BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT

Final

BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT

Final

This report was prepared by RPS within the terms of its engagement and in direct response to a scope of services. This report is strictly limited to the purpose and the facts and matters stated in it and does not apply directly or indirectly and must not be used for any other application, purpose, use or matter. In preparing the report, RPS may have relied upon information provided to it at the time by other parties.

Prepared by: Anna Williams

RPS - A Tetra Tech Company

575 N Dairy Ashford, Suite 700
Houston, Texas 77079
T +1 713-482-3813
E Anna.Williams@tetratech.com

Prepared for: Gabriel Pommier

PXGeo

10350 Richmond Avenue, Suite 800
Houston, Texas 77042
T +1 346-733-5270
E gaby.pommier@pxgeo.com

Contents

Acronyms and Abbreviations V
1 EXECUTIVE SUMMARY 5
2 INTRODUCTION 6
2.1 BOEM and NMFS Reporting Requirements 5
3 PROJECT OVERVIEW 8
3.1 Vessel Summary 10
3.2 Summary of Survey Equipment Used 10
4 MONITORING AND MITIGATION PROGRAM 11
4.1 Monitoring: PSOs and PAM Operators 11
4.2 Visual Monitoring: Protocols and Methods 12
4.2.1 Daylight Visual 13
4.3 Monitoring: PAM Protocols and Methods 13
4.3.1 PAM Monitoring 13
4.3.2 PAM Parameters 13
4.3.3 Hydrophone Deployment 15
4.4 Monitoring: Data Collection 15
4.4.1 Data Collection Requirements \& Methods 16
4.5 Mitigation Measures 16
4.5.1 Strike Avoidance and Vessel Separation Distances 17
4.6 Reporting 17
4.6.1 Injured or Dead Protected Species 17
4.6.2 Non-functioning PAM System During Source Activity 17
4.6.3 Monthly Interim Reports 17
4.6.4 Final Report 18
5 DATA RECORDS AND ANALYSIS METHODS 19
5.1 Operation Activity 19
5.2 Monitoring Effort 19
5.2.1 Summary of Environmental Conditions 19
5.3 Visual Sightings of Protected Species 20
5.3.1 Closest Point of Approach 20
5.3.2 Detection Rate 20
5.3.3 Behavior and Behavior Change 21
5.4 Monitoring Tools Efficacy and Comparisons Assessment 21
5.5 Mitigation Measures Implemented 21
5.6 Data Quality Control 22
6 RESULTS 23
6.1 Operation Activity 23
6.2 Monitoring Effort 24
6.3 Environmental Conditions 24
7 PROTECTED SPECIES OBSERVATION RESULTS 28
7.1 Visual Sightings 28
7.1.1 Detection and Distance Summaries 28
7.2 Acoustic Detection Summary 30
7.3 Protected Species Incident Reporting 31
BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT
7.4 Summary of Mitigation Measures Implemented 31
7.4.1 Mitigation for Sound Exposure from Survey Equipment 31
7.4.2 Mitigation for Strike Avoidance 31
8 SUMMARY 33
8.1 Interpretation of the Results 33
8.2 Monitoring Efficacy and Comparison Assessment 33
8.2.1 Effectiveness of PAM 33
8.3 Effectiveness of Monitoring and Mitigation 34
9 LITERATURE CITED 35
Tables
Table 1: BOEM and NMFS Reporting Requirements. 5
Table 2: General survey parameters 8
Table 3: Summary of dates in areas of operation by the R/V Artemis Arctic 8
Table 4: Summary of key survey events by the R/V Artemis Arctic 9
Table 5: Summary of project vessel specifications 10
Table 6: Survey equipment operated by the R/V Artemis Arctic 10
Table 7: Visual monitoring methodology on the survey vessel 12
Table 8: Beaufort Sea State scale. 19
Table 9: Change in behavior state analysis variables 21
Table 10: Quality control editing performed by RPS on PSO datasets by data field 22
Table 11: Summary of regulated sound source operations on the R / V Artemis Arctic 23
Table 12: Summary of seismic source operations broken down by source status on the source vessel. 23
Table 13: Summary of monitoring effort, visual and acoustic, by the vessel and by source activity status. 24
Table 14: Total monitoring effort, visual and acoustic, during day and night by airgun source activity status on the R / V Artemis Arctic. 24
Table 15: Summary of visibility during visual monitoring effort on the R / V Artemis Arctic 25
Table 16. Summary of Beaufort Sea State during visual monitoring during the survey 26
Table 17. Summary of swell height during visual monitoring during the survey 26
Table 18. Summary of precipitation during visual monitoring during the survey. 27
Table 19. Summary of glare during visual monitoring during the survey. 27
Table 20: Detection records collected for each protected species visually detected during the survey. 28
Table 21: Detection summary of dolphins observed during the survey. 29
Table 22: Detection summary of sea turtles observed during the survey 29
Table 23: Average CPA of protected species to seismic source or vessel on the R/V Artemis Arctic, while active and inactive 30
Table 24: Acoustic detections and source activity during the survey. 31
Table 25: Summary of mitigation actions implemented on the R / V Artemis Arctic 31
Table 26: Summary of protected species detections occurring inside the species/species group specific separation distances 32
Table 27: Monitoring effort, protected species detections and detection rate for each monitoring method 33

Figures

Figure 1: Simplified pathway of data through the PAM system onboard the R / V Artemis Arctic 14

Figure 2: Diagram of 6-hydrophone element separation distances of the 25 m hydrophone array cable on the R / V Artemis Arctic.

Appendices

Appendix A : BOEM Permit, LOA, NMFS BO
Appendix B : Environmental Management Plan
Appendix C: Map of Survey Area
Appendix D: Survey Vessel Photos
Appendix E: PSOs and PAM Operators
Appendix F : Reticle Binocular Calibration Table
Appendix G: PAM Calibration Certificates
Appendix H: Vessel Specific PAM Deployment Procedures
Appendix I : Excel Data Sheet of Monitoring Effort, Source Operations and Detections of Protected Species During the Survey

Appendix J: Letter of Data Certification
Appendix K : Photographs of Protected Species Visually Detected During the Survey
Appendix L: Protected Species Distribution Maps
Appendix M : Screenshots of Protected Species Acoustically Detected During the Survey

Acronyms and Abbreviations

3D	3-Dimensional
ADC	Analog Digital Converter
BO	Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico
BOEM	Bureau for Ocean Energy Management
BZ	Buffer Zone
CPA	Closest Point of Approach
DAQ	Data Acquisition Unit
dB re $1 \mu \mathrm{~Pa}$ (rms)	Decibel related to 1 micropascal (root mean square)
DSLR	Digital Single Lens Reflex
EMP	Environmental Management Plan
EOW	End of Watch
EPU	Electronic Processing Unit
ESA	Endangered Species Act
EZ	Exclusion Zone
FFT	Engine Noise Fast Fourier Transform
GOM	Gulf of Mexico
GPS	Global Positioning System
HF	High Frequency
Hz	hertz
kHz	Kilohertz
km	Kilometer
km^{2}	Square kilometers
kts	Knot/s
LF	Low Frequency
LOA	Letter of Authorization
m	Meter/s
MMPA	Marine Mammal Protection Act
MS	Mississippi
NMFS	National Marine Fisheries Service
OPR	Office of Protected Resources
PAM	Passive Acoustic Monitoring
PSO	Protected Species Observer
R/V	Research Vessel
SOW	Start of Watch
TOAD	Time-of-Arrival-Distance
TX	Texas
USB	Universal Serial Base
USFWS	United States Fish and Wildlife Service
UTC	Coordinated Universal Time

1 EXECUTIVE SUMMARY

The Shell Stones 3-deminsional (3D) ocean bottom node (OBN) survey was conducted by PXGeo in federal waters of the Gulf of Mexico (GOM) off the coast of Texas (TX). The survey area comprised the Block 508 and surrounding blocks of the Walker Ridge protraction area, operating under survey permit. This report is the Final Protected Species Report for this survey, conducted under Bureau for Ocean Energy Management (BOEM) Permit L22-001 and covers the protected species monitoring and mitigation efforts on research vessel (R/V) Artemis Arctic utilized by Shell Offshore Inc. (Shell) and PXGeo for this survey.

The source vessel R/V Artemis Arctic towed two airgun arrays and conducted operations under Permit L22-001, from 13 October 2023 to 15 January 2024.

Protected Species Observers (PSOs) and Passive Acoustic Monitoring (PAM) Operators, provided through RPS, were assigned to the vessel conducting 24-hour source operations to undertake visual and acoustic observations and implement mitigation protocols, in accordance with the BOEM survey permit, National Marine Fisheries Service (NMFS) Letter of Authorization (LOA), and the NMFS Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico (BO). Mitigation protocols for this survey included establishment of buffer zones (BZ) and exclusion zones (EZ) for marine mammals and other protected species including sea turtles, visual and acoustic monitoring, and strike avoidance mitigation measures. The R/V Artemis Arctic had three PSOs and four PAM Operators onboard the vessel.

For the portion of the survey conducted under Permit L22-001, the R/V Artemis Arctic seismic source was active for a total of 944 hours and 12 minutes, of which 806 hours and 50 minutes were at full volume. PSOs conducted visual observations for a total of 1014 hours and 13 minutes, and PAM Operators monitored for a total of 1499 hours and 23 minutes.

A total of 49 detection events of protected species occurred during the survey area, 44 of which were marine mammal detections and five sea turtle detections.
Marine mammal detections consisted of 28 visual sightings and 21 acoustic detections. Visual detections of cetaceans consisted of two delphinid species: bottlenose dolphin (Tursiops truncatus) and Pantropical spotted dolphin (Stenella attenuata). Additionally, there were several detections of unidentified delphinids. Acoustic detections consisted of unidentified delphinid species and one identified whale species: sperm whale (Physeter macrocephalus).
Sea turtle detections consisted of two sightings of two identified species: green sea turtle (Chelonia mydas) and loggerhead sea turtle (Caretta caretta). Additionally, there were three sightings of unidentified shelled sea turtles.

There were no observations of dead/injured protected species during the survey.
In accordance with stipulations set forth under Permit L22-001, LOA, and the BO, a total of nine mitigation actions were implemented for the sound source, including eight delays to activation of the source and one shutdown of the acoustic source. Fourteen strike avoidance maneuvers for protected species were implemented during the survey.

2 INTRODUCTION

The Shell Stones 3D OBN survey was conducted by PXGeo in federal waters of the GOM off the coast of Texas. The survey area comprised the Block 508 and surrounding blocks of the Walker Ridge protraction area, operating under survey permit. This report is the Final Protected Species Report for the survey, conducted under BOEM Permit L22-001, and covers the protected species monitoring and mitigation efforts on the R / V Artemis Arctic utilized by Shell and PXGeo for this survey.

NMFS and BOEM have advised that sound-producing survey equipment operating in the hearing range of marine species has the potential to cause acoustic harassment, particularly to marine mammals. Protected species monitoring for the survey was conducted in accordance with BOEM and NMFS standards outlined in the BO.

The survey company conducting operations was responsible for contracting PSOs through a provider to conduct monitoring and mitigation for protected species, including marine mammals, sea turtles, and Endangered Species Act (ESA) listed fish species, such as Gulf sturgeon, oceanic whitetip shark, and giant manta rays, during their activities. Monitoring and mitigation procedures that were implemented during the survey are described in Section 4 of this report.

