 150 Hz-20 kHz | 170 | 190 | 4  | 181 | 155 | 168 | 4  | 163 | 147 | 169 | 4  | 163 |  |
|         | 200 Hz-20 kHz | 171 | 190 | 4  | 181 | 155 | 168 | 4  | 163 | 147 | 168 | 4  | 163 |  |
|         | 7 Hz-20 kHz   | 166 | 182 | 4  | 174 | 144 | 164 | 3  | 156 | 148 | 166 | 3  | 157 |  |
| VIB-2   | 75 Hz-20 kHz  | 166 | 182 | 4  | 173 | 144 | 164 | 4  | 156 | 146 | 165 | 3  | 156 |  |
| VIB-2   | 150 Hz-20 kHz | 166 | 182 | 4  | 173 | 143 | 163 | 4  | 156 | 146 | 164 | 3  | 156 |  |
|         | 200 Hz-20 kHz | 166 | 182 | 4  | 173 | 143 | 163 | 4  | 155 | 146 | 164 | 3  | 156 |  |
|         | 7 Hz-20 kHz   | 177 | 185 | 2  | 182 | 159 | 168 | 2  | 166 | 153 | 168 | 2  | 166 |  |
| VIB-3   | 75 Hz-20 kHz  | 177 | 185 | 2  | 182 | 159 | 168 | 2  | 165 | 153 | 168 | 2  | 166 |  |
| VID-3   | 150 Hz-20 kHz | 176 | 185 | 2  | 182 | 159 | 168 | 2  | 165 | 150 | 168 | 3  | 165 |  |
|         | 200 Hz-20 kHz | 175 | 185 | 2  | 182 | 158 | 168 | 2  | 165 | 150 | 168 | 3  | 165 |  |
|         | 7 Hz-20 kHz   | 180 | 195 | 3  | 186 | 163 | 174 | 2  | 168 | 146 | 175 | 3  | 168 |  |
| VIB-4   | 75 Hz-20 kHz  | 180 | 194 | 3  | 186 | 163 | 174 | 2  | 168 | 146 | 175 | 3  | 168 |  |
| VID-4   | 150 Hz-20 kHz | 181 | 193 | 3  | 186 | 163 | 174 | 2  | 168 | 146 | 175 | 3  | 168 |  |
|         | 200 Hz-20 kHz | 180 | 193 | 3  | 186 | 163 | 174 | 2  | 168 | 146 | 175 | 3  | 168 |  |
|         | 7 Hz-20 kHz   | 166 | 190 | 3  | 183 | 142 | 171 | 3  | 167 | 149 | 172 | 3  | 167 |  |
|         | 75 Hz-20 kHz  | 167 | 190 | 3  | 183 | 142 | 171 | 4  | 167 | 149 | 172 | 3  | 167 |  |
| VIB-5   | 150 Hz-20 kHz | 167 | 190 | 3  | 183 | 142 | 171 | 3  | 167 | 149 | 172 | 3  | 167 |  |
|         | 200 Hz-20 kHz | 167 | 190 | 3  | 183 | 142 | 171 | 3  | 167 | 148 | 172 | 3  | 167 |  |

Table 5.3 Season 2 - Vibratory Pile Driving Underwater Sound Levels, dB re: 1  $\mu$ Pa

