

COLMAN DOCK SEASON 3 HYDROACOUSTIC MONITORING REPORT

May 13, 2020

Prepared By:

······)))

THE GREENBUSCH GROUP, INC.

1900 West Nickerson Street Suite 201 Seattle, Washington 98119

Table of Contents

1.0	Executive Summary	1
2.0	Introduction	1
3.0	Nomenclature	2
4.0	Hydroacoustic Monitoring and Reporting Requirements	4
4.1	Project Specifications	4
4.2	WSDOT Underwater Noise Monitoring Plan	4
4.3	Greenbusch Underwater Noise Monitoring Plan	5
5.0	Pile and pile driving equipment Information	5
6.0	Measurement Methodology	7
6.1	Equipment	7
6.2	Measurement Locations	8
7.0	Impact Pile Driving Analysis and Results	10
7.1	West Side of North Trestle (North Trestle Group B) 36-Inch Piles	11
7.2	Slip 2 Bridge Seat 36 Inch Battered Piles	14
7.3	Wedge Piling	19
7.4	East Side of North Trestle (North Trestle Group A) 36-Inch Piles	20
8.0	Distance to Marine Mammal Disturbance and Injury Thresholds	23
8.1	Marine Mammal Threshold Distances	24
8.2	Fish Threshold Distances	26
9.0	Predicted Airborne Sound Levels at Nearby Properties	27
10.0	References	29

List of Tables

Table 5.1 Summary Pipe Piles, Feet (Meters)	6
Table 6.1 Hydroacoustic Monitoring Equipment	7
Table 6.2 Airborne Monitoring Equipment	7
Table 6.3 Hydrophone Location Summary, Feet (Meters)	9
Table 7.1 Marine Mammal Hearing Groups	10
Table 7.2 Pile N12.5-NF Underwater Sound Levels, dB re: 1 µPa	13
Table 7.3 Pile N12.5-NF Airborne Sound Levels, dB re: 20 µPa ¹	13
Table 7.4 Pile N11-NC.7 Underwater Sound Levels, dB re: 1 µPa	13
Table 7.5 Pile N11-NC.7 Airborne Sound Levels, dB re: 20 μPa ¹	14
Table 7.6 Pile N12-NC.7 Underwater Sound Levels, dB re: 1 µPa	14
Table 7.7 Pile N12-NC.7 Airborne Sound Levels, dB re: 20 μPa ¹	14
Table 7.8 Pile 4 Underwater Sound Levels, dB re: 1 µPa	16
Table 7.9 Pile 4 Airborne Sound Levels, dB re: 20 μPa ¹	16
Table 7.10 Pile 3 Underwater Sound Levels, dB re: 1 μPa	16
Table 7.11 Pile 3 Airborne Sound Levels, dB re: 20 µPa ¹	17
Table 7.12 Pile 2 Underwater Sound Levels, dB re: 1 μPa	17
Table 7.13 Pile 2 Airborne Sound Levels, dB re: 20 μPa ¹	17
Table 7.14 Pile 1 Underwater Sound Levels, dB re: 1 μPa	18
Table 7.15 Pile 1 Airborne Sound Levels, dB re: 20 μPa ¹	18
Table 7.16 Pile W1 Underwater Sound Levels, dB re: 1 µPa	20
Table 7.17 Pile W1 Airborne Sound Levels, dB re: 20 µPa1	20
Table 7.18 Pile E1.1-10 Underwater Sound Levels, dB re: 1 μPa	22
Table 7.19 Pile E1.1-10 Airborne Sound Levels, dB re: 20 μPa ¹	22
Table 7.20 Pile E1.1-8 Underwater Sound Levels, dB re: 1 μPa	22

Table 7.21 Pile E1.1-8 Airborne Sound Levels, dB re: 20 μPa ¹	22
Table 7.22 Pile E3-5 Underwater Sound Levels, dB re: 1 µPa	23
Table 7.23 Pile E3-5 Airborne Sound Levels, dΒ re: 20 μPa ¹	23
Table 8.1 Injury Thresholds, dB re: 1 μPa	24
Table 8.2 Disturbance Thresholds (RMS), dB re: 1 μPa	24
Table 8.3 Distances to Marine Mammal Thresholds from Impact Pile Driving, Feet (Meters).	25
Table 8.4 Threshold Levels for Fish, dB re: 1 μPa	26
Table 8.5 Distances to Fish Thresholds, Feet (Meters)	26
Table 9.1 Predicted Airborne Sound Levels at Nearby Residential Properties	28

List of Figures

Figure 2.1 Vicinity Map of Seattle Multimodal Terminal at Colman Dock Project	2
Figure 5.1 Seafloor Near Slip 2 Bridge Seat	5
Figure 5.2 Bubble Curtain	7
Figure 5.3 Operating Bubble Curtain	7
Figure 6.1 Hydroacoustic Monitoring Equipment	8
Figure 6.2 Airborne Monitoring Equipment	8
Figure 7.1 Auditory Weighting Functions for Marine Mammal Hearing Groups	10
Figure 7.2 November 8, 2019 Pile and Monitoring Locations	12
Figure 7.3 December 4, 2019 Pile and Monitoring Locations	12
Figure 7.4 Slip 2 Bridge Seat Pile and Measurement Locations	15
Figure 7.5 36-Inch Battered Piles	15
Figure 7.6 Wedge Piling and Hydrophone Locations	19
Figure 7.7 North Trestle (Group A) Pile and Hydrophone	21
Figure 7.8 Pile E1.1-10 Above the Waterline	21
Figure 8.1 Marine Mammal Disturbance and Injury Zones	25
Figure 8.2 Fish Injury and Effective Quiet Zones	27
Figure 9.1 Predicted Airborne Sound Levels 5-Feet Above Grade, Leq, dBA	28

1.0 EXECUTIVE SUMMARY

This Hydroacoustic Monitoring Report presents the results of underwater (hydroacoustic) and airborne sound level measurements made between November 2019 and February 2020 during the installation of 24-inch and 36-inch steel pipe piles with diesel impact hammers. This monitoring was conducted during Season 3 of the Seattle Multimodal Terminal at Colman Dock (Project).

Average unweighted underwater 90% RMS (RMS₉₀) sound levels measured approximately 33 feet (10 meters) from impact pile driving ranged between 170 and 183 dB re: 1 μ Pa for 36-inch diameter piles driven below the waterline, 155 and 159 dB re: 1 μ Pa for 36-inch piles driven onland. The average unweighted RMS₉₀ sound level from a 24-inch diameter Wedge Pile was 168 dB re: 1 μ Pa. Average peak sound levels from 36-inch piles driven below the waterline ranged between 180 and 196 dB re: 1 μ Pa, 162 and 165 dB re: 1 μ Pa from 36-inch piles driven above the waterline. The 24-inch Wedge Pile generated an unweighted average peak sound level of 179 dB re: 1 μ Pa.

Based on the highest average peak and daily cSEL levels measured by the far-field hydrophone, the distance required for sound to dissipate to below marine mammal injury thresholds (Level A) are estimated to be 16,442 feet (5,011 meters) for high-frequency cetaceans, up to 194 feet (59 meters) for other cetaceans, and 92 feet (28 meters) for pinnipeds. RMS₉₀ sound levels are estimated to dissipate to below the 160 dB marine mammal disturbance threshold (Level B) after 852 feet (260 meters).

2.0 INTRODUCTION

The Project Specifications and the Underwater Noise Monitoring Plan issued by the Washington State Department of Transportation (WSDOT), dated July 27, 2016 include requirements for hydroacoustic monitoring. These requirements include the number of piles to be monitored, monitoring equipment, signal processing requirements, measurement locations, analysis methodology, and information required to be reported to the Services. This Hydroacoustic Monitoring Report fulfills the Project's hydroacoustic monitoring and reporting requirements.

The Project is located west of Alaskan Way between Marion Avenue and Yesler Way in downtown Seattle, Washington (see Figure 2.1). Underwater and airborne sound level measurements were conducted between November 2019 and February 2020.