BOEM and NMFS Reporting Requirements
 2.1

This report summarizes the information required by the BOEM Permit L22-001, LOA, and the BO, identified in Table 1. A copy of the BOEM permit (Appendix A) and an Environmental Management Plan (EMP) (Appendix B), documenting reporting requirements from the survey permit and NMFS BO.
Table 1: BOEM and NMFS Reporting Requirements.
Required Content

Required Content	Source Reference	Location Addressed in Technical Report
PSOs must use a standardized data collection form, whether hard copy or electronic. PSOs shall record detailed information about any implementation of mitigation requirements, including the distance of animals to the acoustic source and description of specific actions that ensued, the behavior of the animal(s), any observed changes in behavior before and after implementation of mitigation, and if shutdown was implemented, the length of time before any subsequent ramp-up of the acoustic source. If required mitigation was not implemented, PSOs should record a description of the circumstances.	Appendix I: Excel Data Sheets of Monitoring Effort, Source	
Appendix A		

lope ID: E51C7D67-3366-43F6-B1A5-44F6E3B902CC
REPORT

Required Content	Source Reference	Location Addressed in Technical Report
marine mammals, refer to the reporting requirements specified in the MMPA authorization (as applicable), associated with the activity being conducted.		
SEISMIC SURVEY OPERATION, MONITORING, AND REPORTING GUIDELINES: The applicant will follow the guidance provided under Appendix A. Seismic Survey Mitigation and PSO Protocols found in the BO issued by NMFS on March 13, 2020. The guidance can be accessed on NOAA Fisheries internet website at https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federallyregulated-oil-and-gas-survey-gulf-mexico.	BOEM Survey Permit L22- 001	This Technical Report
VESSEL-STRIKE AVOIDANCE/REPORTING: The applicant will follow the guidance provided under Appendix C. GOM Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols found in the BO issued by NMFS on March 13, 2020. The Appendix can be accessed on the NOAA Fisheries internet site at: https://www.fisheries.noaa.gov/resource/document/appendicesbiological-opinion-federally-regulated-oil-and-gas-survey-gulf-mexico	BOEM Survey Permit L22- 001	7.3 Protected Species Incident Reporting 7.4.2 Mitigation for Strike Avoidance
NMFS and BSEE must be notified via email (nmfs.psoreview@noaa.gov and protectedspecies@bsee.gov, respectively) as soon as practicable with the time and location off any operations conducted without an active PAM system exceeding 30 minutes. The notification will include the vessel name, the time and location (GIS position) in which the PAM system ceased function where seismic operations continued.	NMFS BO Appendix A	7.3 Non-functioning PAM System During Source Activity
PSOs must use standardized electronic data forms. PSOs must record detailed information about any implementation of mitigation requirements, including the distance of marine mammals to the acoustic source and description of specific actions that ensued, the behavior of the animal(s), any observed changes in behavior before and after implementation of mitigation, and if shutdown was implemented, the length of time before any subsequent ramp-up or activation of the acoustic source. If required mitigation was not implemented, PSOs must record a description of the circumstances.	NMFS LOA, Section 5 (c)	Appendix I: Excel Data Sheets of Monitoring Effort, Source Operations and Detections of Protected Species During the Survey

Required Content	Source Reference	Location Addressed in Technical Report
The Holder must submit a summary report to NMFS on all activities and monitoring results within 90 days of the completion of the survey or expiration of the LOA, whichever comes sooner, and must include all information described above under section 5(c) of this LOA. If an issued LOA is valid for greater than one year, the summary report must be submitted on an annual basis. The report must describe activities conducted and sightings of marine mammals, must provide full documentation of methods, results, and interpretation pertaining to all monitoring, and must summarize the dates and locations of survey operations and all marine mammal sightings (dates, times, locations, activities, associated survey activities, and information regarding locations where the acoustic source was used). In addition to the report, all raw observational data must be made available to NMFS.	NMFS LOA, Section 6 (a) iii	This technical report
The Holder must provide geo-referenced time-stamped vessel track lines for all time periods in which airguns (full array or single) were operating. Track lines must include points recording any change in airgun status (e.g., when the airguns began operating, when they were turned off). GIS files must be provided in ESRI shapefile format and include the Coordinated Universal Time (UTC) date and time, latitude in decimal degrees, and longitude in decimal degrees. All coordinates must be referenced to the WGS84 geographic coordinate system.	NMFS LOA, Section 6 (a) iv	GIS files are provided as a separate shapefile
The draft report must be accompanied by a certification from the lead PSO as to the accuracy of the report, and the lead PSO may submit directly to NMFS a statement concerning implementation and effectiveness of the required mitigation and monitoring	NMFS LOA, Section 6 (a) v	Appendix J: Letter of Data Certification
In the event that personnel involved in the survey activities discover an injured or dead marine mammal, the Holder must report the incident to the Office of Protected Resources (OPR), NMFS and to the Southeast Regional Stranding Network as soon as feasible.	NMFS LOA, Section 6 (c) i	7.3: Protected Species Incident Reporting
In the event of a ship strike of a marine mammal by any vessel involved in the survey activities, the LOAholder must report the incident to OPR, NMFS and to the Southeast Regional Stranding Network as soon as feasible.	NMFS LOA, Section 6 (c) ii	7.4.2: Mitigation for Strike Avoidance

3 PROJECT OVERVIEW

The objectives of this survey were to collect data to support: site characterization, development of a ground model, ensure the seabed is clear of obstructions, and identification of buried archaeological features in compliance with BOEM regulations and guidelines.

The Stones area is located 500 kilometers (km) (270 nautical miles) southeast of Galveston, TX, in the Block 508 and surrounding blocks of the Walker Ridge protraction area in GOM (Appendix C). Water depths in this portion of the survey area ranged from 1800 to 3050 meters (m). The working prospect covers approximately 422.70 square kilometers (km^{2}), with the node patch covering approximately 205.32 km^{2} in the center of the survey area (Table 2).

Table 2: General survey parameters.

Area Parameters

General location	Gulf of Mexico, Walker Ridge
Prospect size $\left(\mathrm{km}^{2}\right)$	422.70
Water depth (m)	$1800-3050$
Port location	Galveston, TX; Gulfport, MS
Source vessel	R/V Artemis Arctic
Other vessels involved	Siddis Mariner (node vessel)

Table 3 outlines the dates the R / V Artemis Arctic was in the portion of the survey area covered in this permit and Table 4 outlines the key survey events dates.

Table 3: Summary of dates in areas of operation by the R/V Artemis Arctic.

Vessel Name	Dates on Project	
$R /$ Artemis Arctic	11 October 2023	15 January 2024

Table 4: Summary of key survey events by the R/V Artemis Arctic.

Event	Dates
PSO team mobilizes	01 October 2023
Kick-off meetings	02 October 2023, 06 October 2023, 02 November 2023
Vessel departs dock - PSO effort begins	10 October 2023
Array testing begins	13 October 2023
Data acquisition commences	28 October 2023
Extended breaks in acquisition	14 October 2023 - Seismic source maintenance
	16 October 2023 - Standby for inclement weather
	18 October 2023 to 20 October 2023 - Transit to Kaikias area
	21 October 2023 - Transit to Stones area
	22 October 2023 to 27 October 2023 - Standby for inclement weather and nodes available for acquisition
	31 October 2023 to 2 November 2023 - Transit to Port Galveston for crew change and transit back to survey area
	10 November 2023 - Standby for inclement weather and nodes available for acquisition
	15 November 2023 to 17 November 2023 - Standby for inclement weather
	10 to 12 November 2023 - Transit to Gulfport for crew change
	13 November 2023 to 19 November 2023 - Standby in port
	20 November 2023 to 21 November 2023 - Transit to survey area
	8 January 2024 to 10 January 2024 - Transit to Port Galveston and back to Stones area
Data acquisition complete	15 January 2024
Vessel reaches dock - PSO effort complete	16 January 2024

3.1 Vessel Summary

The survey was undertaken by the source vessel R / V Artemis Arctic towing two source arrays.
The R/V Artemis Arctic conducted data acquisition for the survey area from 28 October 2023 to 15 January 2024. The vessel initially mobilized out of Port Galveston, TX, which was utilized along with Gulfport, Mississippi as the ports of call for the duration of this project.

Specifications of each vessel are provided in Table 5 and photos of the vessel are included in Appendix D.

Table 5: Summary of project vessel specifications.

Vessel	Vessel Operator	Length (\mathbf{m})	Width (\mathbf{m})	Production Speed Knots (kts)	Max Speed (kts)
R / V Artemis Arctic	Maritim	74.34	18.00	$3.50-4.50$	14.00
(source vessel)	Management AS				
Siddis Mariner (node vessel)	Siddis Mariner AS	88.30	20.00	$8.00-11.00$	15.00

3.2 Summary of Survey Equipment Used

The R / V Artemis Arctic towed airguns comprised of two source arrays; the configuration is described in Table 6. Each array was activated in succession with the total operating source volume on the vessel of 5,110 cubic inches (cu in). The design while in acquisition was a "flip flop" pattern for a double source, with the shot point interval every 25 meters at survey speeds of no more than 5.50 kts .

Table 6: Survey equipment operated by the R/V Artemis Arctic.

Energy Source	Frequency/Energy Specifications
Bolt 1900 LLXT airguns	Volume: 5110 cu in
Two towed source arrays	Frequency: $0-200 \mathrm{~Hz}$
Three strings per array	Intensity: $\sim 264 \mathrm{~dB}$ re $1 \mu \mathrm{~Pa}$ at 10 m in water (peak to
$10-12$ airguns per string	peak)
Total of 32 airguns	

4 MONITORING AND MITIGATION PROGRAM

This section describes the protected species monitoring and mitigation measures established to meet the requirements of BOEM permit and NMFS BO. Survey mitigation measures were designed to minimize potential impacts of the survey activities on marine mammals, sea turtles, and other protected species of interest.

The following monitoring protocols were implemented to meet these objectives, and each are described in detail in a sub-section below:

R/V Artemis Arctic

- Visual observations were required to be conducted from port to port during daytime hours, to provide real-time sighting data, allowing for the implementation of mitigation procedures, as necessary.
- A PAM system was deployed with PAM Operators in place to conduct continuous acoustic monitoring, day and night, during source activity or when source activity was anticipated, to augment visual observations, implement mitigation measures, and provide additional marine mammal detection data.
- In recognition of brief periods of PAM malfunction/downtime, the NMFS BO allowed for the sound source to remain active for 30 minutes without acoustic monitoring, both day and night. It also allowed for an additional 2 hours of no acoustic monitoring during the day if visual observations were continuous, sea state was at B4 or below, and there had been no acoustic detections in the past 2 hours.
- Outages over 30 minutes were reported to NMFS directly, describing the date, time, duration, location, source activity, reason for outage, resolution and follow up.
- Protected species BZs and EZs were established around the regulated sound source, with delays to initiation and shutdowns of the active source, implemented when protected species were detected within these zones.

4.1 Monitoring: PSOs and PAM Operators

Trained and experienced PSOs and PAM Operators were assigned to the R/V Artemis Arctic during survey activities to conduct the monitoring for protected species, record and report detections, and request mitigation actions in accordance with the established regulatory requirements and monitoring plan.
RPS was responsible for ensuring that each PSO and PAM Operator met the minimum requirements set forth by BOEM in Permit Area stipulations and by NMFS. BOEM and NMFS PSO requirements include training in protected species identification and behavior, in addition to field experience in protected species observation in the Atlantic Ocean or the Gulf of Mexico.
RPS was responsible for the provision of training certifications and resumes to be reviewed and approved by BOEM prior to deployment on the vessel.

RPS was responsible for providing the PSOs and PAM Operators with vessel-specific and survey contractor-specific training and Environmental Project Inductions were provided by RPS and Shell during project kick-off meetings, conducted prior to the start of survey operations and prior to scheduled crew changes.
All certified PSOs and PAM Operators who were deployed during the survey operations are listed in Appendix E.

4.2 Visual Monitoring: Protocols and Methods

A team of PSOs were deployed on the R / V Artemis Arctic in sufficient numbers to meet the monitoring requirements of the vessel, as outlined in Table 7. PSOs monitored while the vessel was in transit and prior to and during all sound source operations conducted by the vessel. Visual monitoring was also conducted during all periods between sound source activities to collect additional protected species data. One or two PSO monitored at a time and PSOs rotated monitoring shifts as needed to maximize concentration and to meet the watch requirements of the Permit Area (watch periods not to exceed two hours without a minimum one-hour break, and a maximum duration or 12 hours in a 24 -hour period).

Visual monitoring locations on the R/V Artemis Arctic were selected in consideration of the following factors:

1. To afford PSOs a 360-degree viewpoint around the vessel and acoustic source, such that the EZ around the sound source and the strike avoidance separation distances could be simultaneously monitored.
2. Provide the highest vantage point possible to allow for monitoring out to the greatest distances ahead of, and around, the vessel.
3. Provide shelter from inclement weather, as needed.
4. Provide real-time communication with the vessel, equipment operators, and the PAM Operator.

PSOs conducted their visual monitoring by actively scanning with the naked eye out to the furthest observation points visible, methodically sweeping areas closer to the vessel and focusing on the EZs and ahead of the vessel. PSOs conducted regular sweeps of the surrounding areas using magnification devices as described below in Table 7. PSOs monitored for cues that might indicate the presence of protected species including but not limited to splashing, footprints, blows, and presence of other marine species (diving seabirds, fish feeding activity, etc.).

Table 7: Visual monitoring methodology on the survey vessel.

	R/V Artemis Arctic
Total Number of PSOs	3
Number of PSOs on Watch - Day	$1-2$
Visual Monitoring Equipment- Day	Hand-held reticle binoculars 10 $\times 50$ Big Eye binoculars Digital single lens reflex (DSLR) cameras with 300-mm zoom lens
Visual Monitoring Conducted at Night	No
Visual Monitoring Equipment (Night)	-
Range Estimation	By eye comparing to objects of known distance With reticule binoculars
Primary Monitoring Location	Bridge

Displays inside the bridge showed current information about the vessel (e.g., position, speed, heading, etc.), sea conditions (e.g., water depth, sea temperature, etc.), and weather (e.g., wind speed and direction, air temperature, etc.). Environmental conditions, along with vessel and acoustic source activity, were recorded at least once an hour, or every time there was a change of one or more of the variables (for example, visibility, sea state, etc.).