| Pile ID | Frequency     |     | Ре  | ak |        |        | R   | IS |     | SEL |     |    |     |
|---------|---------------|-----|-----|----|--------|--------|-----|----|-----|-----|-----|----|-----|
| File ID | Range         | Min | Max | SD | Avg    | Min    | Max | SD | Avg | Min | Max | SD | Avg |
|         |               |     |     | Já | anuary | 14, 20 | 16  |    |     |     |     |    |     |
|         | 7 Hz-20 kHz   | 169 | 182 | 2  | 176    | 150    | 161 | 2  | 157 | 147 | 163 | 2  | 157 |
| VIB-1   | 75 Hz-20 kHz  | 169 | 182 | 3  | 176    | 150    | 161 | 2  | 156 | 147 | 163 | 2  | 156 |
| VID-I   | 150 Hz-20 kHz | 169 | 182 | 3  | 176    | 150    | 161 | 2  | 156 | 146 | 163 | 2  | 156 |
|         | 200 Hz-20 kHz | 169 | 182 | 3  | 176    | 150    | 161 | 2  | 156 | 146 | 163 | 2  | 156 |
|         |               |     |     | Já | anuary | 15, 20 | 16  |    |     |     |     |    |     |
|         | 7 Hz-20 kHz   | 173 | 190 | 4  | 181    | 148    | 166 | 4  | 160 | 148 | 172 | 2  | 161 |
| VIB-1   | 75 Hz-20 kHz  | 174 | 190 | 4  | 181    | 147    | 166 | 4  | 159 | 147 | 172 | 3  | 160 |
| VID-I   | 150 Hz-20 kHz | 174 | 190 | 4  | 181    | 147    | 166 | 4  | 159 | 146 | 172 | 3  | 160 |
|         | 200 Hz-20 kHz | 174 | 190 | 4  | 181    | 147    | 166 | 4  | 159 | 143 | 172 | 3  | 160 |
|         | 7 Hz-20 kHz   | 175 | 186 | 2  | 182    | 153    | 168 | 2  | 164 | 150 | 168 | 2  | 164 |
|         | 75 Hz-20 kHz  | 175 | 185 | 2  | 181    | 151    | 166 | 3  | 162 | 146 | 167 | 2  | 162 |
| VIB-2   | 150 Hz-20 kHz | 175 | 185 | 2  | 181    | 150    | 166 | 3  | 162 | 146 | 167 | 2  | 162 |
|         | 200 Hz-20 kHz | 175 | 185 | 2  | 181    | 150    | 166 | 3  | 162 | 146 | 167 | 2  | 162 |
|         | 7 Hz-20 kHz   | 165 | 183 | 4  | 175    | 147    | 167 | 4  | 158 | 149 | 167 | 4  | 159 |
|         | 75 Hz-20 kHz  | 165 | 183 | 4  | 174    | 143    | 163 | 4  | 156 | 145 | 164 | 4  | 157 |
| VIB-3   | 150 Hz-20 kHz | 166 | 183 | 4  | 174    | 143    | 163 | 4  | 156 | 145 | 164 | 4  | 157 |
|         | 200 Hz-20 kHz | 166 | 183 | 4  | 174    | 143    | 163 | 4  | 156 | 145 | 164 | 4  | 157 |
|         | 7 Hz-20 kHz   | 166 | 188 | 2  | 175    | 141    | 167 | 2  | 161 | 147 | 167 | 2  | 161 |
|         | 75 Hz-20 kHz  | 167 | 187 | 3  | 174    | 145    | 162 | 3  | 155 | 146 | 163 | 3  | 156 |
| VIB-4   | 150 Hz-20 kHz | 166 | 185 | 3  | 174    | 145    | 162 | 3  | 155 | 146 | 163 | 3  | 156 |
|         | 200 Hz-20 kHz | 166 | 184 | 3  | 174    | 145    | 162 | 3  | 155 | 146 | 163 | 3  | 156 |
|         | 7 Hz-20 kHz   | 166 | 174 | 2  | 171    | 144    | 164 | 4  | 157 | 148 | 164 | 3  | 158 |
|         | 75 Hz-20 kHz  | 165 | 174 | 2  | 169    | 143    | 157 | 3  | 153 | 145 | 159 | 2  | 153 |
| VIB-5   | 150 Hz-20 kHz | 165 | 174 | 2  | 169    | 143    | 157 | 3  | 153 | 145 | 159 | 2  | 153 |
|         | 200 Hz-20 kHz | 165 | 173 | 2  | 169    | 143    | 157 | 3  | 153 | 145 | 159 | 2  | 153 |

Table 5.4 Season 3 - Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa

Note: Underwater sound levels were measured 32 to 38 feet (10 to 12 meters) from the piles.

