

NOAA Fisheries Aquaculture Opportunity Areas Request for Information

Alicia Bishop, NOAA Fisheries Alaska Regional Aquaculture Coordinator Chris Schillaci, NOAA National Centers for Coastal Ocean Science

AK RFI Listening Sessions, 2023

Today's Presenters

• Alicia Bishop: NOAA Fisheries Alaska Regional Aquaculture Coordinator

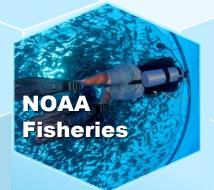
 Chris Schillaci: NOS National Centers for Coastal Ocean Science, Marine Ecologist, Coastal Aquaculture Siting and Sustainability

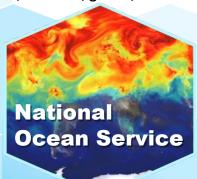
Ground Rules

This Meeting is:

- An introduction to Aquaculture Opportunity Areas (AOAs)
- To accept oral public comments on the requested information in the Request for Information (RFI)

This Meeting is Not:

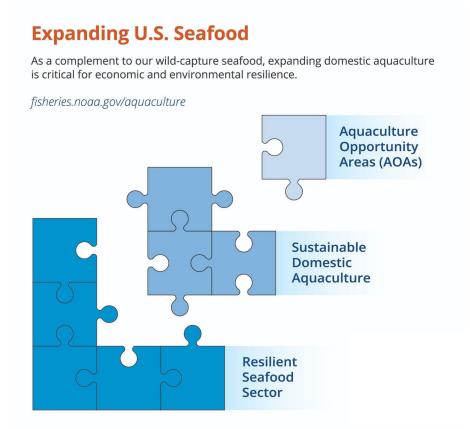

- Question and answer session
- About any specific permit application



NOAA Aquaculture Program

These organizations partner across NOAA to advance sustainable aquaculture in the United States through policy, outreach, science, research, grants, and extension.

- Office of Aquaculture
- Regional Offices
- Science Centers



 National Centers for Coastal Ocean Science

National Sea Grant College Program

AOAs and Expanding U.S. Seafood

AOA Goals

- Utilize a science-based approach to inform marine aquaculture planning
- Find areas that could be suitable for multiple future aquaculture projects
- Address interests and concerns regarding seaweed and invertebrate aquaculture siting
- Address the increasing demand for seafood
- Promote American seafood competitiveness, food security, economic growth while also sustaining and conserving marine resources
- Meet the directives of Executive Order 13921

What is an Aquaculture Opportunity Area?

AOAs will expand economic opportunities in coastal and rural areas, and increase our nation's seafood security. AOAs use the best available science to find appropriate spaces for sustainable aquaculture. AOAs minimize interactions with other users, such as shipping, fishing, subsistence activities, and the military.

Aquaculture Opportunity Areas show high potential for commercial aquaculture. A science and community-based approach to identifying these areas helps minimize interference with other enterprises, account for current fishing patterns, subsistence and cultural activities, and protect the ecosystem.

What is the Process?

- The AOA process is anticipated to take approximately four years.
 - 2 years suitability analysis
 - 2 years environmental review (NEPA)
- Some of the products of this process include: spatial analysis (Atlas) and environmental review (NEPA).
- The AOA identification process is public driven. Public input is essential in the design and location of AOAs.

NEPA: National Environmental Policy Act

Key Points

- Multi-year planning process, not regulatory, no new NOAA authorities
- AOAs are not pre-permitted sites. Federal and state leasing and permit requirements remain the same
- In Alaska, AOAs will be sited in state waters and will support seaweed and invertebrate aquaculture (finfish farming is prohibited)
- Identification of AOA location(s) will not be made until end of NEPA process
- Aquaculture projects don't have to be located in an AOA

Alaska AOA Process Timeline

Fiscal Year 2023-2024

June 2023 Now: Nov 2023

Alaska Next Steps:

Announce start of process to identify Aquaculture Opportunity Areas in Alaska

Engagement and data collection. Gather feedback on study area parameters

RFI in October 2023; Nov two listening sessions

Finalize study areas based on public input

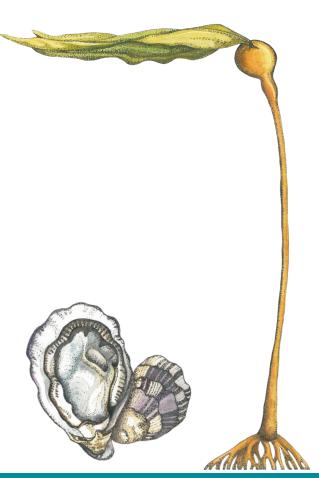
NCCOS data collection and modeling for siting analysis

Coming soon!