4.2.1 Daylight Visual

The PSOs on board were equipped with hand-held reticle binoculars (e.g., 10×50), Big Eyes binoculars (e.g., $25 \times 150 ; 2.7$ view angle; individual ocular focus; height control), and DSLR cameras with zoom lens of $300-\mathrm{mm}$ to aid in visual watches conducted during the day. PSO teams used field notebooks to record data while on watch and laptops were used to enter data.

Range estimates were made by comparison to objects of known distance, as well as with reticle binoculars. Reticle binoculars were calibrated whenever possible to ensure accuracy of distance data. These reticle calibration tables are provided in Appendix F.

4.3 Monitoring: PAM Protocols and Methods

4.3.1 PAM Monitoring

Acoustic monitoring was used to augment visual monitoring efforts in the detection, identification and locating of marine mammals. Acoustic monitoring was required to be conducted continuously, day and night, during all source operations and on any day that production was expected.

Acoustic monitoring was undertaken by trained and experienced PAM Operators, each of whom had completed a BOEM-accepted PSO training course and an RPS in-house PAM training course, which includes use of the PAM system on board the vessel. PAM monitoring shifts were no longer than four hours in duration followed by at least a two-hour break.

The PAM system was installed on the R / V Artemis Arctic in a location which provided space for the system, allowing for quick communication with the navigation team and source operators. Information about the vessel (including position, heading, and speed), water depth, source activity, and PAM system status (including cable deployments/retrievals, changes to the system) were recorded at least once every shift or whenever any of the parameters changed.

Acoustic monitoring for marine mammals was conducted aurally and visually, utilizing PAMGuard software installed on the PAM system. Low to mid-frequency delphinid whistles, clicks, and burst pulses, as well as sperm whale clicks and baleen whale vocalizations, could be visualized in PAMGuard's spectrogram modules. Odontocete clicks could also be visualized in low frequency (LF) and high frequency (HF) click detector modules. Settings adjustments to amplitude range, amplitude triggers, and spectral content filters, among others, could be made in PAMGuard's spectrogram. Click detector modules were utilized to maximize the distinction between cetacean vocalizations and ambient signal. The map module within PAMGuard could be utilized to attempt localizing the position and range of vocalizing marine mammals. Sound recordings could be made using the HF and LF sound recording modules when potential marine mammal vocalizations were detected, or when the operator noted unknown or unusual sound source.

4.3.2 PAM Parameters

Passive acoustic monitoring system, designed to detect most species of marine mammals, was installed on the R/V Artemis Arctic. The system was developed by Seiche Measurements Limited and consisted of the following main components: a tow cable with hydrophone array attachment, a deck cable, sounds cards, a computer, and a suite of analysis software. Spare systems were also present on board the vessel, in the event the main system components became damaged or inoperable. The diagram in Figure

BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT | Final | 03 April 2024

1 is a simplified depiction of the PAM system installed on the R / V Artemis Arctic. Further PAM system specifications can be found in Appendix G.

Figure 1: Simplified pathway of data through the PAM system onboard the R/V Artemis Arctic
The linear hydrophone array attachment cable on the R/V Artemis Arctic contained six individual hydrophone elements and a depth transducer, with spacing as shown in Figure 2. The forward hydrophone pair ($\mathrm{H} 1, \mathrm{H} 2$) was used to analyze and record LF sound (10 through $24,000 \mathrm{~Hz}$); the middle hydrophone pair (H3, H4) was used to analyze and record middle frequencies (200 through $200,000 \mathrm{~Hz}$), and the trailing hydrophone pair ($\mathrm{H} 5, \mathrm{H} 6$) was used to analyze and record HF sound $(2,000$ through $200,000 \mathrm{~Hz}$).

Figure 2: Diagram of 6-hydrophone element separation distances of the 25 m hydrophone array cable on the R/V Artemis Arctic
The hydrophone array section was attached to a 230-meter heavy duty tow cable installed on the back deck of the vessel. The deck cable interfaced between the tow cable, and the Electronic Processing Unit (EPU) located at the monitoring station. The EPU contained a buffer unit with Universal Serial Base (USB) output, an RME Fireface 800 Analog Digital Converter (ADC) unit with firewire output, and a rackmounted computer. A Global Positioning System (GPS) feed was supplied by the vessel's navigation system and connected to the PAM system using a USB port. Data from the hydrophone cable's depth transducer was routed through the buffer unit to the computer, via USB connection. The acoustic monitoring software PAMGuard was utilized for monitoring during the survey.
Raw feed from the two designated HF hydrophone elements was digitized in the buffer unit using an analogue-digital National Instruments data acquisition (DAQ) soundcard at a sampling rate of 500 kHz .

The output was filtered for HF content and visualized using the PAMGuard software. PAM Operators configured settings for digital pre-filter and trigger filters to optimize the detection capabilities of their vessel's system. PAMGuard used the difference between the time that a signal arrived at each of the two hydrophones to calculate and display the bearing to the source of the signal. A scrolling bearing/time module displayed the filtered data in real time, allowing for the detection and directional mapping of click trains. Additional components of the HF click detector system in PAMGuard were an amplitude/time display that registered click intensity data in real time, as well as click waveform, click spectrum, and Wigner plot displays, providing the PAM Operator immediate review of individual click characteristics in the identification process.

Raw feed from the designated LF hydrophone elements was routed from the buffer unit to the RME Fireface 800 unit, where it was digitized at a sampling rate of 48 kHz . The relatively LF output was further processed within PAMGuard by applying Engine Noise Fast Fourier Transform (FFT) filters, including click suppression and spectral noise removal filters (e.g., median filter, average subtraction, Gaussian kernel smoothing and thresholding). Filtered LF content was visualized in two spectrograms, one displaying two channel feeds at frequency ranges of three to 24 kHz , and another displaying one channel feed at a frequency range of 0 to 3 kHz . LF click detector modules allowed for review of individual click characteristics as well as the detection and tracking of click trains.
A map module on the LF system interfaced with GPS data provided by the R/V Artemis Arctic to display the vessel location and could be used to determine range and bearing estimates based on clicks tracked in the click detector module. PAMGuard contains a function for calculating the range to vocalizing marine mammals based upon the least squares fit test. This method is most effective with animals that are relatively stationary in comparison to the moving vessel, such as humpback whales. The mathematical function estimates the range to vocalizing marine mammals by calculating the most likely crossing of a series of bearing lines generated from tracked clicks or whistles and plotted on a map display. Additionally, the bearings of detected whistles and moans were calculated using a Time-of-ArrivalDistance (TOAD) method (the signal time delay between the arrival of a signal on each hydrophone is compared), and presented on a radar display, along with amplitude information for the detected signal as a proxy for range.

4.3.3 Hydrophone Deployment

On the R/V Artemis Arctic, the hydrophone cable was deployed from a winch on the streamer deck from the starboard stern of the vessel. When fully deployed the trailing end of the PAM cable was 105 meters astern of the boat, the trailing pair of hydrophones were approximately 32.00 m from the source, and tow depths averaged 12.00 m .

A more detailed description of the hydrophone deployment method for the vessel can be found in Appendix H.

4.4 Monitoring: Data Collection

During or immediately after each detection event, the PSOs and PAM Operators recorded the detection details in a standardized datasheet provided to them by RPS. Excel data forms included tabs for project data, monitoring effort data, source operations data, and protected species detection data. RPS supplied a set of standardized variables for specific data fields that were on the data form provided to their PSOs.

Each detection event was linked to an entry on an effort datasheet where specific environmental conditions and vessel activity were logged.
Species identifications were made for visual detections whenever the distance of the animal(s), length of the sighting, and visual observation conditions allowed. Whenever possible during detections, photographs were taken with DSLR cameras that had telephoto lenses. Marine mammal identification manuals were consulted, and photos were examined during observation breaks to confirm identifications.

[^0]While acoustic monitoring does not allow assessment of group size with the same level of precision as by visual observation, the LF and HF click detector modules in PAMGuard allow PAM Operators to identify when multiple animals are vocalizing simultaneously or in very close succession. Click detectors present cetacean click trains on computer displays, spatially differentiated by relative bearings to the hydrophone array, so when multiple click trains occur simultaneously or in close succession, and the click trains come from different bearings, the PAM Operator knows the click trains originate from different animals. While this does not allow the PAM Operator to estimate a total group size, it does provide the PAM Operator an estimate for the minimum group size.

4.4.1 Data Collection Requirements \& Methods

Data was collected to meet the requirements of BOEM and NMFS as summarized in Table 1 of this report.

PSOs and PAM Operators collected data in handwritten notepads and/or on portable tablet devices during watches. During watch breaks and at the end of daylight hours, data was compiled in proprietary data forms on laptop computers and backed up on portable hard drives.

4.5 Mitigation Measures

The following mitigation actions were required for visual and acoustic detections of marine mammals and sea turtles, on the survey:

- Establishment of BZ around acoustic array:
- $\quad 1500-\mathrm{m} \mathrm{BZ}$ for all true whales
- $\quad 1000-\mathrm{m}$ BZ for all other marine mammals and sea turtles
- Establishment of EZ around sound source with operating frequency below 200 kHz for operations:
- $\quad 1500-\mathrm{m}$ for all true whales
- $500-\mathrm{m}$ for all other marine mammals and sea turtles
- Search periods of 30 minutes, conducted visually and acoustically (daytime) or acoustically (all periods of reduced visibility, including night) prior to the initiation of the acoustic array from silence.
- If marine mammals or sea turtles were detected inside their respective BZ during the search period prior to the initiation of the source, delays to the initiation of the sound source were implemented until all animals had been observed exiting the BZ, or when the animals were not observed exiting, 15 minutes for small odontocetes and 30 minutes for all other marine mammals and sea turtles were implemented. All delays for acoustic-only detections were for 30 minutes.
- Shutdown of the active source upon detection of marine mammals inside their respective EZ. Shutdown was not required for dolphins of the genera Steno, Tursiops, Stenella, and Lagenodelphis. In the event of an acoustic detection of dolphins inside the EZ, unless a visual observer or PAM Operator could confirm that the animals detected were not of one of the four shutdown-exempted genera listed above, the detection was assumed to have been of one of those genera, and no shutdown was required.
- Once the sound source had been shutdown for a protected species detection, operations would resume with ramp-up following at least either all animals were observed exiting the exclusion zone, or when they were not observed exiting, 30 minutes had passed.

4.5.1 Strike Avoidance and Vessel Separation Distances

The following strike avoidance procedures were implemented for detections of protected species in the survey area.

- Vessel operators must maintain a vigilant watch for all aquatic protected species. The vessel must slow down, stop, or alter course, as appropriate and regardless of the size of the boat, to avoid striking any protected species, including marine mammals, sea turtles, and ESA-listed fish species such as Gulf sturgeon, oceanic whitetip shark and giant manta ray.
- When protected species were sighted while the R/V Artemis Arctic was underway, the vessel should take act to avoid violating the relevant minimum separation distances listed below. If protected species were sighted within their relevant separation distance, the vessel should reduce speed and/or shift the engine to neutral, not engaging the engines until animals are clear of the area. The vessel was not required to shift into neutral for animals that voluntarily approach. For the vessel limited in maneuverability, maintaining separation distances were not required if doing so would put the safety of crew or the vessel at risk. The minimum separation distances were:
- 500 m : All baleen whales (Rice's whale), beaked whales, Kogia species
- 100 m : Sperm whales
- $\quad 50 \mathrm{~m}$: All other marine mammals (including manatees), sea turtles, and the ESA-listed fish species
- Vessel speed must be reduced to 10 knots or less when mother/calf pairs, pods, or large assemblages of any marine mammal are observed near the vessel.

4.6 Reporting

Reporting requirements of the BOEM Permit Area are outlined in Table 1. Both BOEM and NMFS require that monthly interim reports and a final survey report be prepared, detailing source operations, PSO/PAM effort, detection of protected species and any mitigation measures taken.

4.6.1 Injured or Dead Protected Species

Any injured or dead marine mammal or sea turtle observed either by a PSO on watch or by a crew member was required be reported to BOEM and NMFS as described in Table 1.
Reporting requirements included a phone notification to the NMFS Regional Stranding hotline as soon as practicably possible, made by either the Lead PSO or shore based PSO Provider, as communications permitted from the R/V Artemis Arctic.
In the event of an injured or dead protected species detection, the Lead PSO would also prepare a written report in accordance with NMFS standard reporting guidelines, using the template provided by BOEM in the permit, which would be submitted to the agencies.

4.6.2 Non-functioning PAM System During Source Activity

There were no PAM outage events during source activity that met the BO reporting requirements outlined in Table 1 of this report.

4.6.3 Monthly Interim Reports

RPS has prepared monthly interim reports to meet the BOEM Permit, LOA, and NMFS BO report requirements outlined in Table 1 of this report. Interim reports for the R/V Artemis Arctic were submitted on 01 November 2023, 01 December 2023, 02 January 2024, and 01 February 2024.