August 18, 2017 Page 15 of 21 EBSP Comprehensive Acoustic Monitoring Report

| Pile ID | Frequency     |     | Pe  | ak |     |     | RI  | IS |     | SEL |     |    |     |  |
|---------|---------------|-----|-----|----|-----|-----|-----|----|-----|-----|-----|----|-----|--|
| Plie ID | Range         | Min | Max | SD | Avg | Min | Max | SD | Avg | Min | Max | SD | Avg |  |
|         | 7 Hz-20 kHz   | 155 | 180 | 5  | 169 | 135 | 161 | 5  | 153 | 135 | 162 | 4  | 154 |  |
| VIB-1   | 75 Hz-20 kHz  | 155 | 180 | 5  | 169 | 135 | 161 | 5  | 153 | 135 | 162 | 4  | 154 |  |
| VID-I   | 150 Hz-20 kHz | 155 | 180 | 5  | 169 | 135 | 161 | 5  | 153 | 135 | 162 | 4  | 154 |  |
|         | 200 Hz-20 kHz | 155 | 180 | 5  | 169 | 135 | 161 | 5  | 153 | 135 | 162 | 4  | 154 |  |
|         | 7 Hz-20 kHz   | 151 | 174 | 5  | 164 | 135 | 155 | 5  | 148 | 133 | 155 | 5  | 148 |  |
| VIB-2   | 75 Hz-20 kHz  | 151 | 174 | 5  | 163 | 134 | 153 | 5  | 147 | 127 | 155 | 5  | 147 |  |
| VID-2   | 150 Hz-20 kHz | 150 | 174 | 5  | 163 | 134 | 153 | 5  | 147 | 127 | 155 | 5  | 147 |  |
|         | 200 Hz-20 kHz | 150 | 174 | 5  | 163 | 134 | 153 | 5  | 147 | 127 | 155 | 5  | 147 |  |
|         | 7 Hz-20 kHz   | 154 | 174 | 3  | 166 | 129 | 159 | 4  | 151 | 139 | 159 | 3  | 152 |  |
| VIB-3   | 75 Hz-20 kHz  | 153 | 174 | 3  | 165 | 126 | 155 | 4  | 149 | 127 | 157 | 3  | 150 |  |
| VID-3   | 150 Hz-20 kHz | 153 | 174 | 3  | 165 | 126 | 155 | 4  | 149 | 127 | 157 | 3  | 149 |  |
|         | 200 Hz-20 kHz | 153 | 174 | 3  | 165 | 126 | 155 | 4  | 149 | 127 | 157 | 3  | 149 |  |
|         | 7 Hz-20 kHz   | 154 | 170 | 4  | 164 | 131 | 154 | 5  | 148 | 137 | 156 | 3  | 149 |  |
|         | 75 Hz-20 kHz  | 154 | 170 | 4  | 164 | 130 | 154 | 5  | 148 | 133 | 156 | 3  | 148 |  |
| VIB-4   | 150 Hz-20 kHz | 154 | 170 | 4  | 164 | 130 | 154 | 5  | 147 | 133 | 156 | 3  | 148 |  |
|         | 200 Hz-20 kHz | 154 | 171 | 4  | 164 | 130 | 154 | 5  | 147 | 133 | 156 | 3  | 148 |  |
|         | 7 Hz-20 kHz   | 155 | 180 | 4  | 170 | 137 | 159 | 3  | 153 | 137 | 161 | 3  | 153 |  |
|         | 75 Hz-20 kHz  | 154 | 180 | 4  | 170 | 137 | 158 | 3  | 152 | 135 | 161 | 3  | 153 |  |
| VIB-5   | 150 Hz-20 kHz | 155 | 180 | 4  | 170 | 137 | 158 | 3  | 152 | 135 | 161 | 3  | 153 |  |
|         | 200 Hz-20 kHz | 154 | 179 | 4  | 170 | 137 | 158 | 3  | 152 | 135 | 161 | 3  | 153 |  |

Table 5.5 Season 4 - Vibratory Pile Driving Underwater Sound Levels, dB re: 1 µPa

Note: Underwater sound levels were measured 37 to 39 feet (11.3 to 11.9 meters) from the piles.

## 5.1.2 Concrete Pile Removal

| Pile ID | Frequency     |     | Pe  | ak |     |     | RI  | IS |     | SEL |     |    |     |  |
|---------|---------------|-----|-----|----|-----|-----|-----|----|-----|-----|-----|----|-----|--|
| Plie ID | Range         | Min | Max | SD | Avg | Min | Max | SD | Avg | Min | Max | SD | Avg |  |
|         | 7 Hz-20 kHz   | 147 | 162 | 3  | 154 | 122 | 149 | 3  | 143 | 127 | 151 | 2  | 144 |  |
|         | 75 Hz-20 kHz  | 144 | 162 | 3  | 152 | 119 | 141 | 3  | 134 | 123 | 143 | 2  | 135 |  |
| REM-1   | 150 Hz-20 kHz | 144 | 158 | 3  | 151 | 119 | 141 | 3  | 134 | 123 | 143 | 2  | 135 |  |
|         | 200 Hz-20 kHz | 143 | 161 | 3  | 151 | 118 | 140 | 3  | 134 | 122 | 142 | 2  | 135 |  |
|         | 7 Hz-20 kHz   | 147 | 161 | 3  | 156 | 124 | 154 | 4  | 147 | 121 | 155 | 3  | 147 |  |
| REM-2   | 75 Hz-20 kHz  | 143 | 161 | 4  | 152 | 119 | 139 | 2  | 133 | 119 | 140 | 2  | 133 |  |
| REIVI-2 | 150 Hz-20 kHz | 144 | 161 | 4  | 151 | 118 | 138 | 3  | 133 | 119 | 140 | 2  | 133 |  |
|         | 200 Hz-20 kHz | 143 | 161 | 4  | 151 | 118 | 138 | 3  | 132 | 119 | 139 | 2  | 133 |  |
|         | 7 Hz-20 kHz   | 142 | 164 | 4  | 155 | 126 | 154 | 4  | 145 | 123 | 155 | 3  | 145 |  |
| REM-3   | 75 Hz-20 kHz  | 141 | 164 | 5  | 152 | 116 | 141 | 5  | 135 | 115 | 144 | 3  | 133 |  |
| REIVI-3 | 150 Hz-20 kHz | 138 | 164 | 5  | 151 | 115 | 141 | 4  | 132 | 114 | 143 | 4  | 132 |  |
|         | 200 Hz-20 kHz | 138 | 164 | 5  | 151 | 115 | 141 | 4  | 132 | 121 | 153 | 4  | 135 |  |
|         | 7 Hz-20 kHz   | 146 | 161 | 3  | 151 | 117 | 149 | 3  | 140 | 133 | 153 | 3  | 141 |  |
|         | 75 Hz-20 kHz  | 142 | 159 | 4  | 148 | 119 | 132 | 2  | 130 | 123 | 135 | 2  | 130 |  |
| REM-4   | 150 Hz-20 kHz | 142 | 159 | 4  | 148 | 118 | 131 | 3  | 129 | 119 | 134 | 3  | 130 |  |
|         | 200 Hz-20 kHz | 142 | 159 | 4  | 148 | 118 | 131 | 3  | 129 | 119 | 134 | 3  | 129 |  |
|         | 7 Hz-20 kHz   | 153 | 168 | 3  | 157 | 139 | 150 | 3  | 147 | 137 | 151 | 2  | 147 |  |
|         | 75 Hz-20 kHz  | 147 | 168 | 5  | 153 | 130 | 139 | 2  | 135 | 128 | 141 | 2  | 135 |  |
| REM-5   | 150 Hz-20 kHz | 146 | 165 | 4  | 152 | 128 | 139 | 2  | 135 | 125 | 141 | 2  | 135 |  |
|         | 200 Hz-20 kHz | 146 | 165 | 4  | 152 | 128 | 139 | 2  | 135 | 124 | 141 | 2  | 135 |  |