Figure 2.1 Vicinity Map of Seattle Multimodal Terminal at Colman Dock Project

3.0 NOMENCLATURE

The auditory response to sound is a complex process that occurs over a wide range of frequencies and intensities. Decibel levels, or "dB," are a form of shorthand that compresses this broad range of levels with a convenient, logarithmic scale.

Decibels are defined as the squared ratio of the sound pressure level (SPL) with a reference sound pressure. The reference pressure for airborne sound is 20 micropascals (μ Pa) and for underwater sound the reference pressure is 1 μ Pa. The use of 20 μ Pa in air is convenient because 1 dB re: 20 μ Pa correlates to the human threshold for hearing. It is important to note that because of these different reference pressures, airborne and underwater sound levels cannot be directly compared.

The following descriptors are referenced in this Report:

May 13, 2020 Page 3 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

• A-Weighted Decibel (dBA)

The human ear has a unique response to sound pressure. It is less sensitive to those sounds falling outside the speech frequency range. Sound level meters and monitors utilize a filtering system to approximate human perception of sound. Measurements made utilizing this filtering system are referred to as "A weighted" and are called "dBA".

• Equivalent Sound Level (L_{eq})

Equivalent Sound Level is the level of a constant sound having the same energy content as the actual time-varying level during a specified interval. The L_{eq} is used to characterize complex, fluctuating sound levels with a single number.

• Maximum Sound Level (L_{max})

 L_{max} is the maximum recorded root mean square (rms) A-weighted sound level for a given time interval or event. L_{max} can be defined for two time weightings, "slow" and "fast." "Slow" uses 1-second time constant, and "fast" uses a 125-millisecond time constant. For transient events of very short duration, L_{max} "fast" will be greater than L_{max} "slow." This report utilized L_{max} "fast".

Peak

The peak sound pressure level is the instantaneous absolute maximum pressure observed during a measured event. Peak pressure can be presented as a pressure or dB referenced to a standard pressure (20 μ Pa for airborne and 1 μ Pa for underwater).

• Percent Sound Level (L_n)

Percent Sound Level is the sound level that is exceeded n percent of the time; for example, L_{08} is the level exceeded 8% of the time. L_{25} is the sound level exceeded 25% of the time. This report utilizes the L_{90} and L_{95} descriptors.

• Root Mean Square (RMS)

The RMS level is the square root of the average squared pressure over a given time period. In hydroacoustics, the RMS level has been used by the National Marine Fisheries Service (NMFS) in criteria for assessing sound pressure impact on marine mammals.

• 90% Root Mean Square (RMS₉₀)

The RMS_{90} level is used for the analysis of impact pile driving and is the RMS level containing 90 percent of the energy in a pile strike. The RMS_{90} energy is established between the 5% and 95% of the pile energy and is calculated for each pile strike.

• Sound Exposure Level (SEL)

The SEL is the squared sound pressure integrated or summed over time, referenced to a standard pressure squared (20 μ Pa for airborne and 1 μ Pa for underwater), normalized to one second, and converted to decibels.

• Cumulative Sound Exposure Level (cSEL)

The cSEL is the SEL accumulated over time. In this report cSEL is calculated by combining the single strike SEL values for each pile.

4.0 HYDROACOUSTIC MONITORING AND REPORTING REQUIREMENTS

Requirements for the Project's hydroacoustic monitoring, signal processing, and reporting are included in the Project Specifications dated July 21, 2017; the Seattle Multimodal Terminal at Colman Dock-Phase 1 Underwater Noise Monitoring Plan authored by WSDOT dated July 27, 2016; and the Colman Dock Phase 3 Underwater Noise Monitoring Plan issued by The Greenbusch Group, Inc. dated August 12, 2019. Underwater sound level limits are not included in either the Project Specifications or the Underwater Noise Monitoring Plans authored by WSDOT and Greenbusch.

4.1 **Project Specifications**

Section 00 72 00 1-07.6(6) of the Project Specifications includes the following underwater noise monitoring requirements for the Contractor:

- The Contractor will comply with the provisions of the Underwater Noise Monitoring Plan authored by WSDOT. To comply with the WSDOT Underwater Noise Monitoring Plan, the Contractor will conduct hydroacoustic monitoring during construction to document the sound transmission during impact pile driving of steel piles.
- A representative subset of impact driven steel piles will be monitored at the start of each in-water work season, per the noise monitoring plan.
- Underwater sound levels will be continuously monitored for the entire duration of each pile being driven.
- The Contractor shall provide qualified staff and appropriate equipment to conduct impact driven steel pile hydroacoustic monitoring. Only staff with appropriate hydroacoustic expertise, as approved by the Contracting Agency, shall perform this monitoring.

4.2 WSDOT Underwater Noise Monitoring Plan

The Underwater Noise Monitoring Plan issued by WSDOT includes requirements regarding the number of piles to be monitored, hydroacoustic monitoring equipment, signal processing requirements, measurement locations, analysis methodology and information required to be reported to the Services.

The WSDOT Underwater Noise Monitoring Plan requires hydroacoustic monitoring locations to be 33 feet (10 meters) away from the pile at mid water depth and 3H, where H is the water depth of the pile being monitored. The 3H hydrophone should be at 80% of the water depth at the measurement location. Monitoring locations are required to have a clear acoustic line-of-sight between the pile and the hydrophones.

Sound levels measured at these locations must include the frequency spectrum, ranges, means, and L_{50} for peak, RMS₉₀ and SEL₉₀ sound pressure levels for each marine mammal functional hearing group as well as the broadband sound pressure levels. L_{50} levels reported in this document are the median sound levels from each pile drive. The estimated distance at which peak, RMS and cSEL values exceed the respective threshold values must also be reported.

Airborne sound level measurements are required to be made between 50 feet and 200 feet from impact pile driving. Notes are also required to be made to document any anomalous noise events such as boats and low flying aircraft that could influence the measurements and these events must be excluded from the measurement results. Ambient airborne sound levels must

May 13, 2020 Page 5 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

also be made for at least 15 minutes in the absence of construction activities to document background sound levels. The results of airborne sound monitoring must include the frequency spectrum, L_{max} , L_{eq} , and L_{90} for each pile including time history plots and an estimation of the received sound levels at the nearest residences.

4.3 Greenbusch Underwater Noise Monitoring Plan

The Colman Dock Phase 3 Underwater Noise Monitoring Plan authored by the Greenbusch Group, Inc. was prepared based on the requirements of the Project Specifications and the WSDOT Underwater Noise Monitoring Plan and provides details of how the hydroacoustic monitoring will be implemented. The Greenbusch Underwater Noise Monitoring Plan includes specific types of equipment that will be used during the monitoring, the resumes of hydroacoustic monitoring staff and a discussion of which piles will be monitored.

5.0 PILE AND PILE DRIVING EQUIPMENT INFORMATION

During Season 3, all steel pipe piles were initially driven with a vibratory hammer and then proofed with a diesel impact hammer. The piles for the Wedge Pilings are 24-inch diameter steel pipe piles with a wall thickness of 5/8-inch. The Wedge Piling measured during Season 3 (Pile W1) was approximately 82-feet long. North Trestle and Slip 2 Bridge Seat piles are 36-inch diameter steel pipe piles with wall thicknesses of 1-inch. Piles measured at the North Trestle ranged in length from approximately 70-feet to 97-feet. The Slip 2 Bridge Seat piles were battered piles and were approximately 105-feet long. The substrate is primarily composed of sand, shell hash, silt and includes some gravel and cobble. A photo of the seafloor near the Slip 2 Seat Piles is shown in Figure 5.1.

Measured piles driven at the west side of the North Trestle (North Trestle Group B) and the Slip 2 Bridge Seat were driven with an APE D100-52 diesel impact hammer with an energy rating of 248,063 foot-pounds. The ram weighed 22,050 pounds with a stroke length of 11.25 feet. A cut sheet of the APE D100-52 diesel impact hammer can be found in the Appendix of this Report.