4.6.4 Final Report

RPS has prepared this technical report to meet the BOEM permit, LOA, and NMFS BO final report requirements outlined in Table 1 of this report. Each of the elements of the required final PSO report is provided in Table 1, referencing the section in this technical report where the element is addressed.

5 DATA RECORDS AND ANALYSIS METHODS

5.1 Operation Activity

PSOs and PAM Operators collected the operational status of regulated equipment each day that the equipment was deployed on the R / V Artemis Arctic.
The R / V Artemis Arctic recorded the start of line (SOL) times and the end of line (EOL) times for the equipment during acquisition. The vessel also recorded the status of the equipment while acquisition occurred by noting full power or shutdowns due to mitigation actions.

5.2 Monitoring Effort

PSOs and PAM Operators recorded monitoring effort by entering start of watch (SOW) and end of watch (EOW) times into data sheets where the vessel position and environmental data was also documented for that duration.
Total monitoring effort was calculated by summing the durations of each watch period. Where the monitoring effort entry did not also indicate the source status for that monitoring period, source data was cross referenced during analysis to calculate the duration of monitoring conducted while the regulated source was on and off.
Acoustic monitoring while the acoustic source was silent included monitoring during transit between survey sites and other recorded silent periods in which the PAM cable could remain deployed without interfering with operations.

Visual monitoring while the acoustic source was silent included monitoring conducted during transit to/from survey sites and any other recorded silent periods (extended line changes, brief sequence changes, mitigation action, equipment downtime, or weather standby time).

5.2.1 Summary of Environmental Conditions

Each PSO monitoring effort data form included environmental conditions present during that watch period. Environmental variables were recorded every 60 minutes, or when conditions changed. Beaufort Sea state was recorded for each monitoring period using the accepted scale Table 8.

Table 8: Beaufort Sea State scale.

Beaufort Number	Description	Wave Height	Sea Conditions
0	Calm	0 m	Sea like a mirror
1	Light air	$0-0.3 \mathrm{~m}$	Ripples with appearance of scales are formed, without foam crests
2	Light breeze	$0.3-0.6 \mathrm{~m}$	Small wavelets still short but more pronounced; crests have a glassy appearance but do not break Large wavelets; crests begin to break; foam of glassy appearance; perhaps scattered white horses
3	Gentle breeze	$0.6-1.2 \mathrm{~m}$	Small waves becoming longer; fairly frequent white horses
4	Moderate breeze	$1-2 \mathrm{~m}$	Moderate waves taking a more pronounced long form; many white horses are formed; chance of some spray
5	Fresh breeze	$2-3 \mathrm{~m}$	Large waves begin to form; the white foam crests are more extensive everywhere; probably some spray
6	Strong breeze	$3-4 \mathrm{~m}$	

REPORT				
7	High wind	$4-5.5 \mathrm{~m}$		
8	Gale	Sea heaps up and white foam from breaking waves begins to be blown in streaks along the direction of the wind; spindrift begins to be seen Moderately high waves of greater length; edges of crests break into spindrift; foam is blown in well-marked streaks along the direction of the wind		
9	Severe gale	$7-10 \mathrm{~m}$		
10	Storm	High waves; dense streaks of foam along the direction of the wind; sea begins to roll; spray affects visibility Very high waves with long overhanging crests; resulting foam in great patches is blown in dense white streaks along the direction of the wind; on the whole the surface of the sea takes on a white appearance; rolling of the sea becomes heavy; visibility affected		
11	Violent storm	$11.5-16 \mathrm{~m}$		
Exceptionally high waves; small- and medium-sized ships might be for a long time lost to view behind the waves; sea is covered with long white patches of foam; everywhere the edges of the wave crests are blown into foam; visibility affected				
12	Hurricane force	$>14 \mathrm{~m}$		The air is filled with foam and spray; sea is completely white with
:---				
driving spray; visibility very seriously affected				

Sea swell heights observed during visual monitoring were gauged by PSOs in meters, assigned to one of three swell height categories ($<2,2-4,>4$) and recorded for the R / V Artemis Arctic. PSOs also recorded visibility during monitoring effort, in kilometers, where recorded values were selected from categories (>5, $2-5,1-2,0.5-1,0.3-0.5,0.1-0.3,0.05-0.1,<0.05)$. Wind speed, wind direction, percentage of cloud cover, glare intensity and presence of/type of precipitation were other environmental conditions recorded during visual monitoring effort.

5.3 Visual Sightings of Protected Species

PSOs used standardized reporting forms provided by RPS to record all detections of marine mammals and sea turtles made during survey operations. These records were completed any time a sighting was made, regardless of distance, not just for detections where mitigation was implemented.
Sighting identification or detection event numbers were assigned chronologically for all protected species observed on the R / V Artemis Arctic throughout the survey activity. A new detection number was assigned for a new species sighting or when enough time had passed between observations of animals of the same species such that PSOs could not be certain that they were observing the same animals previously documented. A standard duration of time was to be applied between observations: 15 minutes for delphinid and 30 minutes for large whales and sea turtles. If there were multiple species in a single detection, the same sighting identification or detection event was used.
Protected species movement relative to the vessel and pace, as well as initial and subsequent behavior states, were recorded for each protected species sighting where standardized categories for each were provided as controlled fields in the provided data form.

5.3.1 Closest Point of Approach

All PSOs recorded closest point of approach (CPA) and the source status at the CPA.

5.3.2 Detection Rate

Detection rate was calculated using the number of protected species events per hour of monitoring effort, both visual and acoustic for the vessel. On the R/V Artemis Arctic, when more than one PSO was on watch simultaneously, effort was not duplicated: one hour of monitoring effort by two PSOs consisted of one hour of effort for the purpose of detection rate calculations.

5.3.3 Behavior and Behavior Change

The PSO protected species detection template included an initial behavior and initial pace field for the detection. It included the direction of travel relative to the vessel at initial detection, pace, and direction of travel at final detection and other behaviors documented throughout the event. Where these data points were not included as specific entries in the data form, the information was sometimes available in a detection summary.

Protected species detection events were reviewed and categorized as having exhibited a change in behavior state or no observed change in behavior state.
The variables utilized to analyze change in behavior state are provided in Table 9.
Table 9: Change in behavior state analysis variables.

Data Field	Variables	Analysis Method
	Yes	- - - Change in Behavior
	NoInitial and final pace were provided and were different Initial and final direction of travel relative to the vessel were provided and were different	

5.4 Monitoring Tools Efficacy and Comparisons Assessment

Visual monitoring was mostly conducted by unaided eye, where handheld reticle binoculars, big eye binoculars and DSLR cameras with zoom lenses were also used to confirm a sighting or assist in making a species identification. The comparison of the monitoring tools efficacy will be limited to the R / V Artemis Arctic that conducted monitoring of the different sound source utilized during the survey.

5.5 Mitigation Measures Implemented

Mitigation measures were implemented on the R / V Artemis Arctic as previously described. The onboard PSO team communicated requested mitigation in real time to survey operators that controlled the operation of the regulated sound source or to the crew operating the vessel, depending on the type of action required. Communications were conducted over handheld radios or in person.

Implemented mitigation actions were recorded on PSO data sheets in the detection data form and in the operations activity logs.
For each mitigation action, the mitigation downtime associated with that action was calculated. Mitigation downtime was the duration of the break in regulated source operations as required by the regulatory protocols: the duration of time that an animal was observed inside an EZ and any additional clearance time required before regulated source could be activated. Mitigation downtime did not include any additional downtime that a survey operator needed to resume acquisition: additional vessel maneuvering time, time to deploy or calibrate equipment etc. Some detections included this additional downtime as a different field, production loss, but this variable was not recorded for every mitigation action taken.

5.6 Data Quality Control

The RPS data analysts reviewed all the PSO data sets received from the R/V Artemis Arctic and conducted quality control as described in Table 10.
Table 10: Quality control editing performed by RPS on PSO datasets by data field.

Data Type Data Field	Corrections Made	
	SOW / EOW	- $\begin{array}{l}\text { Times were corrected or added where error was evident, } \\ \text { typically by inconsistency with adjacent times }\end{array}$
$\begin{array}{l}\text { Monitoring } \\ \text { Effort }\end{array}$	Daytime vs. Nighttime	$\begin{array}{l}\text { - } \\ \text { - }\end{array}$
Failures to adjust time to UTC were corrected.		
Times were corrected when end of effort overlapped with		
start of subsequent effort		

6 RESULTS

This section of the report details sound source operations, protected species monitoring effort, environmental conditions during monitoring effort, detection data and distribution inside and outside the Permit Area during source operation and source silence.

The monitoring effort, source operations and protected species detections for the R/V Artemis Arctic are also provided in excel dataset in Appendix I and letter of data certification is provided in Appendix J .

6.1 Operation Activity

The survey operations began with the R / V Artemis Arctic conducting source calibrations in the survey area before proceeding to acquisition, according to the survey plan. Survey operations were briefly suspended when necessary for weather, equipment maintenance, or port calls for provisions, crew change and weather.

The dates of operation, total days of regulated source activity and hours of regulated source operations (shown in decimal hours) by the R / V Artemis Arctic are provided in Table 11.

Table 11: Summary of regulated sound source operations on the R / V Artemis Arctic.

		Total Days of Regulated Source Activity	Total Hours of Regulated Source
	Dates of Operation	(days)	Operations (hh.hh)
R / V Artemis Arctic	13 October 2023-15 January 2024	65	944.20

The breakdown of source operations (shown in decimal hours [hh.hh]) by source status are provided in Table 12.

Table 12: Summary of seismic source operations broken down by source status on the source vessel.

	R / V Artemis Arctic
Source Status	Duration (hh.hh)
Testing at Reduced Source Volume	04.42
Ramp-up	132.95
Full Volume While Not Acquiring Production Data	81.38
Full Volume While Acquiring Production Data 725.45	
Total Source Activity	$\mathbf{9 4 4 . 2 0}$

6.2 Monitoring Effort

Visual and acoustic monitoring effort for the R / V Artemis Arctic during the survey is summarized in Table 13 , shown by activity of the seismic source and by the type of source utilized.

Table 13: Summary of monitoring effort, visual and acoustic, by the vessel and by source activity status.

Vessel and Type of Source Utilized	Source Equipment Active			Source Equipment Inactive	
	Duration (hh.hh)	Duration (hh.hh)			
	Visual	PAM	Visual	PAM	
$R V$ Artemis Arctic	458.83	944.20	555.38	555.18	

The combined total breakdown for visual only monitoring effort and concurrent visual and acoustic monitoring effort undertaken during day and night, according to source activity status, is provided for the vessel in Table 14.
Table 14: Total monitoring effort, visual and acoustic, during day and night by airgun source activity status on the R / V Artemis Arctic.

	Day (hh.hh)								Night (hh.hh)			
Monitoring Effort	Total	Source Active	Source Inactive	Total	Source Active	Source Inactive						
Visual Monitoring Only	$\mathbf{2 8 2 . 8 1}$	00.00	282.81	$\mathbf{0 0 . 0 0}$	00.00	00.00						
Visual and Acoustic Monitoring	$\mathbf{7 3 1 . 4 0}$	458.83	272.57	$\mathbf{0 0 . 0 0}$	00.00	00.00						
Acoustic Monitoring Only	$\mathbf{0 0 . 0 0}$	00.00	00.00	$\mathbf{7 6 7 . 9 8}$	485.37	282.62						
Total	$\mathbf{1 0 1 4 . 2 1}$	$\mathbf{4 5 8 . 8 3}$	$\mathbf{5 5 5 . 3 8}$	$\mathbf{7 6 7 . 9 8}$	$\mathbf{4 8 5 . 3 7}$	$\mathbf{2 8 2 . 6 2}$						

6.3 Environmental Conditions

Environmental conditions can have an impact on the probability of detecting protected species in a survey area. The environmental conditions present during visual observations undertaken the survey were favorable to moderate.

Visibility was indicated in kilometers and recorded in one of eight categories ($>5,2-5,1-2,0.5-1,0.3-0.5$, $0.1-0.3,0.05$ to 0.1 , and <0.05). The majority of monitoring effort, 67%, was conducted in conditions where visibility extended to greater than $5 \mathrm{~km} ; 30 \%$ of monitoring effort occurred while visibility was between 0.5 and 5 km , and only 3% of monitoring effort was conducted while visibility extended to less than 0.5 km . The duration of monitoring conducted at each visibility classification is provided in Table 15.

Table 15: Summary of visibility during visual monitoring effort on the R / V Artemis Arctic.

Visibility	R/V Artemis Arctic	Percent of Total Project
	Duration (hh.hh)	$\%$
$>5 \mathrm{~km}$	676.23	67
2 to 5 km	228.88	23
1 to 2 km	47.58	3
0.5 to 1 km	32.58	1
0.3 to 0.5 km	11.15	1
0.1 to 0.3 km	07.12	1
0.05 to 0.1 km	06.22	<1
<.05 km	04.45	100
Total	1014.21	

Monitoring effort for the R / V Artemis Arctic was conducted in Beaufort Sea State ranging from Level 1 to Level 8 where 45% accumulated in sea states at or below Level 3, which is considered favorable conditions for most protected species monitoring (Table 16). Visual observations at Level 4 Beaufort Sea states or higher accounted for 55% of the total visual monitoring effort.