Table 5.6 Season 4 - Vibratory Pile Removal Underwater Sound Levels, dB re: 1  $\mu$ Pa

Note: Underwater sound levels were measured 35 to 40 feet (11 to 12 meters) from the piles.

August 18, 2017 Page 17 of 21 EBSP Comprehensive Acoustic Monitoring Report

## 5.2 Impact Pile Driving Underwater Sound Levels

## 5.2.1 Concrete Piles

| Table 5.7 Season 1 | – Box 10 Impact Pil | e Driving Underwater  | Sound Levels | dB re <sup>.</sup> 1 uPa |
|--------------------|---------------------|-----------------------|--------------|--------------------------|
|                    |                     | c Driving Onucriwater |              | αρις, ι μι α             |

| Pile    | Frequency     |     |     | ak |     |     |     | S <sub>90</sub> |     | ,   | SE  |    |     | -051 |
|---------|---------------|-----|-----|----|-----|-----|-----|-----------------|-----|-----|-----|----|-----|------|
| ID      | Range         | Min | Max | SD | Avg | Min | Max | SD              | Avg | Min | Max | SD | Avg | cSEL |
|         | 7 Hz-20 kHz   | 174 | 190 | 3  | 185 | 162 | 179 | 3               | 172 | 154 | 164 | 2  | 161 | 190  |
| IMP-1   | 75 Hz-20 kHz  | 173 | 187 | 2  | 182 | 165 | 178 | 3               | 174 | 149 | 161 | 2  | 158 | 187  |
|         | 150 Hz-20 kHz | 174 | 187 | 3  | 182 | 164 | 177 | 3               | 173 | 149 | 160 | 2  | 157 | 186  |
|         | 200 Hz-20 kHz | 172 | 187 | 3  | 182 | 162 | 177 | 3               | 173 | 146 | 160 | 2  | 156 | 185  |
|         | 7 Hz-20 kHz   | 180 | 193 | 2  | 189 | 165 | 182 | 2               | 176 | 157 | 170 | 1  | 164 | 193  |
| IMP-2   | 75 Hz-20 kHz  | 180 | 192 | 2  | 188 | 170 | 184 | 2               | 178 | 154 | 166 | 2  | 161 | 192  |
| IIVIP-2 | 150 Hz-20 kHz | 180 | 191 | 2  | 187 | 168 | 184 | 2               | 178 | 153 | 166 | 2  | 161 | 192  |
|         | 200 Hz-20 kHz | 180 | 192 | 2  | 187 | 168 | 183 | 2               | 177 | 153 | 166 | 2  | 160 | 193  |
|         | 7 Hz-20 kHz   | 175 | 202 | 5  | 194 | 160 | 189 | 5               | 181 | 151 | 172 | 3  | 167 | 200  |
| IMP-3   | 75 Hz-20 kHz  | 174 | 202 | 5  | 193 | 164 | 189 | 4               | 183 | 148 | 172 | 4  | 167 | 200  |
| 1111-2  | 150 Hz-20 kHz | 174 | 202 | 6  | 193 | 164 | 189 | 4               | 183 | 148 | 172 | 4  | 167 | 200  |
|         | 200 Hz-20 kHz | 174 | 202 | 6  | 193 | 164 | 189 | 4               | 183 | 147 | 172 | 4  | 166 | 200  |
|         | 7 Hz-20 kHz   | 187 | 199 | 3  | 192 | 173 | 188 | 3               | 178 | 162 | 171 | 2  | 166 | 197  |
| IMP-4   | 75 Hz-20 kHz  | 188 | 199 | 3  | 192 | 177 | 188 | 2               | 182 | 161 | 171 | 2  | 165 | 197  |
| IIVIP-4 | 150 Hz-20 kHz | 187 | 199 | 3  | 192 | 177 | 188 | 2               | 182 | 161 | 171 | 2  | 165 | 197  |
|         | 200 Hz-20 kHz | 187 | 199 | 3  | 192 | 177 | 188 | 2               | 182 | 160 | 171 | 2  | 165 | 198  |
|         | 7 Hz-20 kHz   | 164 | 190 | 4  | 185 | 141 | 183 | 4               | 179 | 134 | 172 | 4  | 168 | 200  |
| IMP-5   | 75 Hz-20 kHz  | 164 | 189 | 3  | 174 | 145 | 173 | 3               | 161 | 131 | 160 | 3  | 153 | 188  |
| IIVIP-5 | 150 Hz-20 kHz | 164 | 187 | 3  | 172 | 145 | 181 | 2               | 156 | 131 | 158 | 2  | 147 | 186  |
|         | 200 Hz-20 kHz | 164 | 187 | 3  | 172 | 145 | 180 | 3               | 155 | 131 | 158 | 3  | 146 | 186  |