All other piles installed during hydroacoustic monitoring were driven using an APE D62 diesel impact hammer. The APE D62 has a maximum energy rating of 162,052 foot-pounds, a ram weight of 13,671 pounds and a stroke length of 12 feet. Specifications for the APE D62 are shown in the Appendix.

Table 5.1 provides a summary of the steel pipe piles driven with impact pile drivers during the measurements.

Pile ID	Date Driven	Sound Attenuation	Distance to Water's Edge	Water Depth	Embedment ¹	Number of Strikes ²						
	l	Vest Side of Nort	h Trestle (North	Trestle Group	р B)							
N12.5-NF	11/8/2019	Bubble Curtain	274 (84)	28 (9)	56 (17)	550						
N11-NC.7	12/4/2019	Bubble Curtain	284 (87)	41 (13)	49 (15)	267						
N12-NC.7	12/4/2019	Bubble Curtain	310 (95)	43 (13)	49 (15)	234						
Slip 2 Bridge Seat (battered piles)												
Pile 4	1/17/2020	Bubble Curtain	395 (120)	43 (13)	59 (18)	511						
Pile 3	1/17/2020	Bubble Curtain	393 (120)	41 (13)	59 (18)	731						
Pile 2	1/17/2020	Bubble Curtain	389 (119)	38 (12)	59 (18)	629						
Pile 1	1/17/2020	Bubble Curtain	384 (117)	38 (12)	59 (18)	328						
			Wedge Piling									
W1	2/26/2020	Bubble Curtain	165 (50)	30 (9)	35 (11)	197						
	l	East Side of Nortl	h Trestle (North	Trestle Group) A)							
E1.1-10 (on-land)	2/26/2020	On-Land	15 (5)	N/A	60 (18)	831						
E1.1-8 (on-land)	2/26/2020	On-Land	15 (5)	N/A	61 (19)	366						
E3-5	2/26/2020	Bubble Curtain	25 (8)	6 (2)	67 (20)	742						

Table 5.1 Summary Pipe Piles, Feet (Meters)

1. N12.5-NF and N11-NC.7 embedment depths listed on pile logs. N12-NC.7 was extrapolated from nearby piles. Embedment of all other piles were estimated from water depth and information found on the Project Drawings.

2. Number of strikes included in analysis.

During hydroacoustic monitoring an unconfined bubble curtain was used during all impact pile driving. The unconfined bubble curtain consisted of six 2.5-inch nominal diameter aluminum rings with four rows of 1/16th inch diameter bubble release holes in the axial direction. Photos of the unconfined bubble curtain are shown in Figure 5.2 and Figure 5.3. The system design calculations and drawings of the bubble curtain are provided in the Appendix.

May 13, 2020 Page 7 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Figure 5.2 Bubble Curtain

6.0 **MEASUREMENT METHODOLOGY**

6.1 Equipment

The hydroacoustic and airborne monitoring equipment used during Season 3 are identified in Table 6.1 and Table 6.2.

Make and Model	Quantity	Description	Serial Number		
Brüel & Kjaer Type 2250	1	Sound Level Analyzer	3006756		
Boson TC 4012	2	Hydrophono	2513032		
Resolt 1C-4013	2	Пудгорноне	0712213		
Drück & Kieger Tyrne 2647 A	2	Charge Converter (1 m)//nC)	2638259		
Bruer & Njaer Type 2047-A	2	Charge Converter (1 mv/pC)	2582112		
Brüel & Kjaer 1704-A-002	1	Signal Conditioner	101161		
G.R.A.S. Type 42AC	1	Pistonphone	201835		
Tascam DR-100MKIII	1	Digital Audio Recorder	1690316		

Table 6.1 Hydroacoustic Monitoring Equipment

Table 6.2 Airborne Monitoring Equipment

Make and Model	Quantity	Description	Serial Number		
Svantek 979	1	Sound Level Analyzer	46177		
Svantek SV17	1	Preamplifier	57824		
G.R.A.S. 40AE	1	Microphone	258193		
Larson Davis CAL200	1	Acoustic Calibrator	16828		
Svantek 307	1	Sound Level Analyzer	78646		
Svantek ST30	1	Microphone	82620		
Larson Davis CAL200	1	Acoustic Calibrator	16826		

Figure 5.3 Operating Bubble Curtain

May 13, 2020 Page 8 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Monitoring equipment was factory calibrated within 1 year of the measurement date. Calibration tones were also recorded before and after each day of monitoring for verification of calibration factors during post-processing. Hydrophones were calibrated using the G.R.A.S. pistonphone and microphones were calibrated with the Larson Davis CAL200 acoustic calibrators.

Underwater sound levels were measured using two Reson TC-4013 hydrophones connected to the Brüel & Kjaer Type 2647-A charge converters and Brüel & Kjaer 1704-A-002 signal conditioner. The signal conditioner was connected to the Tascam DR-100KMIII digital audio recorder, which recorded the signals as WAV files at a sample rate of 48,000 samples per second for subsequent signal analysis. The Brüel & Kjaer Type 2250 allowed for real-time approximations of peak and cSEL sound levels while the measurements were being performed.

Airborne sound levels on November 8, 2019 were measured using the Svantek 979 sound level analyzer. All other airborne sound measurements were made using the Svantek 307. Both the instruments meet the requirements for a Type 1 sound level analyzer. This equipment recorded a WAV file at a sample rate of 48,000 samples per second for subsequent signal analysis as well as 1-second logging of unweighted and A-weighted L_{eq}, L_{max}, L₉₀, and L₉₅ sound levels. 1-second spectral data were recorded at 1/3 octave resolution.

Photographs of the monitoring equipment are provided Figure 6.1 and Figure 6.2.

Figure 6.1 Hydroacoustic Monitoring Equipment

Figure 6.2 Airborne Monitoring Equipment

6.2 Measurement Locations

Two hydrophones were used to measure underwater sound produced by impact pile driving. One near-field hydrophone was located at mid water depth approximately 33 feet (10 meters) from the pile. A far-field hydrophone was positioned at approximately 80% water depth 3H from the pile, where H was the water depth at the pile. Whenever possible, the hydrophones were positioned with a clear acoustic line-of-sight between the hydrophones and pile.

Distances between the pile and microphone ranged between 64 feet and 142 feet. The microphone was located approximately 7-feet above the dock and at least 5-feet from any acoustically reflective surfaces. A direct line-of-sight was maintained between the microphone and piles throughout the measurements.

The distances between the hydrophones and piles were verified using a laser distance measurement device. Water depth was measured at all monitoring locations prior to deploying

the hydrophones. Hydrophones were secured to existing portions of Colman Dock and construction platforms.

In addition to water depth measurements, tidal information was obtained from NOAA Station #9447130 and was used to track tidal changes during construction. Table 6.3 presents the depths of the hydrophones, water depth at the measurement locations as well as distances between the hydrophones and piles. Figures illustrating the hydroacoustic measurement positions are presented in Section 7.1 through Section 7.4 of this Report.

Pile ID	Hydrophone	Depth at Measurement Location	Hydrophone Depth	Distance to Pile									
West Side of North Trestle (North Trestle Group B)													
	Near-Field	30 (9)	16 (5)	30 (9)									
INTZ.3-INF	Far-Field	32 (10)	26 (8)	76 (23)									
N11 NC 7	Near-Field	41 (13)	35 (11)	30 (9)									
INTI-INC.7	Far-Field	41 (13)	29 (9)	97 (30)									
	Near-Field	43 (13)	35 (11)	30 (9)									
INTZ-INC.7	Far-Field	41 (13)	29 (9)	97 (30)									
	Slip 2 E	Bridge Seat (battered	d piles)										
Dilo 4	Near-Field	43 (13)	25 (8)	56 (17)									
Plie 4	Far-Field	49 (15)	37 (11)	96 (29)									
	Near-Field	41 (13)	23 (7)	46 (14)									
File 5	Far-Field	47 (14)	35 (11)	89 (27)									
Dilo 2	Near-Field	38 (12)	20 (6)	36 (11)									
File 2	Far-Field	44 (13)	32 (10)	80 (24)									
Dilo 1	Near-Field	38 (12)	20 (6)	27 (8)									
File I	Far-Field	44 (13)	32 (10)	73 (22)									
		Wedge Piling											
\\//1	Near-Field	29 (9)	11 (3)	30 (9)									
VVI	Far-Field	37 (11)	25 (8)	92 (28)									
	East Side of No	orth Trestle (North T	restle Group A)										
E1.1-10 (on-land)	Near-Field	10 (3)	6 (2)	73 (22)									
E1.1-8 (on-land)	Near-Field	10 (3)	6 (2)	61 (19)									
E3-5	Near-Field	10 (3)	6 (2)	23 (7)									

Table 6.3 Hydrophone Location Summary, Feet (Meters)

7.0 IMPACT PILE DRIVING ANALYSIS AND RESULTS

During post-processing the hydroacoustic data were frequency-weighted for each of the marine mammal hearing groups defined in the NOAA technical guidance document titled "Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing" dated April 2018. This Technical Guidance divides marine mammals into five hearing groups, as summarized in Table 7.1.