REPORT

Table 16. Summary of Beaufort Sea State during visual monitoring during the survey.

Beaufort Sea State	R/V Artemis Arctic	Percent of Total Project
	Duration (hh.hh)	$\%$
B1	05.55	1
B2	142.07	14
B3	301.33	30
B3 or Less	448.95	45
B4	244.23	24
B5	165.52	16
B6	133.25	13
Greater than B6	22.26	2
Total	1014.21	100

Monitoring effort was conducted in swell heights over 4 meters. However, most of the effort was conducted at swell heights below 2 meters, which accounted for 75% of the total monitoring effort (Table 17).

Table 17. Summary of swell height during visual monitoring during the survey.

Swell Height	R/V Artemis Arctic	Percent of Total Project
	Duration (hh.hh)	$\%$
	761.13	75
$2-4 \mathrm{~m}$	231.72	23
$>4 \mathrm{~m}$	21.36	2
Total	$\mathbf{1 0 1 4 . 2 1}$	$\mathbf{1 0 0}$

Precipitation may also obscure visibility and sea surface. However, light rain, heavy rain, haze, thin fog, and heavy fog only attributed to 26% of the total visual effort (Table 18). These conditions did not affect visibility to a point where operations had to be suspended.

REPORT

Table 18. Summary of precipitation during visual monitoring during the survey.

Precipitation	R/V Artemis Arctic	Percent of Total Project
	Duration (hh.hh)	$\%$
Clear	755.40	74
Light Rain	71.43	7
Heavy Rain	05.13	1
Thin Fog	13.58	1
Heavy Fog	02.40	<1
Haze	166.27	16
Total	1014.21	100

Glare may also obscure visibility and sea surface. For 36% of the survey the visibility was not affected by glare (Table 20). Glare conditions did not affect visibility to a point where operations had to be suspended.

Table 19. Summary of glare during visual monitoring during the survey.

Glare	R/V Artemis Arctic	Percent of Total Project
	Duration (hh.hh)	$\%$
None	363.11	36
Mild	147.20	15
Moderate	143.10	14
Severe	360.80	36
Total	$\mathbf{1 0 1 4 . 2 1}$	$\mathbf{1 0 0}$

7 PROTECTED SPECIES OBSERVATION RESULTS

7.1 Visual Sightings

This section of the report summarizes visual sightings of protected species made during the project. There were 28 protected species detections, both inside and outside the permit area, ($n=23$ delphinid detections, $n=5$ sea turtle detections). Detections consisted of two species of marine mammal species, two species of sea turtle, as well as unidentified dolphins and sea turtles. There were no visual detections of whales during the survey.

Of the 28 visual detections, 71% (20 detection events) were identified to the species level while the remaining eight detection events were identified to family level or a higher taxonomic level (classified as unidentified delphinids or unidentified sea turtles).

A table of all protected species sightings is provided as part of an excel datasheet attachment in Appendix I. Photographs of the protected species visually detected during the survey are provided in Appendix K. The distribution of protected species detections both inside and outside the permit area is provided in Appendix L.

Table 20 shows the total number of detection records and the number of individuals detected for each protected species during the survey. The locations of these detections, by group, can be found in Appendix L.

Table 20: Detection records collected for each protected species visually detected during the survey.

Species	Total Number of Visual Detection Records	Total Number of Animals
Bottlenose dolphin	15	100
Pantropical spotted dolphin	3	11
Unidentified dolphin	5	8
Total Dolphins	23	119
Green sea turtle	1	1
Loggerhead sea turtle	1	1
Unidentified shelled sea turtle	3	3
Total Sea Turtles	5	$\mathbf{5}$
Total Protected Species	$\mathbf{2 8}$	$\mathbf{1 2 4}$

7.1.1 Detection and Distance Summaries

The most commonly detected dolphin species was the bottlenose dolphin (15 detections of 100 estimated individuals), followed by unidentified dolphin species (five detections of eight estimated individuals). The number of detection events, approximate number of animals observed, mean group size, mean distance from the vessel at first detection, and detection rate for each species of marine mammals detected over the course of the survey is provided in Table 21 for dolphins and Table 22 for sea turtles.

Table 21: Detection summary of dolphins observed during the survey.

Dolphins	Bottlenose dolphin	Pantropical spotted dolphin	Unidentified dolphin
\# of Detection Records	15	3	5
Estimated \# of Individuals Detected	100	11	8
Mean Group Size	6.67	3.67	1.60
Mean Distance (m) at First Detection	35.00	138.33	57.00
Detection Rate	0.01479	0.00296	0.00492

There were two species of shelled sea turtles detected, as well as detections of unidentified shelled sea turtles. Of the turtle detections, unidentified shelled sea turtles were detected the most frequently (three detections of an estimated three individuals). The mean observed unidentified shelled sea turtle group size was 1.00 as shown in Table 22.

Table 22: Detection summary of sea turtles observed during the survey.

Sea Turtles	Green sea turtle	Loggerhead sea turtle	Unidentified shelled sea turtle
\# of Detection Records	1	1	3
Estimated \# of Individuals Detected	1	1	3
Mean Group Size	1.00	1.00	1.00
Mean Distance (m) at First Detection	30.00	45.00	38.33
Detection Rate	0.00099	0.00099	0.00296

There were no visual sightings of whales during the survey.
The difference between the closest observed approach of marine mammals to active source, versus inactive source was small. Distances to the vessel were generally closer for detections when the source was not deployed (Table 23).

Table 23: Average CPA of protected species to seismic source or vessel on the R/V Artemis Arctic, while active and inactive.

Species Detected	Source Deployed Active		Source Deployed Inactive		Source Not Deployed	
	Number of Detections	Mean Closest Observed Approach to Source (m)	Number of Detections	Mean Closest Observed Approach to Source (m)	Number of Detections	Mean Closest Observed Approach to Vessel (m)
Bottlenose dolphin	--	--	--	--	15	20.07
Pantropical spotted dolphin	1	194.00	--	--	2	3.50
Unidentified dolphin	--	--	2	215.00	3	40.67
Total Dolphins	1	194.00	2	215.00	20	21.50
Unidentified shelled sea turtle	1	208.00	1	184.00	1	55.00
Green sea turtle	--	--	1	170.00	--	--
Loggerhead sea turtle	--	--	1	200.00	--	--
Total Sea Turtles	1	208.00	3	184.67	1	55.00
Total Protected Species	2	201.00	5	196.80	21	23.10

7.2 Acoustic Detection Summary

There were 21 acoustic detections of marine mammals associated with the project. Acoustic detections were of sperm whales and dolphins identified at the family level. There were no correlated visual and acoustic detections.

Screenshots of acoustically detected protected species during the survey are provided in Appendix M.
For the acoustic detections, the initial indication of detection was by aural detection of tonal sounds, by visual detection of clicks on a click detector module, and by visual detection of clicks and/or pulsed sounds on a spectrogram.

Of the 21 acoustic detections made on the R / V Artemis Arctic for the survey, five occurred when the source was active and 16 occurred while the source was inactive (Table 24).

Table 24: Acoustic detections and source activity during the survey.

	R/V Artemis Arctic
\# of Detection Records	21
Number of Detections While Source was Active	5
Number of Detections While Source was Inactive	16

7.3 Protected Species Incident Reporting

There were no observations of dead or injured protected species during the survey.

7.4 Summary of Mitigation Measures Implemented

7.4.1 Mitigation for Sound Exposure from Survey Equipment

Requisite mitigation actions for protected species detected during the survey were requested by PSOs and PAM operators and implemented by source operators. For the R/V Artemis Arctic, there were eight delays to source activity for protected species detections, and there was one shutdown (Table 25). Mitigation actions were from both visual and acoustic detections.

Table 25: Summary of mitigation actions implemented on the R / V Artemis Arctic.

	Dolphins		Sea Turtles		All Species	
Mitigation Action	No.	Mitigation Downtime (hh.hh)	No.	Mitigation Downtime (hh.hh)	No.	Mitigation Downtime (hh.hh) Delay to Initiation of Source
7	03.68	1	00.50	$\mathbf{8}$	$\mathbf{0 4 . 1 8}$	
Shutdown of Active Source	1	00.62	0	00.00	$\mathbf{1}$	$\mathbf{0 0 . 6 2}$
All Mitigation Actions	$\mathbf{8}$	$\mathbf{0 4 . 3 0}$	$\mathbf{1}$	$\mathbf{0 0 . 5 0}$	$\mathbf{9}$	$\mathbf{0 4 . 8 0}$

7.4.2 Mitigation for Strike Avoidance

There were 14 strike avoidance mitigation procedures for the vessel and/or towed equipment interactions with protected species required during this survey. The mitigation actions are summarized in Table 26.

Table 26: Summary of protected species detections occurring inside the species/species group specific separation distances.

Date	Visual Detection Number	Species	Number of Animals	CPA to Vessel (m)	Strike Avoidance Maneuver
10 October 2023	1	Bottlenose dolphin	40	5.00	Maintained speed, kept course
10 October 2023	2	Bottlenose dolphin	2	5.00	Maintained speed, kept course
10 October 2023	3	Bottlenose dolphin	4	5.00	Speed reduced
10 October 2023	4	Unidentified dolphin	1	2.00	Maintained speed, kept course
12 October 2023	6	Bottlenose dolphin	3	10.00	Maintained speed, kept course
21 October 2023	7	Bottlenose dolphin	5	2.00	Speed reduced
22 October 2023	8	Pantropical spotted dolphin	6	2.00	Speed reduced, kept course
01 November 2023	9	Bottlenose dolphin	18	10.00	Maintained speed
06 November 2023	13	Green sea turtle	1	30.00	Maintained speed, kept course
10 November 2023	15	Unidentified shelled sea turtle	1	30.00	Maintained speed, kept course
05 December 2023	18	Unidentified shelled sea turtle	1	20.00	Maintained speed, kept course
07 December 2023	19	Loggerhead sea turtle	1	45.00	Maintained speed, kept course
20 December 2023	22	Bottlenose dolphin	5	3.00	Kept course, maintained speed
10 January 2024	27	Bottlenose dolphin	10	3.00	Kept course, speed reduced
2					

8 SUMMARY

8.1 Interpretation of the Results

Most of the marine mammal and sea turtle species that were detected during the survey were species that occur commonly in the Gulf of Mexico and that are regularly observed by PSOs and PAM Operators during survey activities. Each species detected was observed within its predicted range with no species encounters occurring outside of that species normal range.

For the marine mammal species groups (all except pantropical spotted dolphins), the distance at initial detection and at closest approach was greater when the regulated sound source was on, but the sample sizes were still too small to be statistically significant. No behaviors were documented that suggested adverse impacts had occurred to any protected species encountered as a result of the survey activities undertaken.

8.2 Monitoring Efficacy and Comparison Assessment

During the survey, two different monitoring methods were used to detect protected species. Each method is discussed in Section 4 Mitigation and Monitoring Methods.

1. Daytime unaided eye where PSOs made regular and frequent sweeps of the surrounding area with reticle binoculars and/or Big Eye binoculars.
2. PAM, which was used both day and night.

Table 27 breaks down monitoring effort by protected species detections and the detection rate for each monitoring method on the R / V Artemis Arctic in 24 -hour operations.

Table 27: Monitoring effort, protected species detections and detection rate for each monitoring method.

	Visual Monitoring	PAM
Monitoring Effort (hh.hh)	1014.21	1499.38
Number of Marine Mammal Detections	23	21
Detection Rate	0.02268	0.01401
Number of Sea Turtle Detections	5	-
Detection Rate	0.00493	-

8.2.1 Effectiveness of PAM

PAM had lower detection rate compared to visual monitoring, which is not usual for PAM systems deployed on industry vessels where many factors can limit the efficacy of the system.

- The deployment configuration of a towed hydrophone cable is limited by vessel specific features such as the presence of thrusters and propeller because the PAM Operator must identify a safe location for deployment of the cable where entanglement risk for the cable is low.
- Vessel noise from the propellers occurs in the low-frequency range and at high decibel levels and has the potential to mask marine mammal vocalizations, especially those of large mysticete whales that produce calls that overlap in frequency with this vessel noise. Additional masking may occur from the vessel itself, especially for animals like dolphins that will frequently approach the front of the vessel and ride at the surface, where their highly directional vocalizations can be blocked by the hull.