August 18, 2017 Page 18 of 21 EBSP Comprehensive Acoustic Monitoring Report

| Pile  | Frequency     |     | Pe  |    |     |     |     | S <sub>90</sub> |     |     | •   | EL |     | cSEL |
|-------|---------------|-----|-----|----|-----|-----|-----|-----------------|-----|-----|-----|----|-----|------|
| ID    | Range         | Min | Max | SD | Avg | Min | Max | SD              | Avg | Min | Max | SD | Avg | COEL |
|       | 7 Hz-20 kHz   | 165 | 193 | 4  | 181 | 155 | 179 | 4               | 170 | 147 | 163 | 2  | 158 | 188  |
| IMP-1 | 75 Hz-20 kHz  | 164 | 193 | 5  | 181 | 154 | 179 | 4               | 169 | 139 | 163 | 3  | 155 | 188  |
|       | 150 Hz-20 kHz | 164 | 193 | 5  | 181 | 154 | 179 | 4               | 170 | 139 | 162 | 3  | 154 | 188  |
|       | 200 Hz-20 kHz | 164 | 193 | 5  | 181 | 154 | 179 | 4               | 170 | 139 | 162 | 3  | 154 | 188  |
|       | 7 Hz-20 kHz   | 169 | 187 | 3  | 181 | 158 | 173 | 2               | 168 | 147 | 163 | 3  | 158 | 189  |
|       | 75 Hz-20 kHz  | 170 | 186 | 3  | 181 | 159 | 176 | 3               | 170 | 145 | 161 | 2  | 156 | 188  |
| IMP-2 | 150 Hz-20 kHz | 168 | 185 | 3  | 180 | 158 | 176 | 3               | 170 | 143 | 160 | 2  | 155 | 187  |
|       | 200 Hz-20 kHz | 167 | 185 | 3  | 180 | 157 | 176 | 3               | 170 | 142 | 160 | 2  | 154 | 187  |
|       | 7 Hz-20 kHz   | 171 | 190 | 3  | 180 | 156 | 175 | 3               | 168 | 147 | 163 | 3  | 158 | 189  |
|       | 75 Hz-20 kHz  | 171 | 189 | 3  | 180 | 158 | 176 | 3               | 169 | 145 | 162 | 3  | 155 | 189  |
| IMP-3 | 150 Hz-20 kHz | 170 | 187 | 3  | 179 | 159 | 176 | 3               | 169 | 144 | 161 | 3  | 154 | 188  |
|       | 200 Hz-20 kHz | 170 | 187 | 3  | 179 | 159 | 175 | 3               | 168 | 144 | 160 | 3  | 154 | 187  |
|       | 7 Hz-20 kHz   | 165 | 191 | 2  | 177 | 152 | 180 | 3               | 166 | 140 | 165 | 3  | 157 | 191  |
|       | 75 Hz-20 kHz  | 164 | 190 | 2  | 177 | 152 | 180 | 2               | 167 | 140 | 165 | 2  | 152 | 191  |
| IMP-4 | 150 Hz-20 kHz | 163 | 189 | 2  | 177 | 153 | 180 | 2               | 167 | 139 | 165 | 2  | 152 | 191  |
|       | 200 Hz-20 kHz | 164 | 189 | 2  | 177 | 153 | 180 | 2               | 167 | 139 | 165 | 2  | 152 | 191  |
|       | 7 Hz-20 kHz   | 145 | 179 | 4  | 170 | 132 | 172 | 7               | 163 | 124 | 163 | 6  | 155 | 180  |
|       | 75 Hz-20 kHz  | 143 | 178 | 3  | 169 | 127 | 167 | 3               | 159 | 119 | 153 | 2  | 145 | 179  |
| IMP-5 | 150 Hz-20 kHz | 143 | 178 | 3  | 168 | 126 | 167 | 3               | 159 | 118 | 153 | 2  | 145 | 179  |
|       | 200 Hz-20 kHz | 143 | 178 | 3  | 168 | 126 | 167 | 3               | 159 | 117 | 153 | 2  | 144 | 179  |
|       | 7 Hz-20 kHz   | 141 | 179 | 6  | 169 | 133 | 175 | 8               | 162 | 125 | 165 | 7  | 156 | 191  |
|       | 75 Hz-20 kHz  | 146 | 167 | 3  | 160 | 132 | 151 | 3               | 146 | 123 | 142 | 3  | 137 | 167  |
| IMP-6 | 150 Hz-20 kHz | 147 | 166 | 3  | 160 | 132 | 153 | 3               | 145 | 123 | 139 | 2  | 134 | 164  |
|       | 200 Hz-20 kHz | 147 | 166 | 3  | 159 | 131 | 154 | 4               | 145 | 123 | 139 | 2  | 134 | 165  |