Table 7.1 Marine Mammal Hearing Groups

Hearing Group	Generalized Hearing Range					
Low-frequency (LF) cetaceans (baleen whales)	7 Hz – 35 kHz					
Mid-frequency (MF) cetaceans (dolphins, toothed whales, beaked whaled, bottlenose whales)	150 Hz – 160 kHz					
High-frequency (HF) cetaceans (true porpoise, <i>Kogia</i> , river dolphins, cephalorhynchid, <i>Lagenorhynchus cruciger & L. australis</i>)	275 Hz – 160 kHz					
Phocid pinnipeds (PW) (underwater) (true seals)	50 Hz – 86 kHz					
Otariid pinnipeds (OW) (underwater) (sea lions and fur seals)	60 Hz -39 kHz					

The auditory weighting functions for each of the marine mammal hearing groups are illustrated in Figure 7.1.

Figure 7.1 Auditory Weighting Functions for Marine Mammal Hearing Groups

Underwater noise data collected during impact pile driving were analyzed to determine the range, mean, L_{50} and standard deviation of peak, RMS_{90} and SEL values as well as the cSEL of each pile for each marine mammal functional hearing group as required by the WSDOT Underwater Noise Monitoring Plan. Standard deviation and L_{50} were calculated using decibel values and mean values were calculated using mean sound pressure levels. Periods when pile driving was not occurring under full power were excluded from this analysis. Reported sound levels from the near-field hydrophone have been normalized to 33 feet (10 meters) from the

piles using the practical spreading model. For additional information on the practical spreading model please see Section 8.0 of this Report.

The RMS₉₀ was established between the 5th percentile and 95th percentile for each recorded pile strike. Figures illustrating the waveforms produced by the pile strikes that generated the absolute highest peak sound pressure level from each pile are provided in the Appendix of this Report. The green portion of these waveforms represents the duration of the strike containing 90% of the acoustical energy.

SEL values were calculated for each pile strike over the duration of the strike containing 90% of the acoustic energy using the following formula:

$$SEL = RMS(dB) + 10 \log_{10}(\tau)$$

Where τ is the time interval containing 90% of the acoustic energy in each pile strike.

cSEL values were calculated by combining the single strike SEL values for each pile. The resulting cSEL values from each pile driven were combined (logarithmically) to produce daily cSEL values.

Airborne data were analyzed to determine the range and median of 1-second unweighted L_{eq} and L_{max} sound levels as well as A-weighted L_{eq} , L_{max} , L_{90} , and L_{95} sound levels. The 1/3 octave L_{eq} and L_{max} spectral data was also calculated. Periods when pile driving was not occurring are exclude from the analysis.

Details and results of the hydroacoustic and airborne monitoring at the North Trestle, Slip 2 Bridge Seat, and Wedge Piling are discussed in Section 7.1 through Section 7.4.

7.1 West Side of North Trestle (North Trestle Group B) 36-Inch Piles

Acoustic measurements were made during impact pile driving of three 36-inch steel pipe piles at the west side of the North Trestle (North Trestle Group B) on November 8, 2019 and December 4, 2019. During the November measurements the water temperature was approximately 51 degrees Fahrenheit and 53 degrees Fahrenheit during the December measurements. There was no precipitation during the measurements.

During the measurements, both hydrophones were suspended from portions of Colman Dock that had not been demolished. An unobstructed acoustical path between Pile N12-NC.7 and the far-field hydrophone was unable to be established however, both hydrophones maintained an unobstructed path during all other measurements. The microphone was positioned approximately 7-feet above the existing dock with an unobstructed acoustical path to the piles. The locations of the hydrophones, microphone, and piles are shown in Figure 7.2 and Figure 7.3.

Soft start procedures were followed before the drive of Pile N12.5-NF and Pile N11-NC.7. After completion of the soft start for Pile N12.5-NF pile driving commenced for a couple of minutes but was suspended to attached sensors for PDA testing. Pile driving resumed after the attachment of the sensors.

Figure 7.2 November 8, 2019 Pile and Monitoring Locations

Summaries of the airborne and underwater sound levels produced by impact pile driving at the west side of the North Trestle (North Trestle Group B) are shown in Table 7.2 through Table 7.7.

May 13, 2020 Page 13 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Frequency	Peak						RMS90					SEL				c9El
Range	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	COEL
Near-Field Hydrophone (measured 30 feet from pile, reported levels normalized to 33 feet)																
Unweighted						162	177	1.8	170	170	154	166	1.4	161	160	188
LF Cetacean						152	167	2.1	160	160	142	155	1.6	150	149	177
MF Cetacean	173	100	0.0	101		157	171	1.5	164	164	148	160	1.4	155	154	182
HF Cetacean		109	2.0	101	100	158	171	1.5	165	165	149	161	1.4	156	155	183
PW						148	163	1.6	156	156	139	152	1.3	147	146	174
OW						145	160	1.5	154	154	136	148	1.3	145	144	172
					Far-Fi	eld Hya	Irophon	e (76 i	feet from	pile)						
Unweighted						164	178	1.9	175	175	155	166	1.2	164	164	191
LF Cetacean						147	164	1.3	156	155	140	153	1.0	148	148	175
MF Cetacean	170	101	12	101	101	160	172	1.8	169	170	150	160	1.2	158	158	186
HF Cetacean	172	104	1.2	2 181	181	161	173	1.8	170	170	151	160	1.2	159	159	186
PW						150	161	1.4	159	159	141	150	1.1	149	149	176
OW						147	157	1.3	156	156	138	148	1.2	146	146	174

Table 7.2 Pile N12.5-NF Underwater Sound Levels, dB re: 1 μ Pa

Table 7.3 Pile N12.5-NF Airborne Sound Levels, dB re: 20 μ Pa¹

Unweighted							A-Weighted										
L _{eq} L _{max}				L _{eq}			L _{max}			L ₉₀			L ₉₅				
Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Мах	Mean
94	109	104	104	115	110	91	107	102	100	112	106	79	95	83	75	93	83

1. Sound levels measured 75 feet from pile. Reported sound levels have been normalized to 50 feet.

Table 7.4 Pile N11-NC.7 Underwater Sound Levels, dB re: 1 μ Pa

Frequency			RMS90					SEL					- 9 E I			
Range	Min	Max	SD	Mean	L ₅₀	Min	Мах	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	COEL
Near-Field Hydrophone (measured 30 feet from pile, reported levels normalized to 33 feet)																
Unweighted						167	180	2.3	173	172	158	171	2.0	163	163	188
LF Cetacean						155	171	2.3	161	160	147	159	2.0	150	149	174
MF Cetacean	176	100	27	182	2 181	162	175	2.1	167	167	153	165	1.9	157	157	182
HF Cetacean	170	192	2.7			163	176	2.1	168	167	154	166	1.9	158	157	182
PW						154	167	2.1	159	158	144	156	1.8	149	148	173
OW						151	167	2.1	157	156	141	155	1.8	146	146	171
					Far-Fi	eld Hyd	rophon	e (97 f	feet from	pile)						
Unweighted						160	173	1.3	165	165	151	163	1.3	155	155	180
LF Cetacean						146	160	1.9	152	151	137	151	1.7	143	142	167
MF Cetacean	167	102	17	170	170	155	167	1.1	159	159	146	158	1.2	150	150	174
HF Cetacean	167	103	1.7	/ 173	173	155	168	1.1	160	160	146	158	1.2	151	150	175
PW						145	158	1.2	150	150	136	149	1.2	141	141	165
OW						142	156	1.3	148	147	134	147	1.2	139	138	163

		Unwei	ighted								A-Wei	ghted					
	L_{eq}			L _{max}			L_{eq}			L _{max}			L90			L95	
Min	Мах	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean
91	107	105	105	114	111	87	107	105	105	114	111	81	88	83	80	87	82
1. Sc	ound leve	els meası	ired 94	feet fron	n pile. Re	ported s	sound le	vels have	been n	ormalize	ed to 50 fe	et.					