Additionally, PAM detections are limited to vocalizing marine mammals where many species exhibit highly variable vocalizing behavior that changes depending on behavior state, social structure factors and age and gender. Environmental conditions can also limit the efficacy of PAM where increased background noise could result in masking of vocalizations that overlap in frequency with the noise.
Despite the limitations that exist with the PAM system, there were four daytime acoustic detections made during the survey that were not accompanied by a visual sighting of the marine mammals, so this monitoring method enabled the detections of marine mammals that would otherwise not have been detected visually.

8.3 Effectiveness of Monitoring and Mitigation

In order to minimize the potential impacts to marine mammals and sea turtles, PSOs and PAM operators assigned to the survey were prepared to implement mitigation measures whenever protected species were detected approaching, entering, or within the designated exclusion/buffer zones. Mitigation actions for airguns were implemented successfully during nine detections events. PSOs and PAM Operators searched the exclusion zones prior to activation of sound source and survey crew confirmed that exclusion zones were clear prior to initiating operations. Airguns were initiated gradually, in ramp-up format whenever multiple airguns would be active simultaneously.
Strike avoidance maneuvering was implemented on 14 occasions during the survey.
There were no sightings of injured or dead protected at any point during the survey.
Visual and acoustic observations yielded a total 49 protected species detections and included marine mammals and sea turtles. PSOs and PAM Operators likely did not detect all animals present; however, it is highly unlikely that protected species were not detected inside the EZs and BZs while the source was active, especially since zones were relatively small and PSOs were equipped with multiple tools to augment visual monitoring. The environmental conditions present during monitoring were generally moderate for detecting protected species, especially inside the exclusion and buffer zones.
The monitoring and mitigation measures required by the BO and the survey permit appear to have been an effective means to protecting the marine species encountered during survey operations.

9 LITERATURE CITED

Bureau of Ocean Energy Management (BOEM) Permit
United States Fish and Wildlife Service (USFWS). 2019. Marine Mammal Protection Act (MMPA). 16 U.S.C.

National Marine Fisheries Service (NMFS) Endangered Species Act Section 7 Biological Opinion. Biological Opinion of the Federally Regulated Oil and Gas Survey Activities in the Gulf of Mexico. 2020. Appendix A \& C.

Appendix A: BOEM Permit, LOA, NMFS BO

In Reply Refer To: MS 881A

ELECTRONIC MAIL - RETURN RECEIPT REQUESTED

Shell Offshore Inc.
March 7, 2023
Attention: Ms. Tracy Albert
701 Poydras St., Room 2418
New Orleans, LA 70139
Dear Ms. Albert:
Your application received January 31, 2022, requests a Federal permit to conduct geophysical operations in the area shown on the map accompanying the application. Magseis Fairfield will conduct exclusive operations for Shell Offshore Inc. The proposed program is a 4D-OBN seismic survey.

A permit designated OCS Permit L22-001 is hereby granted to conduct geophysical operations on the OCS in the area and manner described in the application subject to the enclosed Permit for Geophysical Exploration for Mineral Resources on the OCS and Attachment A that follow. Furthermore, any conditions stated in the applicable Letter of Authorization issued by the National Marine Fisheries Service must also be followed. Before starting acquisition, you are required to notify BOEM of your survey start date. BOEM must also be advised of the end date immediately upon survey completion.

Our National Environmental Policy Act (NEPA) review of the subject action is complete and results in a Finding of No Significant Impact (FONSI). This FONSI is conditioned on adherence to the conditions of approval that ensure environmental protection, consistent environmental policy, and safety as required by NEPA, as amended, and is valid only insofar as the conditions are met in Attachment A.

If you have any questions, please call Robert Mohollen at (504) 736-2840 (robert.mohollen@boem.gov) or the Office of Resource Evaluation, Data Acquisition and Special Projects Unit at (504) 736-3231 (GGPermitsGOMR@boem.gov).

Sincerely,

MATTHEW	

WILSON | Date: 2023.03.07 |
| :---: |
| 15:00:30-0600 |

Matthew G. Wilson
Regional Supervisor
New Orleans Office
Office of Resource Evaluation

Our National Environmental Policy Act (NEPA) review of the subject action is complete and results in a Finding of No Significant Impact (FONSI). This FONSI is conditioned on adherence to the following mitigation and monitoring measures that ensure environmental protection, consistent environmental policy, and safety as required by NEPA, as amended, and is valid only insofar as the following conditions are met:

Conditions of Approval

1. Compliance with Biological Opinion Terms and Conditions and Reasonable and Prudent Measures: This approval is conditioned upon compliance with the Reasonable and Prudent Measures and implementing Terms and Conditions of the Biological Opinion issued by the National Marine Fisheries Service on March 13, 2020, and the amendment issued on April 26, 2021. This includes mitigation, particularly any appendices to Terms and Conditions applicable to the plan, as well as record-keeping and reporting sufficient to allow BOEM and BSEE to comply with reporting and monitoring requirements under the BiOp; and any additional reporting required by BOEM or BSEE developed as a result of BiOp implementation. The NMFS Biological Opinion may be found here: (https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico). The amendment can be found here: https://repository.library.noaa.gov/view/noaa/29355. The Appendices and protocols may be found here: (https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico). The amendment provided updates to Appendices A, C and I which may be found here: https://repository.library.noaa.gov/view/noaa/29355.
2. Support Bases and Vessel Transit Routes: Approval of your plan is conditioned upon your use of the support bases and vessel transit routes as described in your plan. BOEM/BSEE must be notified at least 15 days prior to any vessel route changes that require transit of the Bryde's Whale area, and you must receive prior approval for that transit from BOEM/BSEE.
3. Seismic Survey Operation, Monitoring, and Reporting Guidelines: The applicant will follow the guidance provided under Appendix A: Seismic Survey Mitigation and Protected Species Observer Protocols found in the Biological Opinion amendment issued by the National Marine Fisheries Service on April 26, 2021. The guidance can be accessed on NOAA Fisheries internet website at https://repository.library.noaa.gov/view/noaa/29355.
4. Marine Trash and Debris Awareness and Elimination: The applicant will follow the guidance provided under Appendix B. Gulf of Mexico Marine Trash and Debris Awareness and Elimination Survey Protocols found in the Biological Opinion issued by the National Marine Fisheries Service on March 13, 2020. The guidance can be accessed on NOAA Fisheries internet website at https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico.
5. Vessel-Strike Avoidance/Reporting: The applicant will follow the protocols provided under Appendix C. Gulf of Mexico Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols found in the Biological Opinion amendment issued by the National Marine Fisheries Service on April 26, 2021. The guidance can be accessed on the NOAA Fisheries internet site at https://repository.library.noaa.gov/view/noaa/29355.
6. Sea Turtle Resuscitation Guidelines: The applicant will follow the guidance provided under Appendix J. Sea Turtle Handling and Resuscitation Guidelines found in the Biological Opinion issued by the National Marine Fisheries Service on March 13, 2020. The guidance can be accessed on the NOAA Fisheries internet site at https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico.
7. Moon Pool Monitoring Condition of Approval: A moon pool has been identified during review of your plan submittal. The requirements below must be followed for any activities entailing use of the moon pool, except under circumstances when complying with
these requirements would put the safety of the vessel or crew at risk. If any protected species (i.e. species protected under the Endangered Species Act [ESA] and/or Marine Mammal Protection Act [MMPA]) is detected in the moon pool, you are required to follow the appropriate procedures described in the Reporting Requirements condition of approval (COA) in your plan approval.

Application of these measures includes, but is not limited to, dive support vessels, service vessels, pipelaying vessels, drillships, floating platforms (e.g., SPAR), mobile offshore drilling units, and other facilities with enclosed moon pools (e.g., well in the hull of a vessel, with or without a door).

General Requirements

- Where the moon pools have hull doors, the operator(s) should keep the doors closed as much as reasonably practicable when no activity is occurring within the moon pool, unless the safety of crew or vessel require otherwise. This will prevent protected species from entering the confined area during periods of non-activity.
- Use of a moon pool requires regular monitoring while open to the water column and if a vessel is not underway. Regular monitoring means 24 -hour video monitoring with hourly recurring checks for at least five minutes of the video feed, or hourly recurring visual checks of the moon pool for at least five minutes by a dedicated crew observer with no other tasks during that short visual check.
- If water conditions are such that observers are unable to see within a meter of the surface, operations requiring the lowering or retrieval of equipment through the moon pool must be conducted at a rate that will minimize potential harm to protected species.

Closure of the Hull Door

- Should the moon pool have a hull door that can be closed, then prior to and following closure, the moon pool must be monitored continuously by a dedicated crew observer with no other tasks to ensure that no individual protected species is present in the moon pool area. If visibility is not clear to the hull door from above (e.g., turbidity or low light), 30 minutes of monitoring is required prior to hull door closure.
- If a protected species is observed in the moon pool prior to closure of the hull door, the hull door must not be closed, except for human safety considerations. Once the observed animal leaves the moon pool, the operator may commence closure. If the observed animal remains in the moon pool after closure, contact NMFS or BSEE prior to the closure of the hull doors according to reporting requirements (see Reporting Requirements COA under Reporting of Observations of Protected Species within an Enclosed Moon Pool).

Movement of the Vessel (no hull door) and Equipment Deployment/Retrieval

- Prior to movement of the vessel and/or deployment/retrieval of equipment, the moon pool must be monitored continuously for a minimum of 30 minutes, by a dedicated crew observer with no other tasks, to ensure no individual protected species is present in the moon pool area.
- If a protected species is observed in the moon pool prior to movement of the vessel, the vessel must not be moved and equipment must not be deployed or retrieved, except for human safety considerations. If the observed animal leaves the moon pool, the operator may commence activities. If the observed animal remains in the moon pool contact BSEE prior to planned movement of the vessel according to reporting requirements
(see Reporting Requirements COA under Reporting of Observations of Protected Species within an Enclosed Moon Pool.
- Should a protected species be observed in a moon pool prior to activity commencement (including lowering or retrieval of equipment), recovery of the animal or other actions specific to the scenario may be required to prevent interaction with the animal. If protected species are observed during activity, only reporting is required (see Reporting Requirements COA). Operators must not take such action except at the direction of, and after contact with, NMFS (see Reporting Requirements COA).

8. Slack-Line Precautions Condition of Approval: If operations require the use of flexible, small diameter ($<2 \mathrm{inch}$) lines to support operations (with or without divers), operators/contractors must reduce the slack in the lines, except for human safety considerations, to prevent accidental entanglement of protected species (i.e. species protected under the Endangered Species Act [ESA] and/or Marine Mammal Protection Act [MMPA]). This requirement includes tether lines attached to remotely operated equipment. The requirements below must be followed for any activities entailing use of flexible, small diameter lines that will not remain continuously taut, except when complying with these requirements would put the safety of divers, crew, or the vessel at risk:

- Operators must utilize tensioning tools and/or other appropriate procedures to reduce unnecessary looseness in the lines and/or potential looping;
- The lines must remain taut, as long as additional safety risks are not created by this action;
- A line tender must be present at all times during dive operations and must monitor the line(s) the entire time a diver is in the water; and
- Should the line tender and/or diver become aware of an entanglement of an individual protected species, the reporting requirements described in the Reporting Requirements COA must be followed as soon as safety permits.

9. Reporting Requirements Condition of Approval: Review of your proposed activities identified use of equipment that has the potential for entanglement and/or entrapment of protected species (i.e. species protected under the Endangered Species Act [ESA] and/or Marine Mammal Protection Act [MMPA]) that could be present during operations. In case of entrapment, procedures and measures for reporting are dependent upon the situation at hand. These requirements replace those specific to dead and injured species reporting in respective sections of Appendix A (insofar as they relate to geophysical surveys) and Appendix C of the 2020 Biological Opinion on the Bureau of Ocean Energy Management's Oil and Gas Program Activities in the Gulf of Mexico.

Incidents Requiring Immediate Reporting

Certain scenarios or incidents require immediate reporting to Federal agencies; these are described below:

Should any of the following occur at any time, immediate reporting of the incident is required after personnel and/or diver safety is ensured:

- Entanglement or entrapment of a protected species (i.e., an animal is entangled in a line or cannot or does not leave a moon pool of its own volition).
- Injury of a protected species (e.g., the animal appears injured or lethargic). Interaction, or contact with equipment by a protected species.
- Any observation of a leatherback sea turtle within a moon pool (regardless of whether it appears injured, or an interaction with equipment or entanglement/entrapment is observed).