Table 5.8 Season 1 – Box 4 Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa

August 18, 2017 Page 19 of 21 EBSP Comprehensive Acoustic Monitoring Report

#### 5.2.2 Steel Sheet Piles

| Pile    | Frequency     |     | Ре  | ak |     |     | RM  | S <sub>90</sub> |     | SEL |     |    |     | cSEL |
|---------|---------------|-----|-----|----|-----|-----|-----|-----------------|-----|-----|-----|----|-----|------|
| ID      | Range         | Min | Max | SD | Avg | Min | Max | SD              | Avg | Min | Max | SD | Avg | COEL |
|         | 7 Hz-20 kHz   | 175 | 200 | 5  | 192 | 163 | 186 | 5               | 180 | 150 | 172 | 4  | 166 | 190  |
| IMP-1   | 75 Hz-20 kHz  | 175 | 200 | 5  | 192 | 162 | 186 | 5               | 180 | 150 | 172 | 4  | 166 | 190  |
| IIVIP-1 | 150 Hz-20 kHz | 175 | 200 | 5  | 192 | 162 | 186 | 5               | 180 | 150 | 172 | 4  | 166 | 190  |
|         | 200 Hz-20 kHz | 175 | 200 | 5  | 192 | 162 | 186 | 5               | 180 | 150 | 172 | 5  | 166 | 190  |
|         | 7 Hz-20 kHz   | 189 | 204 | 1  | 198 | 176 | 189 | 1               | 185 | 162 | 173 | 1  | 170 | 198  |
| IMP-2   | 75 Hz-20 kHz  | 189 | 203 | 1  | 198 | 175 | 189 | 1               | 185 | 164 | 173 | 1  | 170 | 198  |
| IIVIP-2 | 150 Hz-20 kHz | 189 | 203 | 1  | 198 | 175 | 189 | 1               | 185 | 162 | 173 | 1  | 169 | 198  |
|         | 200 Hz-20 kHz | 189 | 203 | 1  | 198 | 173 | 189 | 1               | 185 | 162 | 173 | 1  | 169 | 198  |
|         | 7 Hz-20 kHz   | 189 | 204 | 2  | 198 | 174 | 189 | 1               | 185 | 162 | 173 | 1  | 170 | 202  |
| IMP-3   | 75 Hz-20 kHz  | 189 | 204 | 2  | 198 | 174 | 189 | 1               | 185 | 162 | 173 | 1  | 170 | 202  |
| IIVIF-3 | 150 Hz-20 kHz | 189 | 204 | 2  | 198 | 174 | 189 | 1               | 185 | 162 | 173 | 1  | 170 | 202  |
|         | 200 Hz-20 kHz | 189 | 204 | 2  | 198 | 174 | 189 | 1               | 185 | 162 | 173 | 1  | 170 | 202  |
|         | 7 Hz-20 kHz   | 191 | 202 | 1  | 197 | 178 | 187 | 1               | 184 | 165 | 172 | 1  | 169 | 199  |
|         | 75 Hz-20 kHz  | 191 | 202 | 1  | 197 | 179 | 187 | 1               | 184 | 164 | 172 | 1  | 169 | 198  |
| IMP-4   | 150 Hz-20 kHz | 192 | 202 | 1  | 197 | 179 | 187 | 1               | 184 | 164 | 172 | 1  | 169 | 198  |
|         | 200 Hz-20 kHz | 192 | 202 | 1  | 197 | 179 | 187 | 1               | 184 | 164 | 172 | 1  | 169 | 198  |
|         | 7 Hz-20 kHz   | 190 | 204 | 1  | 197 | 177 | 188 | 1               | 184 | 163 | 173 | 1  | 170 | 201  |
| IMP-5   | 75 Hz-20 kHz  | 190 | 203 | 1  | 197 | 177 | 188 | 1               | 184 | 165 | 173 | 1  | 170 | 201  |
| IIVIP-5 | 150 Hz-20 kHz | 191 | 202 | 1  | 197 | 177 | 188 | 1               | 184 | 163 | 173 | 1  | 170 | 201  |
|         | 200 Hz-20 kHz | 190 | 203 | 1  | 197 | 177 | 188 | 1               | 184 | 163 | 173 | 1  | 170 | 201  |