Table 7.5 Pile N11-NC.7 Airborne Sound Levels, dB re: 20 μPa¹

Table 7.6 Pile N12-NC.7 Underwater Sound Levels, dB re: 1 μ Pa

Frequency			Peak					RMS	0				SEL			- SEI
Range	Min	Max	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	CSEL
	Ne	ear-Fiel	d Hydi	rophone	(meası	ired 30	feet fro	m pile	, reported	d levels	norma	lized to	33 fee	et)		
Unweighted						166	174	0.7	171	171	158	164	0.6	162	162	186
LF Cetacean						153	165	1.6	161	161	144	154	1.1	151	150	175
MF Cetacean	175	106	10	101	100	161	169	0.7	166	166	152	160	0.6	157	157	181
HF Cetacean	175	100	1.0	101	100	162	169	0.7	167	167	153	161	0.6	158	157	181
PW						152	161	1.0	158	158	143	152	0.8	149	149	173
OW						150	161	1.4	157	157	141	151	1.2	148	147	172
					Far-Fi	eld Hyd	Irophon	e (97 i	feet from	pile)						
Unweighted						161	169	1.2	164	164	152	159	1.1	155	155	179
LF Cetacean						149	155	0.9	153	153	140	146	0.7	144	143	167
MF Cetacean	160	102	1.6	175	174	157	166	1.2	160	159	148	157	1.2	150	150	174
HF Cetacean	109	103	1.0	175	1/4	157	166	1.2	160	160	149	158	1.2	151	151	175
PW						147	156	0.9	151	151	139	148	0.9	142	142	166
OW						145	154	1.0	150	150	136	145	0.9	141	140	164

Table 7.7 Pile N12-NC.7 Airborne Sound Levels, dB re: 20 μ Pa¹

		Unwei	ghted								A-Wei	ghted					
	L_{eq}			L _{max}			L_{eq}			L_{max}			L ₉₀			L ₉₅	
Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
87	106	104	102	112	109	84	105	103	101	111	109	75	86	80	75	85	80

1. Sound levels measured 64 feet from pile. Reported sound levels have been normalized to 50 feet.

The underwater sound levels measured over the duration of each pile drive, the waveform of the of the pile strike which produced the absolute highest peak sound pressure level, and the average underwater frequency spectrum from all pile strikes are provided in the Appendix.

7.2 Slip 2 Bridge Seat 36 Inch Battered Piles

Four 36-inch battered piles were measured the afternoon of January 17, 2020 at the Slip 2 Bridge Seat. During the measurements, the water temperature was 49 degrees Fahrenheit and no precipitation occurred during the measurements.

Both hydrophones were secured to completed sections of Colman Dock and an unobstructed acoustical transmission path was maintained to both hydrophones during all pile driving. The microphone was positioned south of the piles approximately 7 feet above the dock with a direct line-of-sight to the piles. The locations of the piles, microphone, and hydrophones are shown in

May 13, 2020 Page 15 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Figure 7.4 and a photo of the battered piles is provided in Figure 7.5. Soft start procedures were followed at the start of Pile 1.

Figure 7.4 Slip 2 Bridge Seat Pile and Measurement Locations

Figure 7.5 36-Inch Battered Piles

Summaries of airborne and underwater sound levels measured during impact pile driving at the Slip 2 Bridge Seat are shown in Table 7.8 through Table 7.15.

May 13, 2020 Page 16 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Frequency			Peak					RMS 9	0				SEL			-051
Range	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	CSEL
	Ne	ear-Fiel	ld Hyd	rophone	(meası	ired 56	feet fro	m pile,	, reporte	d levels	norma	lized to	33 fee	et)		
Unweighted						174	185	1.2	182	182	162	171	1.0	169	169	196
LF Cetacean						169	178	1.1	176	176	155	165	1.0	163	163	190
MF Cetacean	107	107	0.0	105	105	168	178	1.1	176	175	156	165	0.9	163	163	190
HF Cetacean	107	197	0.9	195	195	169	179	1.2	176	176	156	166	0.9	163	163	191
PW						165	175	0.9	171	171	151	161	0.9	159	159	186
OW						165	175	1.0	171	171	151	162	0.9	159	159	186
					Far-Fi	eld Hya	Irophon	e (96 f	feet from	pile)						
Unweighted						165	176	1.4	172	172	154	164	1.0	161	161	188
LF Cetacean						160	170	1.2	167	167	147	158	1.0	155	155	182
MF Cetacean	100	100	10	196	105	159	170	1.3	166	166	148	158	1.0	155	155	182
HF Cetacean	100	109	1.0	100	105	159	170	1.3	166	166	149	159	1.0	156	156	183
PW						154	164	1.1	162	162	143	153	1.0	150	150	177
OW						153	164	1.1	161	161	141	152	1.0	150	150	177

Table 7.8 Pile 4 Underwater Sound Levels, dB re: 1 μ Pa

Table 7.9 Pile 4 Airborne Sound Levels, dB re: 20 μ Pa¹

		Unwei	ighted								A-Wei	ghted					
	L _{eq} L _{max}						L_{eq}			L _{max}			L ₉₀			L ₉₅	
Min	in Max Mean Min Max Mean Min						Мах	Mean	Min	Мах	Mean	Min	Мах	Mean	Min	Мах	Mean
93	Min Max Mean Min Max Mean 93 108 105 106 113 110					90	106	102	104	110	108	75	88	80	74	85	79

1. Sound levels measured 96 feet from pile. Reported sound levels have been normalized to 50 feet.

Table 7.10 Pile 3 Underwater Sound Levels, dB re: 1 μ Pa

Frequency			Peak					RMS 9	0				SEL			- 6 E I
Range	Min	Max	SD	Mean	L ₅₀	Min	Мах	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	CSEL
	Ne	ear-Fiel	d Hydi	rophone	(meası	ired 46	feet fro	m pile,	, reported	d levels	norma	lized to	33 fee	et)		
Unweighted						174	185	1.0	182	181	161	170	0.8	168	168	197
LF Cetacean						170	180	0.9	176	176	155	164	0.8	162	162	191
MF Cetacean	107	200	0.0	106	106	168	179	1.0	175	175	155	164	0.8	162	162	191
HF Cetacean	107	200	0.0	190	190	168	180	1.0	176	176	156	164	0.8	163	162	191
PW						165	175	0.9	172	172	151	160	0.8	158	158	187
OW						165	175	0.9	173	173	151	161	0.8	159	159	187
					Far-Fi	eld Hyd	Irophon	e (89 f	feet from	pile)						
Unweighted						164	176	1.3	171	171	154	164	0.8	161	160	189
LF Cetacean						160	171	1.1	166	166	148	157	0.9	154	154	183
MF Cetacean	400	100		107	107	158	169	1.1	166	165	148	158	0.9	154	154	183
HF Cetacean	180	190	1.1	187	187	159	170	1.1	166	166	149	159	0.9	155	155	184
PW						154	166	1.1	162	161	144	153	0.9	150	150	178
OW						155	165	1.0	162	161	143	152	0.9	150	150	178

		Unwei	ighted								A-Wei	ghted					
	L_{eq}			Lmax			L_{eq}			L _{max}			L90			L95	
Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Мах	Mean	Min	Max	Mean	Min	Max	Mean
92	108	105	105	112	110	88	106	102	101	111	108	77	89	81	77	86	80
1. So	ound lev	els measu	ired 89	feet fror	n pile. Re	ported s	sound le	vels have	been n	ormalize	ed to 50 fe	et.					