1. As soon as personnel and/or diver safety is ensured, report the incident to National Marine Fisheries Service (NMFS) by contacting the appropriate expert for $24-\mathrm{hr}$ response. If you do not receive an immediate response, you must keep trying until contact is made. Any failed attempts should be documented. Contact information for reporting is as follows:
a. Marine mammals: contact Southeast Region's Marine Mammal Stranding Hotline at 1-877-433-8299.
b. Sea turtles: contact Brian Stacy, Veterinary Medical Officer at 352-2833370. If unable to reach Brian Stacy, contact Lyndsey Howell at 301-3103061. This includes the immediate reporting of any observation of a leatherback sea turtle within a moon pool.
c. Other protected species (e.g., giant manta ray, oceanic whitetip shark, or Gulf sturgeon): contact the ESA Section 7 biologist at 301-427-8413 (nmfs.psoreview@noaa.gov) and report all incidents to takereport.nmfs@noaa.gov.
d. Minimum reporting information is described below:
i. Time, date, water depth, and location (latitude/longitude) of the first discovery of the animal;
ii. Name, type, and call sign of the vessel in which the event occurred;
iii. Equipment being utilized at time of observation;
iv. Species identification (if known) or description of the animal involved;
v. Approximate size of animal;
vi. Condition of the animal during the event and any observed injury / behavior;
vii. Photographs or video footage of the animal, only if able; and
viii. General narrative and timeline describing the events that took place.
2. After the appropriate contact(s) have been made for guidance/assistance as described in 1 above, you may call BSEE at 985-722-7902 (24 hours/day) for questions or additional guidance on recovery assistance needs (if still required) and continued monitoring requirements. You may also contact this number if you do not receive a timely response from the appropriate contact(s) listed in 1. above.
a) Minimum post-incident reporting includes all information described above (under 1.d.i-viii) in addition to the following:
i. NMFS liaison or stranding hotline that was contacted for assistance;
ii. For moon pool observations or interactions:
iii. Size and location of moon pool within vessel (e.g., hull door or no hull door);
iv. Whether activities in the moon pool were halted or changed upon observation of the animal; and
v. Whether the animal remains in the pool at the time of the report, or if not, the time/date the animal was last observed.

If a protected species is observed within an enclosed moon pool and does not demonstrate any signs of distress or injury or an inability to leave the moon pool of its own volition, measures described in this section must be followed (only in cases where they do not jeopardize human safety). Although this particular situation may not require immediate assistance and reporting as described under Incidents Requiring Immediate Reporting (see above), a protected species could potentially become disoriented with their surroundings and may not be able to leave the enclosed moon pool of their own volition. In order for operations requiring use of a moon pool to continue, the following reporting measures must be followed:

Within 24 hours of any observation, and daily after that for as long as an individual protected species remains within a moon pool (i.e., in cases where an ESA listed species has entered a moon pool but entrapment or injury has not been observed), the following information must be reported to BSEE (protectedspecies@bsee.gov) and BOEM (protectedspecies@,boem.gov):

1. For an initial report, all information described under 1.d.i-viii above should be included.
2. For subsequent daily reports:
a. Describe the animal's status to include external body condition (e.g., note any injuries or noticeable features), behaviors (e.g., floating at surface, chasing fish, diving, lethargic, etc.), and movement (e.g., has the animal left the moon pool and returned on multiple occasions?);
b. Description of current moon pool activities, if the animal is in the moon pool (e.g., drilling, preparation for demobilization, etc.);
c. Description of planned activities in the immediate future related to vessel movement or deployment of equipment;
d. Any additional photographs or video footage of the animal, if possible;
e. Guidance received and followed from NMFS liaison or stranding hotline that was contacted for assistance;
f. Whether activities in the moon pool were halted or changed upon observation of the animal; and
g. Whether the animal remains in the pool at the time of the report, or if not, the time/date the animal was last observed.
3. Non-Recurring Mitigation Benthic Communities: BOEM review of geophysical activities proposed in L22-001 identified confirmed and potential sensitive sessile benthic resources within the proposed node area. According to NTL 2009-G40, the minimum separation distance for bottom disturbing activities is 76 m (250 ft .) from any sensitive sessile benthic community (e.g., deepwater coral, chemosynthetic tube worms). Based on the methods described in the application, BOEM authorizes the applicant to deploy nodes with less than 76 $\mathrm{m}(250 \mathrm{ft})$ avoidance of high-density deepwater benthic communities contingent upon the applicant adhering to the mitigations described below:
4. All seafloor disturbances, including nodes, PEIS deployments, cables, and ROV, must remain a minimum of $5 \mathrm{~m}(16 \mathrm{ft})$ from all sensitive sessile benthic communities.
5. The contractor must photograph the seabed within a $10 \mathrm{~m}(33 \mathrm{ft})$ diameter of any node placed within 76 m (250 ft .) of a BOEM anomaly (June 2019 dataset, see link below).

Photographs of each such location shall be taken: Pre-node deployment, post-node deployment, and post-node retrieval. The photos shall clearly show the geographic location of each node.
3. If any sessile benthic communities are present at a proposed node location, a new site that allows compliance with the above requirements shall be selected.
4. The contractor must provide an as-placed GIS shapefile of actual OBN locations to demonstrate compliance. Submit the required photographs and shapefile to the BOEM Regional Supervisor, Office of Resource Evaluation, Data Acquisition and Special Projects Unit, within 90 calendar days after completing the G\&G activity.

Refer to the following BOEM site for GIS data layers of known 3D seismic water bottom anomalies:
https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/
The following feature classes have a high probability of supporting sensitive sessile benthic organisms and shall be avoided unless visual inspection and photographic data confirm an absence of high-density deepwater benthic communities:
1.Anomaly_patchreefs (Shallow Water)
2.Anomaly_confirmed_patchreefs (Shallow Water)
3.Seep_anomaly_positives
4.Seep_anomaly_positives_possible_oil
5.Seep_anomaly_positives_confirmed_oil
6.Seep_anomaly_positives_confirmed_gas
7.Seep_anomaly_confirmed_corals
8.Seep_anomaly_confirmed_organisms
9.Seep_anomaly_confirmed_hydrate
10. Seep_anomaly_confirmed_carbonate
11. Anomaly_Cretaceous
12. Anomaly_Cretaceous_talus

If you have any question regarding this mitigation, please contact Dr. Alicia Caporaso Benthic Ecology Lead (Alicia.Caporaso@BOEM.gov) or Dr. Kate Segarra Biological Sciences Unit Supervisor (Katherine.Segarra@BOEM.gov).
11. Non-Recurring Mitigation For The Protection of Potential Archaeological Resources: The cultural resources review of Shell Offshore, Inc. application to conduct a 4D OBN survey and PIES sampling within OCS blocks in the Walker Ridge area indicates that potentially significant archaeological resources have been reported in the area of potential effect. There are significant portions of the project area within the OCS that have received either limited or no previous archaeological survey, and these areas are likely to contain archaeological materials that may be impacted by the proposed operations. You must avoid the
known potential cultural resources by the distance listed in the attached table. If the applicant discovers man-made debris that appears to indicate the presence of a shipwreck, aircraft, or other man-made structure (e.g., a sonar image or visual confirmation of an iron, steel, or wooden hull, wooden timbers, anchors, concentrations of man-made objects such as bottles or ceramics, piles of ballast rock, or aircraft structures) within or adjacent to the proposed action area during the proposed operations, they will be required to immediately halt operations, take steps to ensure that the site is not disturbed in any way, and contact the BOEM Regional Supervisor for Environment within 48-hours of its discovery. They must cease all operations within 1,000 feet (305 meters) of the site until the Regional Director instructs you on what steps you must take to assess the site's potential historic significance and what steps you must take to protect it. If a node, ROV, or other activity impacts any submerged object, then the applicant must also submit a report detailing each instance of this activity. This report should include the coordinates of the impact (to DGPS accuracy), a description of the submerged object, any damage that may have resulted from the any operations, and any photographic or video imagery that is collected. The applicant must submit a copy of any data collected as a result of these investigations.

Please direct any questions or correspondence pertaining to these requirements to Scott Sorset at (504) 736-2999 or scott.sorset@boem.gov or archaeology@boem.gov.

Archaeological Targets

LATITUDE (NAD 1927)	LONGITUDE (NAD 1927)	MIN_AVOID_FT
26.470552699	-90.850050488	1600
26.433709258	-90.752087333	1000
26.497785770	-90.774443780	500
26.512588060	-91.124718350	1000

Additional Conditions of Approval:

1. Man-made structure(s) such as pipeline(s) or other potential hazard(s) may be located in the permitted work area; therefore, prior to performing operations that involve seafloor disturbance (e.g., coring), take precautions in accordance with Notice to Lessees and Operators No. 2008-G05, Section VI.B, Shallow Hazards Program (see the BOEM website at: http://www.boem.gov/Regulations/Notices-To-Lessees/2008/08-g05.aspx).
2. If you conduct activities that could disturb the seafloor in an Ordnance Dumping Area (see the BOEM website at: https://www.boem.gov/Ordnance-Dumping- Areas/ for a map), exercise caution, since this area might contain old ordnance, including unexploded shells and depth charges, dumped before 1970. In addition, the U.S. Air Force has released an undeterminable amount of unexploded ordnance in Water Test Areas 1 through 5 (most of the Eastern Planning Area of the GOM).
3. If you discover any site, structure, or object of potential archaeological significance (i.e., cannot be definitively identified as modern debris or refuse) while conducting operations, the provisions of 30 CFR 250.194(c) and NTL 2005-G07, (Archaeological Resource

Surveys and Reports) require you to immediately halt operations within 1,000 feet of the area of discovery and report this discovery to the Regional Supervisor (RS) of the Office of Environment (OE) within 48 hours. Every reasonable effort must be taken to preserve the archaeological resource from damage until the RS of OE has told you how to protect it.
4. Comply with the provisions of NTL 2009-G39, Biologically-Sensitive Underwater Features and Areas, effective January 27, 2010, (see the BOEM website at: https://www.boem.gov/Regulations/Notices-To-Lessees/2009/09-G39.aspx). If you conduct activities near an identified biologically sensitive topographic features (see the specific list at https://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of-Mexico-Region/topoblocks-pdf.aspx), in the Live Bottom "Pinnacle Trend" Area, or Live Bottom "Low Relief" Area (see the BOEM website at https://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of-Mexico-Region/topomap-pdf.aspx for a map of all three features), the following measures apply:
a. Ensure you do not anchor or otherwise disturb the seafloor within 152 meters (500 feet) of a designated "No Activity Zone." Information on the activities that disturbed the seafloor within 305 meters (1,000 feet) of the "No Activity Zone" of a biologically sensitive topographic feature shall be submitted to BOEM (see "d" below.)
b. Do not anchor or otherwise disturb the seafloor within 30 meters (100 feet) of any identified pinnacles or other hard bottoms that have a vertical relief of eight feet or more. Information on the activities that disturbed the seafloor within 61 meters (200 feet) of pinnacles in the "Pinnacle Trend" Area shall be submitted to BOEM (see "d" below.)
c. Do not anchor or otherwise disturb the seafloor near any identified live bottom low relief features. Information on the activities that disturbed the seafloor within 30 meters (100 feet) of live bottom low relief features in the Live Bottom "Low Relief" Area shall be submitted to BOEM (see "d" below.)
d. Within 90 calendar days of completing activities, submit information regarding seafloor disturbances to BOEM New Orleans Office Data Acquisition and Special Project Unit (see page 5 of these "Protective Measures" for the address) a PDF map and the appropriate shape files to reproduce the map, showing the location of the seafloor disturbance relative to these features.
5. If you conduct activities in water depths 300 meters (984 feet) or greater, make sure that you do not anchor, use anchor chains, wire, ropes, or cables, or otherwise disturb the seafloor within 76 meters (250 feet) of any features or areas that could support deep water sessile benthic communities. Refer to NTL No. 2009-G40, Deepwater Chemosynthetic Communities, effective January 27, 2010 (see the BOEM website at: http://www.boem.gov/Regulations/Notices-To-Lessees/2009/09-G40.aspx). Also, refer to the BOEM website for GIS data layers of known 3D seismic water bottom anomalies at https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/.