Table 5.9 Season 2 - Impact Pile Driving Underwater Sound Levels, dB re: 1  $\mu$ Pa

August 18, 2017 Page 20 of 21 EBSP Comprehensive Acoustic Monitoring Report

| Pile    | Frequency     |     | Pe  | ak |     |     | RM  | S <sub>90</sub> |     |     | cSEL |    |     |      |
|---------|---------------|-----|-----|----|-----|-----|-----|-----------------|-----|-----|------|----|-----|------|
| ID      | Range         | Min | Max | SD | Avg | Min | Max | SD              | Avg | Min | Max  | SD | Avg | CSEL |
|         | 7 Hz-20 kHz   | 189 | 199 | 2  | 193 | 175 | 183 | 1               | 179 | 161 | 168  | 1  | 165 | 188  |
| IMP-1   | 75 Hz-20 kHz  | 189 | 199 | 2  | 193 | 175 | 183 | 1               | 179 | 161 | 168  | 1  | 165 | 188  |
| IIVIP-1 | 150 Hz-20 kHz | 189 | 199 | 2  | 193 | 175 | 183 | 1               | 179 | 161 | 168  | 1  | 165 | 188  |
|         | 200 Hz-20 kHz | 189 | 199 | 2  | 193 | 175 | 183 | 1               | 179 | 161 | 168  | 1  | 165 | 188  |
|         | 7 Hz-20 kHz   | 187 | 194 | 2  | 190 | 175 | 181 | 1               | 177 | 161 | 167  | 1  | 164 | 180  |
| IMP-2   | 75 Hz-20 kHz  | 187 | 194 | 2  | 190 | 175 | 181 | 1               | 177 | 161 | 167  | 1  | 164 | 180  |
| IIVIP-2 | 150 Hz-20 kHz | 187 | 194 | 2  | 190 | 175 | 181 | 1               | 177 | 161 | 167  | 1  | 164 | 180  |
|         | 200 Hz-20 kHz | 187 | 195 | 2  | 190 | 175 | 181 | 1               | 177 | 161 | 167  | 1  | 164 | 180  |
|         | 7 Hz-20 kHz   | 186 | 192 | 2  | 190 | 175 | 180 | 2               | 177 | 162 | 166  | 1  | 164 | 173  |
| IMP-3   | 75 Hz-20 kHz  | 186 | 192 | 2  | 190 | 175 | 180 | 2               | 177 | 162 | 166  | 1  | 164 | 173  |
| IIVIP-3 | 150 Hz-20 kHz | 186 | 192 | 2  | 190 | 175 | 180 | 2               | 177 | 162 | 166  | 1  | 164 | 173  |
|         | 200 Hz-20 kHz | 187 | 192 | 2  | 190 | 175 | 180 | 2               | 177 | 162 | 166  | 1  | 164 | 173  |
|         | 7 Hz-20 kHz   | 182 | 193 | 2  | 190 | 169 | 178 | 1               | 177 | 156 | 164  | 1  | 163 | 180  |
|         | 75 Hz-20 kHz  | 182 | 193 | 2  | 190 | 170 | 178 | 1               | 177 | 156 | 164  | 1  | 163 | 180  |
| IMP-4   | 150 Hz-20 kHz | 181 | 193 | 2  | 190 | 170 | 178 | 1               | 177 | 156 | 164  | 1  | 163 | 180  |
|         | 200 Hz-20 kHz | 181 | 193 | 2  | 190 | 170 | 178 | 1               | 177 | 156 | 164  | 1  | 163 | 180  |
|         | 7 Hz-20 kHz   | 187 | 194 | 2  | 191 | 176 | 182 | 2               | 178 | 162 | 167  | 1  | 165 | 180  |
| IMP-5   | 75 Hz-20 kHz  | 187 | 194 | 2  | 191 | 176 | 182 | 2               | 178 | 162 | 167  | 1  | 165 | 180  |
| G-HIVI  | 150 Hz-20 kHz | 187 | 194 | 1  | 191 | 176 | 182 | 2               | 178 | 162 | 167  | 1  | 165 | 180  |
|         | 200 Hz-20 kHz | 187 | 194 | 2  | 191 | 182 | 176 | 2               | 178 | 162 | 167  | 1  | 165 | 180  |