Table 7.11 Pile 3 Airborne Sound Levels, dB re: 20 µPa¹

Table 7.12 Pile 2 Underwater Sound Levels, dB re: 1 μ Pa

Frequency			Peak					RMS	0				SEL			-SEI
Range	Min	Max	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	COEL
	Ne	ear-Fiel	ld Hydi	rophone	(meası	ired 36	feet fro	m pile	, reporte	d levels	norma	lized to	33 fee	et)		
Unweighted						174	183	1.2	180	180	161	169	0.8	167	167	195
LF Cetacean						169	178	1.0	175	175	154	163	0.8	161	161	189
MF Cetacean	100	106	0.0	102	102	168	177	1.1	174	174	155	163	0.8	161	161	189
HF Cetacean	100	190	0.9	193	193	168	177	1.1	174	174	155	164	0.8	162	162	190
PW						165	174	1.0	170	170	151	159	0.8	157	157	185
OW						166	174	1.2	170	170	151	160	0.9	157	156	185
					Far-Fi	eld Hyd	Irophon	e (80 i	feet from	pile)						
Unweighted						164	177	1.2	173	173	154	165	0.9	162	162	190
LF Cetacean						160	173	1.3	168	168	147	159	1.0	156	155	184
MF Cetacean	100	102	16	100	100	159	172	1.0	167	167	148	160	0.9	156	156	184
HF Cetacean	102	193	1.0	100	100	159	172	1.0	168	168	149	160	0.9	157	156	185
PW						155	168	1.3	163	163	143	155	1.0	151	151	179
OW						154	169	1.5	163	163	142	155	1.1	151	151	179

Table 7.13 Pile 2 Airborne Sound Levels, dB re: 20 μ Pa¹

		Unwei	ighted								A-Wei	ghted					
	L_{eq}			L _{max}			L_{eq}			L _{max}			L ₉₀			L ₉₅	
Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Мах	Mean
90	108	105	104	112	111	87	105	103	101	110	109	77	88	80	75	85	79

1. Sound levels measured 80 feet from pile. Reported sound levels have been normalized to 50 feet.

May 13, 2020 Page 18 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Frequency			Peak					RMS	0				SEL			-051
Range	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	COEL
	Ne	ear-Fiel	ld Hyd	rophone	(meası	ired 27	feet fro	m pile	, reporte	d levels	norma	lized to	33 fee	et)		
Unweighted						168	182	1.6	179	178	156	168	1.2	165	165	190
LF Cetacean						163	177	1.5	174	173	149	162	1.3	159	159	184
MF Cetacean	100	104	10	101	101	163	176	1.5	172	172	150	162	1.2	159	159	184
HF Cetacean	100	194	1.0	191	191	163	176	1.5	173	173	151	163	1.2	160	160	185
PW						157	173	1.7	169	169	145	158	1.4	155	155	180
OW						158	174	2.0	169	169	144	159	1.8	155	155	180
					Far-Fi	eld Hya	Irophon	e (73 i	feet from	pile)						
Unweighted						165	175	1.0	173	173	154	163	0.8	162	162	187
LF Cetacean						160	170	1.0	168	168	147	157	0.9	155	155	181
MF Cetacean	404	100		100	100	159	169	1.1	167	167	148	157	0.8	156	156	181
HF Cetacean	101	192	1.1	109	109	159	170	1.1	168	168	149	158	0.8	156	156	182
PW						154	165	1.0	164	164	143	153	0.9	151	151	177
OW						153	166	1.0	164	164	142	153	1.0	151	151	177

Table 7.14 Pile 1 Underwater Sound Levels, dB re: 1 μ Pa

Table 7.15 Pile 1 Airborne Sound Levels, dB re: 20 μ Pa¹

		Unwe	ighted								A-Wei	ighted					
	L _{eq} L _{max}						L_{eq}			L _{max}			L ₉₀			L ₉₅	
Min	lin Max Mean Min Max Mea				Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean
91	Min Max Mean Min Max Mean 91 107 105 104 112 110					88	105	103	101	110	108	78	87	80	77	85	79

1. Sound levels measured 73 feet from pile. Reported sound levels have been normalized to 50 feet.

The underwater sound levels measured over the duration of each pile drive, the waveform of the of the pile strike which produced the absolute highest peak sound pressure level, and the average underwater frequency spectrum from all pile strikes are provided in the Appendix.

7.3 Wedge Piling

Acoustic measurements were made during impact pile driving of one 24-inch steel pipe pile during the morning of February 26, 2020. During the measurements, the water temperature was approximately 48 degrees Fahrenheit and there was no precipitation.

Both hydrophones were secured to completed sections of Colman Dock and an unobstructed acoustical transmission path was maintained to both hydrophones during the drive. The microphone was 7 feet above the dock and was approximately 91 feet from the pile. The locations of the pile, microphone, and hydrophones are shown in Figure 7.6.

Soft start procedures were followed at the beginning of the drive. However, the APE D62 diesel impact hammer was unstable on top of the pile. The hammer was also misfiring, and the piston height varied through the pile drive which resulted in variable sound levels.

Figure 7.6 Wedge Piling and Hydrophone Locations

Summaries of the airborne and underwater sound levels generated by impact pile driving of the 24-inch pile are shown in Table 7.16 and Table 7.17.

Frequency			Peak					RMS	0				SEL			-051
Range	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	CSEL
	Ne	ear-Fiel	d Hyd	rophone	(meası	ired 30	feet fro	m pile	, reporte	d levels	: norma	lized to	33 fee	et)		
Unweighted						162	174	2.4	168	168	152	162	2.0	157	156	180
LF Cetacean						156	168	2.2	161	160	144	154	1.9	148	147	171
MF Cetacean	175	100	21	190	170	157	168	2.1	163	162	147	156	1.9	151	150	174
HF Cetacean	175	109	2.1	100	179	157	169	2.2	163	163	147	156	2.0	151	151	174
PW						154	167	2.4	159	158	142	153	2.1	146	145	169
OW						153	167	2.8	159	158	141	154	2.4	146	144	169
					Far-Fi	eld Hya	Irophon	e (92 i	feet from	pile)						
Unweighted						158	168	1.8	163	162	149	158	1.8	153	153	176
LF Cetacean						146	159	2.6	153	151	137	147	2.1	142	141	165
MF Cetacean	167	101	25	170	170	153	162	1.8	157	156	144	152	1.7	147	147	170
HF Cetacean	107	104	2.5	1/3	172	153	162	1.8	157	157	144	153	1.7	148	148	171
PW						144	158	3.0	150	148	135	148	2.5	141	139	164
OW						142	160	3.9	150	146	133	148	3.1	139	137	162

Table 7.16 Pile W1 Underwater Sound Levels, dB re: 1 μ Pa

Table 7.17 Pile W1 Airborne Sound Levels, dB re: 20 µPa1

	Unweighted							A-Weighted									
L _{eq}			L _{max}			L _{eq}			L _{max}			L ₉₀				L ₉₅	
Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
93	106	102	104	112	108	89	103	100	100	110	106	79	90	81	77	89	80

1. Sound levels measured 91 feet from pile. Reported sound levels have been normalized to 50 feet.

The underwater sound levels measured over the duration of the pile drive, the waveform of the of the pile strike which produced the absolute highest peak sound pressure level, and the average underwater frequency spectrum from all pile strikes are provided in the Appendix.