Spring 2024 Mapping Workshops

NCCOS draft Aquaculture Opportunity Atlas; peer review

*Tasks and timeframes may shift due to resource restrictions or needs


Public Process for AOAs

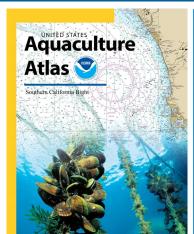
- Request for Information
 - Support the identification of AOAs in Alaska state waters, including siting parameters that can be used to select potential study areas for further analysis
- Notice of Intent to Prepare NEPA
- Draft NEPA Review

NEPA: National Environmental Policy Act

Learn More About Request for Information

- Federal Register Notice published Oct 19th
- Open for 60 days through **Dec 18th**
- NOAA Fisheries <u>website</u> identifies how to provide electronic, written, and oral comments and provides overview maps of study areas.
- NCCOS <u>website</u> provides all of the study areas maps including at community levels
- Listening Sessions are being held:
 - Nov 14th 9-11am AST
 - Nov 15th 2-4pm AST

Spatial Planning for AOAs



Spatial Planning For Aquaculture Opportunity Areas

National Centers for Coastal Ocean Science National Ocean Service Marine Spatial Ecology Division

Chris Schillaci, James Morris, and Team



Aquaculture Spatial Planning and Siting

NCCOS | NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

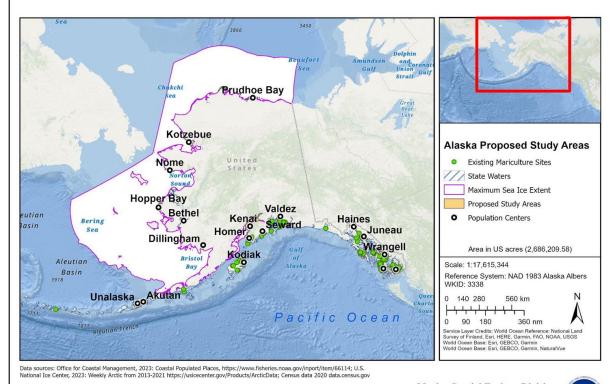
- Completed 50+ analyses in last 5 years
- Aquaculture Opportunity Areas
- State-designated aquaculture use areas
- Spatial planning for Ports/Harbors and farm specific sites

Planning for Aquaculture Opportunity

NCCOS NATIONAL CEI

Areas Round 2

Step 1 - Identify project requirements?



• Critical parameters for siting (e.g., distance from port, ice cover)?

 Final product for Atlases (e.g., consider species/gear, consider economic development, consider largest area for all aquaculture types)

Step 2 - Identify Study Areas

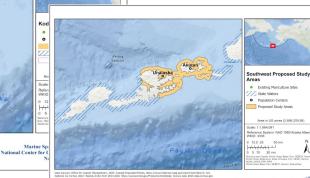
- Alaska state waters
- **Use distance from** coastal population centers as proxy for infrastructure
 - 25 mile radius from top 25 coastal communities by population (2010 census data)
- Ice cover- aggregate maximum sea ice extents between 2013-2021
- **Leaves 16 communities**