Table 5.10 Season 3 - Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa

Note: Sound levels normalized to 33 feet (10 meters)

August 18, 2017 Page 21 of 21 EBSP Comprehensive Acoustic Monitoring Report

| Pile    | Frequency     |     | Pe  | ak |     |     | RM  | S <sub>90</sub> |     | •   |     | cSEL |     |      |
|---------|---------------|-----|-----|----|-----|-----|-----|-----------------|-----|-----|-----|------|-----|------|
| ID      | Range         | Min | Max | SD | Avg | Min | Max | SD              | Avg | Min | Max | SD   | Avg | COEL |
|         | 7 Hz-20 kHz   | 174 | 189 | 3  | 184 | 160 | 176 | 3               | 171 | 147 | 162 | 2    | 157 | 177  |
| IMP-1   | 75 Hz-20 kHz  | 174 | 189 | 3  | 184 | 160 | 176 | 3               | 171 | 147 | 162 | 2    | 157 | 177  |
| 11111-1 | 150 Hz-20 kHz | 175 | 189 | 3  | 184 | 160 | 176 | 3               | 171 | 147 | 162 | 2    | 157 | 177  |
|         | 200 Hz-20 kHz | 175 | 189 | 3  | 184 | 160 | 176 | 3               | 171 | 147 | 162 | 2    | 157 | 177  |
|         | 7 Hz-20 kHz   | 182 | 191 | 1  | 187 | 166 | 179 | 1               | 175 | 155 | 164 | 1    | 161 | 182  |
|         | 75 Hz-20 kHz  | 182 | 191 | 1  | 187 | 170 | 179 | 1               | 175 | 155 | 164 | 1    | 161 | 182  |
| IMP-2   | 150 Hz-20 kHz | 182 | 191 | 1  | 187 | 170 | 179 | 1               | 175 | 155 | 164 | 1    | 161 | 182  |
|         | 200 Hz-20 kHz | 182 | 191 | 1  | 187 | 170 | 179 | 1               | 175 | 155 | 164 | 1    | 161 | 182  |
|         | 7 Hz-20 kHz   | 184 | 197 | 2  | 192 | 169 | 182 | 1               | 179 | 157 | 167 | 1    | 164 | 187  |
| IMP-3   | 75 Hz-20 kHz  | 184 | 197 | 2  | 192 | 171 | 182 | 1               | 179 | 157 | 167 | 1    | 164 | 187  |
| 11112-2 | 150 Hz-20 kHz | 184 | 197 | 2  | 192 | 171 | 182 | 1               | 179 | 157 | 167 | 1    | 164 | 187  |
|         | 200 Hz-20 kHz | 183 | 197 | 2  | 192 | 171 | 182 | 1               | 179 | 157 | 167 | 1    | 164 | 187  |
|         | 7 Hz-20 kHz   | 183 | 199 | 2  | 194 | 168 | 185 | 2               | 182 | 156 | 170 | 2    | 167 | 188  |
|         | 75 Hz-20 kHz  | 183 | 199 | 2  | 194 | 171 | 186 | 2               | 182 | 156 | 170 | 2    | 167 | 188  |
| IMP-4   | 150 Hz-20 kHz | 183 | 199 | 2  | 194 | 171 | 186 | 2               | 182 | 156 | 170 | 2    | 167 | 188  |
|         | 200 Hz-20 kHz | 183 | 199 | 2  | 194 | 171 | 186 | 2               | 182 | 156 | 170 | 2    | 167 | 188  |
|         | 7 Hz-20 kHz   | 180 | 198 | 2  | 194 | 166 | 183 | 2               | 181 | 151 | 168 | 2    | 166 | 188  |
| IMP-5   | 75 Hz-20 kHz  | 180 | 198 | 2  | 194 | 166 | 183 | 2               | 181 | 151 | 168 | 2    | 166 | 188  |
| IIVIP-5 | 150 Hz-20 kHz | 180 | 198 | 2  | 194 | 166 | 183 | 2               | 181 | 151 | 168 | 2    | 166 | 188  |
|         | 200 Hz-20 kHz | 180 | 198 | 2  | 194 | 166 | 183 | 2               | 181 | 151 | 168 | 2    | 166 | 188  |

Table 5.11 Season 4 - Impact Pile Driving Underwater Sound Levels, dB re: 1 µPa

Note: Underwater sound levels were measured 32 to 40 feet (10 to 12 meters) from the piles.