7.4 East Side of North Trestle (North Trestle Group A) 36-Inch Piles

Measurements were made of impact pile driving of three 36-inch piles at the east side of the North Trestle (North Trestle Group A) during the afternoon of February 26, 2020. Water temperature during the measurements was approximately 48 degrees Fahrenheit and there was no precipitation. Due to tidal conditions Pile E1.1-10 and Pile E1.1-8 were driven above the waterline.

Only one hydrophone was used to monitor underwater sound levels because two of the piles were driven above the waterline and the far-field hydrophone would have been positioned closer than 33 feet (10 meters) from the pile due to the shallow water depth at the pile. The hydrophone was suspended from a temporary work trestle and maintained a direct path of acoustical transmission to the in-water pile and no piles were located between the hydrophone and the two piles driven above the waterline. The microphone was located south of the piles and was approximately 7-feet above the dock. The locations of the piles, microphone, and hydrophone are shown in Figure 7.7 and a photograph of Pile E1.1-10 being driven above the waterline is provided in Figure 7.8.

May 13, 2020 Page 21 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Soft start procedures were followed at the start of Pile E1.1-10 even though the pile was located above the waterline.

Figure 7.8 Pile E1.1-10 Above the Waterline

Summaries of the airborne and underwater sound levels generated by impact pile driving of the 36-inch piles are shown in Table 7.18 through Table 7.23.

Frequency		Peak						RMS	0		SEL					-9EI
Range	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	CSEL
Near-Field Hydrophone (measured 73 feet from pile, reported levels normalized to 33 feet) Unweighted 120 160 12 150 120 148 14 146 146 175																
Unweighted						139	160	1.3	158	159	130	148	1.1	146	146	175
LF Cetacean						133	139	0.8	137	138	124	131	0.7	129	129	158
MF Cetacean	161	61 166	0.0	165	165	140	154	2.0	152	152	130	141	0.9	140	140	169
HF Cetacean	161		0.9	105	105	140	155	2.1	152	153	130	142	0.9	141	141	170
PW						135	142	1.2	140	140	127	132	0.8	131	131	160
OW						133	139	0.9	137	137	125	130	0.7	128	128	158

Table 7.18 Pile E1.1-10 Underwater Sound Levels, dB re: 1 μ Pa

Table 7.19 Pile E1.1-10 Airborne Sound Levels, dB re: 20 μPa¹

		Unwei	ghted								A-Wei	ghted					
L _{eq} L _{max}				L _{eq}			L _{max}			L90			L ₉₅				
Min	Мах	Mean	Min	Мах	Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Мах	Mean
90 108 105 10 114 110 86 104				101	100	111	107	74	92	82	74	91	81				

1. Sound levels measured 92 feet from pile. Reported sound levels have been normalized to 50 feet.

Table 7.20 Pile E1.1-8 Underwater Sound Levels, dB re: 1 μ Pa

Frequency		Peak						RMS	0		SEL					a S E I
Range	Min	Max	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	Min	Max	SD	Mean	L ₅₀	COEL
Near-Field Hydrophone (measured 61 feet from pile, reported levels normalized to 33 feet)																
Unweighted						149	157	1.5	155	155	141	145	0.8	144	144	170
LF Cetacean						132	137	0.6	135	135	125	129	0.6	128	128	153
MF Cetacean	150	158 164	0.0	160	160	143	149	0.8	146	146	135	139	0.7	138	138	164
HF Cetacean	100		0.0	102	102	144	150	0.8	147	147	136	140	0.7	139	139	165
PW						134	139	0.7	137	137	126	130	0.6	129	129	155
OW						132	136	0.6	135	135	124	128	0.5	127	127	152

Table 7.21 Pile E1.1-8 Airborne Sound Levels, dB re: 20 μ Pa¹

		Unwe	ighted								A-Wei	ighted					
Leq Lmax					L_{eq}		L _{max}			L ₉₀			L95				
Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean
95	95 110 106 108 117 112			112	90	90 105 102 103 111 107 80 90 83 79					88	82					

1. Sound levels measured 139 feet from pile. Reported sound levels have been normalized to 50 feet.

Frequency	Peak					RMS	0		SEL					-SEI		
Range	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	Min	Max	SD	Mean	L50	COEL
Near-Field Hydrophone (measured 23 feet from pile, reported levels normalized to 33 feet)																
Unweighted						180	186	1.1	183	183	165	170	1.0	168	168	197
LF Cetacean						175	181	1.2	178	178	159	165	1.0	163	163	191
MF Cetacean	100	189 201	21	106	105	174	181	1.1	178	178	159	165	1.0	162	162	191
HF Cetacean	189		2.1	190	195	175	181	1.1	178	178	159	165	1.0	163	163	191
PW						173	180	1.3	176	176	157	163	1.1	161	161	189
OW						174	181	1.4	177	177	158	164	1.2	162	162	190

Table 7.22 Pile E3-5 Underwater Sound Levels, dB re: 1 μ Pa

Table 7.23 Pile E3-5 Airborne Sound Levels, dB re: 20 µPa1

		Unwei	ighted				A-Weighted										
Leq Lmax				L _{eq}			Lmax			L ₉₀			L95				
Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean
91 108 103 101 114 109			86	86 107 101 99 114 107 79 93 82 78 9					91	81							

1. Sound levels measured 142 feet from pile. Reported sound levels have been normalized to 50 feet.

The underwater sound levels measured over the duration of each pile drive, the waveform of the of the pile strike which produced the absolute highest peak sound pressure level, and the average underwater frequency spectrum from all pile strikes are provided in the Appendix.

8.0 DISTANCE TO MARINE MAMMAL DISTURBANCE AND INJURY THRESHOLDS

Data collected during impact pile driving was used to estimate the distance required for underwater sound levels to reach the disturbance and injury thresholds for fish and marine mammals.

The distances were calculated using the "practical spreading model" currently used by NOAA. The practical spreading formula is provided below.

$$SPL_{D2} = SPL_{D1} + \beta * \log_{10} \left(\frac{D_1}{D_2} \right)$$

Where SPL_{D1} is the sound pressure measured at a distance, D_1 and SPL_{D2} is the estimated sound pressure at a distance, D_2 . β is the attenuation factor resulting from acoustic spreading over distance. The California Department of Transportation (Caltrans) reported in the "Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish" dated November, 2015, that β can range between 5 and 30 depending upon site specific conditions such as water depth, pile type, pile length and the substrate the pile is driven into. Currently NOAA uses the practical spreading model with β equaling 15, which results in a 4.5 dB reduction in underwater sound levels for each doubling of distance.

The distances required for underwater noise to reach the disturbance and injury thresholds for fish and marine mammals are estimated by solving the practical spreading formula for D_2 resulting in the following:

$$D_2 = D_1 * 10^{\left(\frac{SPL_{D1} - SP_{D2}}{15}\right)}$$

May 13, 2020 Page 24 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

To estimate the distances required for underwater noise to reach the disturbance and injury thresholds sound levels measured by the far-field hydrophone were normalized to their average measurement distance of 80 feet (24 meters) to allow for comparison of measured sound levels. After calculating the far-field sound levels at 80 feet (24 meters), the highest median peak, RMS₉₀ and highest daily cSEL values were used to calculate the distances required for sound to reach marine mammal thresholds. The far-field hydrophone provides a more accurate estimate of sound levels at greater distances, as described in the National Marine Fisheries Service Guidance Document titled "Data Collection Methods to Characterize Impact and Vibratory Pile Driving Source Levels Relevant to Marine Mammals", dated January 31, 2012.

8.1 Marine Mammal Threshold Distances

The results of the acoustic monitoring and analysis were used to estimate the distances required for underwater sound levels to reach the marine mammal injury (Level A) and disturbance (Level B) thresholds.

In April 2018, NOAA issued updated technical guidance for determining the effects of underwater sound on marine mammals titled "Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing". The Technical Guidance utilizes dual threshold criteria for injury from impulsive sounds, such as impact pile driving. These criteria are peak sound pressure and cSEL values accumulated over a 24-hour period. The peak sound pressure criteria are unweighted and the cSEL values are frequency-weighted for each marine mammal hearing group. Injury thresholds from impulsive sounds are in Table 8.1.