Step 2 - Identify Study Areas

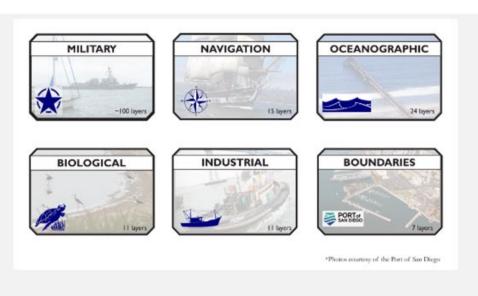
Southeast Alaska Proposed

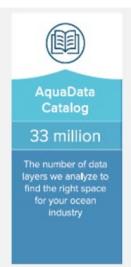
Study Areas

National Cente


Southcentral

 See <u>NCCOS AOA</u> <u>RFI webpage</u> for more information




Southwest

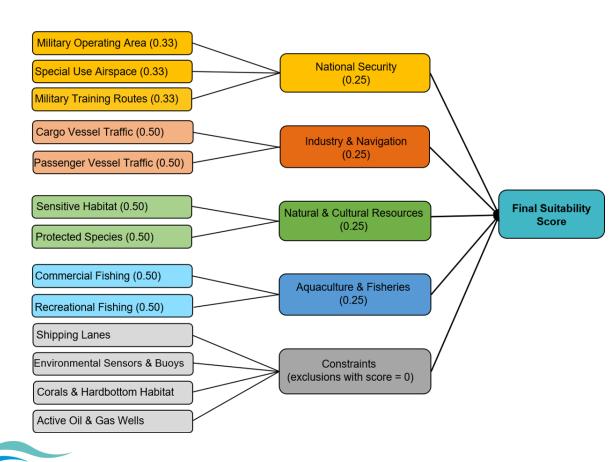
Step 3 - Compile comprehensive geodatabase for study areas

Step 4 - Build a suitability model for study areas

- Develop list of candidate species
- Identify cultivation techniques
- Develop thresholds for each species/gear combination

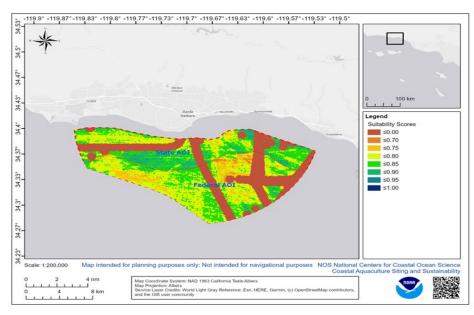
Species Thresholds
Chlorophyll a
Current speed
Depth
рН
Salinity
Temperature
DO
Substrate type
Light transmissivity

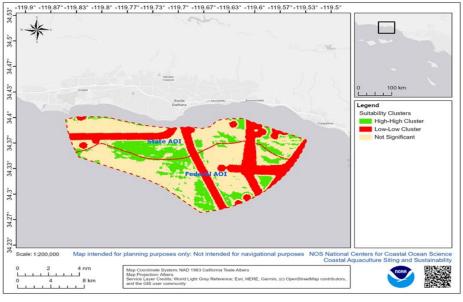
Gear Thresholds
Depth
Substrate type
Current speed



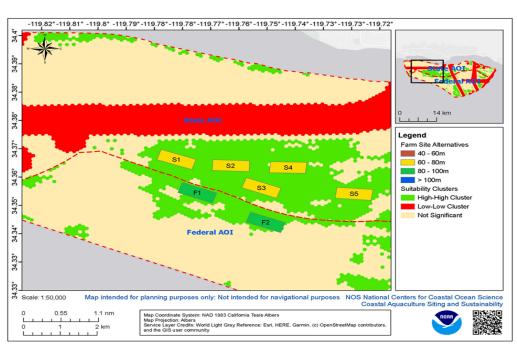
Requirement	K		
Preferred port	Sana Barbara		
Federal/State waters	Zederal or State Waters		
Selected culture species	Giant Kelp (Macrocystis pyrifera)		
Farm Footprint Size	133 acres (~54 ha)*		
Maximum distance from port	≤8 nm		
Gear depth requirements	\geq 30 and \leq 150 m		
Seawater temperature	< 20 °C		
Current Versaty	< 1.02 m/s		
Significant wave height	< 4 m		

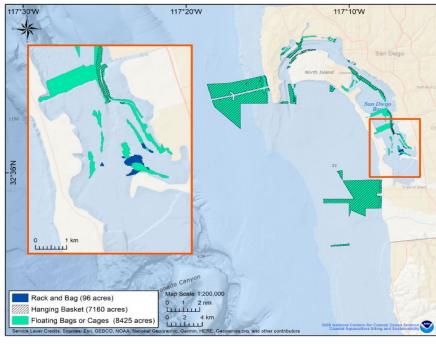
Step 4 - Build a suitability model for study areas



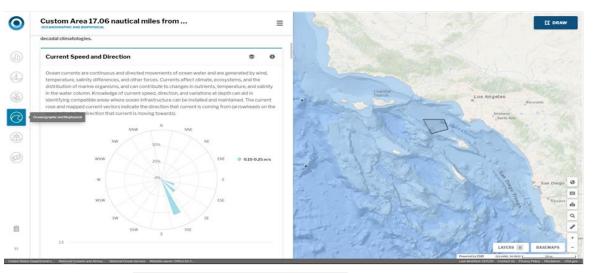

- Four submodels and constraints model
- Equal weights for all data and submodels
- Geometric mean used for calculating scores