Hooring Croup	Impulsive							
Hearing Group	Peak (unweighted)	cSEL (weighted)						
Low-frequency (LF) cetaceans	219	183						
Mid-frequency (MF) cetaceans	230	185						
High-frequency (HF) cetaceans	202	155						
Phocid pinnipeds (PW) (underwater)	218	185						
Otariid pinnipeds (OW) (underwater)	232	203						

Table 8.1 Injury Thresholds, dB rea	:1μPa
-------------------------------------	-------

Source: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing, April 2018

Marine mammal disturbance thresholds (Level B) from underwater sound are based on RMS sound levels from previous guidance and are shown in Table 8.2.

Table 8.2 Disturbance Thresholds	(RMS),	dB re: 1	μPa
----------------------------------	--------	----------	-----

Impact Pile Driving Disturbance Threshold
160
160

Source: National Marine Fisheries Service

The practical spreading model, the highest 24-hour cSEL values, and the loudest average peak, and RMS_{90} sound levels recorded during pile driving were used to calculate the distances necessary for underwater sound to reach Level A and Level B thresholds. The resulting distances for impact pile driving distances are shown in Table 8.3.

May 13, 2020 Page 25 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

Hearing	Measu	red Sour	nd Level	Ma	rine Mar Thresho	nmal Id	Distance to Threshold				
Group				Lev	Level A		Lev	el A	Level B		
	Peak	cSEL	RMS ₉₀	Peak	cSEL	RMS ₉₀	Peak	cSEL	RMS ₉₀		
LF Cetaceans	193	189	175	219	183		1.6 (0.5)	194 (59)	852 (260)		
MF Cetaceans	193 189 175		230	185		0.3 (0.1)	150 (46)	807 (246)			
HF Cetaceans	193	190	175	202	155	160	21.3 (6.5)	16,442 (5,011)	852 (260)		
Pinnipeds (Phocids)	193	186	173	218	185		1.8 (0.5)	92 (28)	575 (175)		
Pinnipeds (Otariids)	193	187	173	232	203		0.2 (0.1)	6 (1.8)	629 (192)		

Table 8.3 Distances	to Marine	Mammal	Thresholds	from Impa	act Pile Drivin	a. Feet ((Meters)
		mannia	111100110100	nom mpe		g, i oot i	

As shown in Table 8.3, the estimated distances required for sound produced by impact pile driving to reach the 160 dB marine mammal disturbance threshold is up to 852 feet (260 meters) from the pile. Approximately 16,442 feet (5,011 meters) may be required for sound to dissipate to below the Level A injury thresholds for high-frequency cetaceans, 194 feet (59 meters) for other cetaceans, and 92 feet (28 meters) for pinnipeds. Figure 8.1 illustrates the areas where underwater sound levels are expected to exceed the Level A and Level B thresholds for marine mammals. Descriptions of observed marine mammal behavior can be found in the marine mammal monitoring report.

8.2 Fish Threshold Distances

In 2008. The Fisheries Hydroacoustic Working Group, the Federal Highway Administration and Federal Agencies, including the National Marine Fisheries Service (NMFS), agreed upon dual sound level threshold criteria for the onset of injury to fish. These thresholds include peak sound pressure levels and cSEL levels for fish weighing more than 2 grams and fish weighing less than 2 grams. These thresholds as well as the threshold for "effective quiet" are shown in Table 8.4.

|--|

	1		
Effect	Metric	Fish Mass	Threshold
Physical Injury	Peak	N/A	206
		< 2 grams	183
		≥ 2 grams	187
Effective Quiet	Single Strike SEL	N/A	150

The distances for underwater sound levels to reach the threshold values listed in Table 8.4 were calculated using the practical spreading model and the highest mean peak and single strike SEL unweighted sound levels as well as the highest daily cSEL level measured by the far-field hydrophone. The resulting distances are provided in Table 8.5.

Effect	Metric	Measured Sound Level	Fish Mass	Threshold	Distance	
Physical Injury	Peak	193 ¹	N/A	206	12 (3.7)	
	Daily cSEL	1052	< 2 grams	183	522 (159)	
		190-	≥ 2 grams	187	282 (86)	
Effective Quiet	ffective Quiet Single Strike SEL		N/A	150	789 (241)	

Table 8.5 Distances to Fish Thresholds, Feet (Meters)

1. The highest mean peak and singe strike SEL sound levels were measured during impact pile driving of Pile E3-5.

2. The highest daily unweighted cSEL sound level was measured by the far-field hydrophone on January 17, 2020.

Figure 8.2 illustrates the areas where underwater sound levels are expected to exceed the injury and effective quiet thresholds for fish.

Figure 8.2 Fish Injury and Effective Quiet Zones

9.0 PREDICTED AIRBORNE SOUND LEVELS AT NEARBY PROPERTIES

Airborne sound levels measured during Season 3 were used to predict sound levels at nearby residential properties.

Sound levels were predicted using a 3-D computer noise model. The computer noise model uses the acoustic modeling software Cadna/A. Cadna/A utilizes the CADNA (Control of Accuracy and Debugging for Numerical Applications) computation engine developed by the Pierre et Marie Curie University in Paris. The model accounts for the effects of distance, topography, and surface reflections on sound levels produced by impact pile driving.

The computer noise model was generated based on pile locations determined from project drawings and sound levels measured during Season 3. Elevation contours and locations and heights of nearby buildings were based on Geographic Information System (GIS) data downloaded from the Seattle Department of Construction and Inspections website.

Predicted sound levels at nearby residential properties are shown in Table 9.1. Sound contours predicted 5-feet (1.5 meters) above grade from the pile which produced the loudest predicted sound levels at nearby properties are shown in Figure 9.1.

May 13, 2020 Page 28 of 29 Colman Dock Season 3 Hydroacoustic Monitoring Report

		Predicted 1-Second Leq at Nearby Residential Use Properties, dBA									
Property	N12.5- NF	N12- NC.7	N11- NC.7	Pile 4	Pile 3	Pile 2	Pile 1	W1	E3-5	E1.1- 10	E1.1-8
The Post at Pier 52	77	78	81	77	77	78	77	77	84	86	82
Waterfront Place	77	78	80	77	77	78	76	79	82	84	80
Alexis Hotel	71	72	72	71	71	72	71	72	65	66	63
Best Western Plus Pioneer Square Hotel	72	74	76	73	73	74	73	71	77	78	76
606 Post Condominium	69	70	72	69	69	70	69	67	73	74	72
Travelers Hotel the Post Condominium	59	68	70	65	66	68	67	68	74	75	73

Table 9.1 Predicted Airborne Sound Levels at Nearby Residential Properties

10.0 REFERENCES

California Department of Transportation. "Hydroacoustic Effects of Pile Driving on Fish." November 2015.

Madsen, P.T., M. Johnson, P.J.O. Miller, N. Aguilar Soto, J. Lynch and P. Tyack. "Quantitative Measures of Air-Gun Pulses Recorded on Sperm Whales (Physeter macrocephalus) Using Acoustic Tags during Controlled Exposure Experiments." October 2006.

NMFS Northwest Region and Northwest Fisheries Science Center. "Guidance Document: Data Collection Methods to Characterize Impact and Vibratory Pile Driving Source Levels Relevant to Marine Mammals." January 31, 2012.

NOAA. "Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts." April 2018.

NOAA Fisheries National Marine Fisheries Service "Marine Mammal and Fish Injury and Disturbance Thresholds for Marine Construction Activity."

Seattle Multimodal Terminal at Colman Dock Project Drawings and Specifications. November 28, 2016

The Greenbusch Group, Inc. "Colman Dock Phase 3 Underwater Noise Monitoring Plan." August 12, 2019.

Washington State Department of Transportation. "Seattle Multimodal Terminal at Colman Dock-Phase 1 Underwater Noise Monitoring Plan." July 27, 2016

Washington State Department of Transportation. "Underwater Noise Monitoring Plan Template." August 2013.