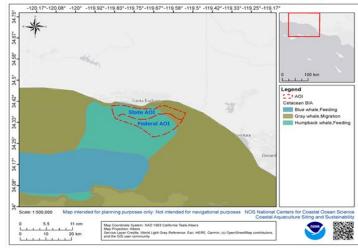
Step 5 - Cluster areas with highest suitability NCCOS NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE within study areas



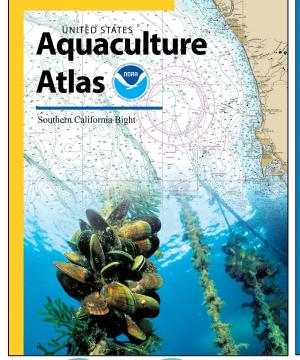


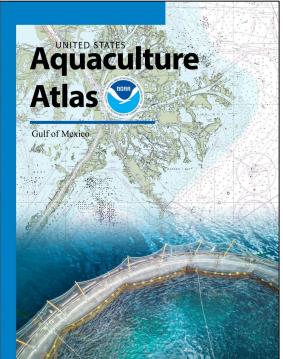
Step 6 - Identify best possible options within study areas





Step 7 - Characterize options within study areas




Parameter	Location A	Location B	Location C	Location D
Area (Acres)	390	1630	2640	840
Mean Suitability Score	0.86	0.86	0.84	0.86
Mean Bathymetry	44	39	37	33
Mean Slope	0.30	0.43	0.71	0.47
Mean Sediment grain size	0.29	0.68	0.43	0.32
Wave Height hours	50	54	68	58
Temperature hours	3933	3924	3908	3904
Mean VMS Traffic (2009-2019)	23	24	17	12
AIS 2017 Other vessel transits per 1 ha	1.66	2.34	1.90	2.84
AIS 2017 Tug/Tow vessel transits per 1 ha	0.24	0.13	0.33	0.45
AIS 2017 Tanker vessel transits per 1 ha	0	0	0	0
AIS 2017 Pleasure vessel transits per 1 ha	3.66	1.37	1.43	4.04
AIS 2017 Passenger vessel transits per 1 ha	1.03	5.50	3.66	0.57
AIS 2017 Cargo vessel transits per 1 ha	0	0	0	0
AIS 2017 Fishing vessel transits per 1 ha	0.43	1.21	2.38	0.50
Closest Port	Rye Harbor	Hampton Harbor	Newburyport	Newburyport
EPA Region	1	1	1	1
Coast Guard District	1	1	1	1
US Army Corps of Engineers District	New England	New England	New England	New England
Unexploded Ordnance	Yes	No	No	No

Step 8 - Develop report/atlas

Request for Information Questions

- 1. Are these parameters useful? What else should we consider?
- 2. How big/small should AOA be within study areas? Should we connect size with economic development goals?
- 3. Are there specific locations we should consider/avoid?
- 4. Subsistence harvest locations, fishing areas, sacred sites, etc. we should avoid?
- 5. Protected resource concerns/overlap?

- 6. Health concerns like HABs, impaired water quality?
- 7. Research we should be aware of (e.g., EVOST, Mariculture Cluster).
- 8. Other data (e.g., oceanographic, natural resources, social/cultural, gov't boundaries, industry, military, navigation, recreation)
- 9. species/gear you want us to analyze, and info on biological/physical thresholds
- 10. Anything else?

Submit comments by December 18, 2023!

What's Next?

- Public comment period ends **Dec 18, 2023**
- Electronic Submission at:
 - Regulations.gov
 - Search for NOAA-NMFS-2023-0113.
 - Click on the "Comment" icon
 - Complete the required fields, and enter or attach your comments
- Mail Submission to:
 - Jon Kurland, Regional Administrator for the Alaska Region NMFS, Attn: Records Office
 - P.O. Box 21668, Juneau, AK 99802-1668

Public Comment Session

- Select "Raise Your Hand" to enter the line
- The host will unmute you
- There is a two minute time limit, after which the host will mute you
- To maximize time to gather comments NOAA will not respond to comments
- We are only accepting comments on the questions asked in the Request for Information on AOAs
- If there is time you can rejoin queue