The following feature classes have a high probability of supporting sensitive sessile benthic organisms and shall be avoided unless visual inspection and photographic data confirm an absence of high-density deepwater benthic communities:

1. Anomaly_patchreefs (Shallow Water)
2. Anomaly_confirmed_patchreefs (Shallow Water)
3. Seep_anomaly_positives
4. Seep_anomaly_positives_possible_oil
5. Seep_anomaly_positives_confirmed_oil
6. Seep_anomaly_positives_confirmed_gas
7. Seep_anomaly_confirmed_corals
8. Seep_anomaly_confirmed_organisms
9. Seep_anomaly_confirmed_hydrate
10. Seep_anomaly_confirmed_carbonate
11. Anomaly_Cretaceous
12. Anomaly_Cretaceous_talus

Within 90 calendar days after completing activities that disturbed the seafloor within 152 meters (500 feet) of features or areas that could support high-density chemosynthetic communities, submit to the BOEM New Orleans Office Data Acquisition and Special Project Unit (see page 5 of these "Protective Measures" for the address) a PDF map and the appropriate shape files to reproduce the map, showing the location of the seafloor disturbance relative to these features
6. Comply with the provisions of NTL 2009-G39, Biologically-Sensitive Underwater Features and Areas of the Gulf of Mexico, effective January 27, 2010, (see the BOEM website at: http://www.boem.gov/Regulations/Notices-To-Lessees/2009/09- G39.aspx). If you discover any high-relief topographic feature with a relief greater than eight (8) feet while conducting activities, report the discovery to the BOEM New Orleans Office Regional Director. Make sure you do not anchor on or otherwise disturb such a feature. Within 90 calendar days after completing an activity that disturbed the seafloor within 30 meters (100 feet) of such a feature, submit to the BOEM New Orleans Office Data Acquisition and Special Project Unit (see page 5 of these "Protective Measures" for the address) a map at a scale of 1 inch $=1,000$ feet with DGPS accuracy, showing the location of the seafloor disturbance relative to the feature.
7. Before you conduct activities that could disturb the seafloor within 254 meters (1,000 feet) of a Texas artificial reef site or artificial reef permit area, within 152 meters (500 feet) of a Louisiana artificial reef site or artificial reef permit area, or could disturb the seafloor within a General Permit Area established by the States of Texas, Alabama or Florida for the placement of artificial reef material, contact the appropriate State reef management agency. See the BOEM websites at: http://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of- Mexico-Region/artreefmap.aspx for a map and http://www.boem.gov/Environmental- Stewardship/Environmental-Studies/Gulf-of-Mexico-Region/artreefcontacts-pdf.aspx for State contacts.
8. If you conduct activities within the boundaries of the Flower Gardens National Marine Sanctuary (Flower Gardens Banks and Stetson Bank), exercise caution to ensure that such activities do not endanger any other users of the Sanctuary. See the BOEM website at: http://www.boem.gov/Environmental-Stewardship/Environmental- Studies/Gulf-of-Mexico-Region/FGNMSmap-pdf.aspx for map. Additionally, activities involve moving the marker buoys at the Sanctuary, contact Mr. G. P. Schmahl, the current Sanctuary Manager, for instructions. See the BOEM website at: http://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of- Mexico-Region/FGNMScontacts-pdf.aspx for Mr. Schmahl's contact information. See the BOEM website at: http://www.boem.gov/Environmental-Stewardship/Environmental- Studies/Gulf-of-Mexico-Region/FGNMSbuoys-pdf.aspx for the locations of the Flower Gardens' marker buoys.
9. If your proposed activities will involve using boats from a port located south of the Suwannee River mouth in Florida, make sure that you adhere to the following manatee protection plan:
a. Advise your personnel of the possibility of the presence of manatees in the inland and coastal waters of Florida in the Eastern Gulf of Mexico.
b. Advise your personnel that there are civil and criminal penalties for harming, harassing, or killing manatees, which are protected under the Endangered Species Act, the Marine Mammal Protection Act, and the Florida Manatee Sanctuary Act of 1978.
c. Advise your vessel operators to (1) use the deeper ship channels to the maximum extent possible; (2) avoid collisions with manatees and to stay within the existing channels; and (3) obey all speed restrictions and travel at "no wake/idle" speeds at all times while operating in shallow water or in channels where the draft of the vessel provides less than four (4) feet of clearance. (Areas of manatee concentrations have been identified and speed limit signs have been erected in accordance with Federal, State, and local regulations.)
d. While vessels are berthed in port, advise your vessel operators to use fenders between the dock and the vessel and/or between adjacent vessels berthed side-byside. Make sure that the fenders have a minimum clearance of three feet when compressed between the dock and the vessel
e. Ensure that your vessel operators keep logs detailing any sighting of, collision with, damage to, or death of manatees that occur while you conduct an ancillary activity. If a mishap involving a manatee should occur, make sure that the vessel operator immediately calls the "Manatee Hotline" ((888) 404-3922), and the U.S. Fish and Wildlife Service, Jacksonville Field Office ((904) 232-2580) for north Florida or the U.S. Fish and Wildlife Service, Vero Beach Ecosystem Office ((772) 562-3909) for South Florida.
f. Within 60 calendar days after completing the activity, submit a report summarizing all manatee incidents and sightings to the Florida Marine Research Institute, Florida Fish and Wildlife Conservation Commission, 100 Eighth Avenue SE, St. Petersburg, FL 33701-5095; and to the U.S. Fish and Wildlife Service, 6620 Southpoint Drive South, Suite 310, Jacksonville, FL 32216-0958, for north Florida, or to the U.S. Fish and Wildlife Service, 1339 20th Street, Vero Beach, Florida

32960-3559, for south Florida.
10. The Magnuson-Stevens Fisheries Conservation and Management Act (see 50 CFR 600.725) prohibits the use of explosives to take reef fish in the Exclusive Economic Zone. Therefore, if your activities involve the use of explosives, and the explosions result in stunned or killed fish, do not take such fish on board your vessels. If you do, you could be charged by the National Oceanic and Atmospheric Administration Fisheries Service (NOAA Fisheries Service) with a violation of the aforementioned Act. If you have any questions, contact NOAA Fisheries Service, Office for Law Enforcement, Southeast Division, at (727) 8245344.
11. When operations extend south of approximately 26 degrees north latitude in the Western Gulf of Mexico or 24 degrees to 25 degrees north latitude in the Eastern Gulf of Mexico (the 200-nautical mile provisional maritime also called the Exclusive Economic Zone Conservation Zone Limit), notify the Department of State: Ms. Roberta Barnes, Room 2665, OES/OPA, Department of State, Director, Office of Ocean and Polar Affairs, Washington, D.C., 20520, at (202) 647-0240 or barnesrm@state.gov.
12. As part of the requirements of 30 CFR 551.6(a), if any operation under this Permit and Agreement is to be conducted in a leased area, the Permittee shall take all necessary precautions to avoid interference with operations on the lease and damage of existing structures and facilities. The lessee (or operator) of the leased area will be notified, in writing, before the Permittee enters the leased area, or commences operations, and a copy of the notification will be sent to the Regional Supervisor executing this Permit Agreement.
13. (a) Solid or liquid explosives shall not be used, except pursuant to written authorization from the Regional Supervisor. Requests of the use of such explosives must be in writing, giving the size of charges to be used, the depth at which they are to be detonated, and the specific precautionary methods proposed for the protection of fish, oysters, shrimp, and other natural resources. The use of explosives represents a may affect situation under Section 7 of the Endangered Species Act of 1973, as amended.
(b) The following provisions are made applicable when geophysical exploration on the Outer Continental Shelf using explosives is approved:
i. Each explosive charge will be permanently identified by markings so that unexploded charges may be positively traced to the Permittee and to the specific field party of the Permittee responsible for the explosive charge
ii. The placing of explosive charges on the seafloor is prohibited. No explosive charges shall be detonated nearer to the seafloor than five (5) feet (1.52 meters).
iii. No explosive shall be discharged within 1,000 feet (304.8 meters) of any boat not involved in the survey.
14. Any serious accident, personal injury, or loss of property shall be immediately reported to the Regional Supervisor of Resource Evaluation.
15. All pipes, buoys, and other markers used in connection with seismic work shall be properly
flagged and lighted according to the navigation rules of the U.S. Corps of Engineers and the U.S. Coast Guard.

PROPRIETARY COPY

February 1, 2022

Regional Supervisor, Resource Evaluation
Bureau of Ocean Energy Management
Gulf of Mexico OCS Region
1201 Elmwood Park Boulevard
New Orleans, LA 70123-2394
Attn: Data Acquisition and Special Projects Unit MS 5123
SUBJECT: Geophysical Permit for Stones 4D OBN Monitor Seismic Survey in the Walker Ridge Area
Gentlemen:
Please find attached Forms BOEM-0327 and 0328 to cover a 4D OBN monitor seismic survey for the above referenced area. We are including the cost recovery fee for this project. Also included are the shape files to assist in your review. We will be working on the LOA request and letters to offset operators and we will provide this information to when available.

Please contact us if you have any questions or require additional information.
Sincerely,

Tracy Albert
Sr. Regulatory Specialist
Attachments

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT

Gulf of Mexico OCS Region
(Insert Appropriate Regional Office

Requirements for Geological and Geophysical Explorations or Scientific Research on the Outer Continental Shelf

Application for Permit to Conduct Geological or Geophysical Exploration for Mineral Resources or Scientific Research on the Outer Continental Shelf
 Attachment 1)

Nonexclusive Use Agreement for ScientificResearch on the Outer Continental Shelf
 Attachment 2)

SUBMIT: One original, one copy of the original, one digital copy, and one public copy (all with original signatures).

Paperwork Reduction Act of 1995 (PRA) Statement: The PRA (44 U.S.C. 3501 et seq.) requires us to inform you that the Bureau of Ocean Energy Management (BOEM) collects this information to evaluate applications for permits to conduct pre-lease exploration offshore and to monitor activitiesof scientific research conducted under notices. BOEM uses the information to ensure there is no environmental degradation, personnel harm, damage to historical or cultural sites, or interference with other uses. Responses are mandatory or to obtain or retain a benefit. Proprietary information is protected in accordance with standards established by the Federal Oil and Gas Royalty Management Act of 1982 30 U.S.C. 1733), the Freedom of Information Act (5 U.S.C. 552(1), (4)), and Department regulations 43 CFR 2). An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid Office of Management and Budget control number. The reporting burden for this form is estimated to average 300 hours per response in the Gulf of Mexico Region and 1,000 hours per response for applications in the Pacific, Alaska, and Atlantic OCS due to NEPA requirements. Much of the work to comply with NEPA requirements has already been done in the Gulf; however, for areas outside the Gulf, BOEM is accounting for the total time expended to compile and submit the necessary information to obtain the required authorizations to acquire a BOEM permit. This includes the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to the Information Collection Clearance Officer, Bureau of Ocean Energy Management, 45600 Woodland Road, Sterling, VA 20166.

UNITED STATES
 DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT

REQUIREMENTS FOR GEOLOGICAL AND GEOPHYSICAL EXPLORATIONS OR SCIENTIFIC RESEARCH ON THE OUTER CONTINENTAL SHELF

Abstract

Authority You must perform all geological and geophysical explorations or scientific research activities authorized and conducted in the Outer Continental Shelf (OCS) according to the OCS Lands Act, 30 CFR Parts 551, 251, and other applicable Federal statutes and regulations, and amendments thereto.

General Requirements of Permits and Notices

You must conduct geological and geophysical activities for mineral exploration or scientific research activities authorized under 30 CFR Parts 551, 251, and in compliance with all applicable mitigation measures so that those activities do not:
A. Interfere with or endanger operations under any lease or right-of-way or permit issued or maintained pursuant to the OCS Lands Act;
B. Cause harm or damage to aquatic life or to the marine, coastal, or human environment;
C. Cause pollution;
D. Create hazardous or unsafe conditions;
E. Unreasonably interfere with or harm other uses of the area (including submarine cables); or
F. Disturb archaeological resources.

Any person conducting geological or geophysical activities for mineral exploration or scientific research under 30 CFR Parts 551 and 251 must immediately report to the Regional Director, BOEM:
A. Detection of hydrocarbon occurrences;
B. Encounters of environmental hazards that constitute an imminent threat to human activity; or
C. Activities that adversely affect the environment, aquatic life, archaeological resources, or other uses of the area in which the exploration or scientific research activities are conducted.

Any person conducting shallow or deep stratigraphic test drilling activities under a permit for mineral exploration or scientific research under 30 CFR Parts 551 and 251 must utilize the best available and safest technologies.

The authorization that BOEM grants you under 30 CFR Parts 551 and 251 to conduct geological and geophysical explorations for minerals or for scientific research does not confer a right to any discovered oil, gas, or other minerals, or to a lease under the OCS Lands Act.

Time Restriction for Permits and Notices

Permitted activities approved for a specified period, including requests for extensions, and activities under a notice may not exceed 1 year.

Geological and Geophysical Activities Requiring Permits and Notices

Geological and Geophysical Explorations for Mineral Resources

You may not conduct geological and geophysical explorations for mineral resources in the OCS without an approved permit unless you conduct such activities pursuant to a lease issued or maintained under the OCS Lands Act. You must obtain separate permits for either geological or geophysical explorations for mineral resources. If BOEM disapproves an application, the statement of rejection will state the reasons for the denial and will advise the applicant of those changes needed to obtain approval.

Geological and Geophysical Scientific Research

You may not conduct geological and geophysical scientific research related to oil, gas, and sulphur in the OCS without an approved application for permit or filing of a notice. You must obtain separate permits for geological and geophysical scientific research that involves the use of solid or liquid explosives or the drilling of a deep stratigraphic test. If BOEM disapproves an application for permit, the statement of rejection will state the reasons for the denial and will advise the applicant of the changes needed to obtain approval.

You must file a notice with BOEM at least 30 days before you begin scientific research not requiring a permit. We may inform you of all environmental laws and regulations pertaining to the OCS. BOEM recommends that you submit your notice 90-120 days prior to beginning your work to ensure timely review of your notice by BOEM.

Information Required for Permits

Each applicant for a permit must complete the applicable sections of the Application for Permit (Attachment 1) and must include a public-information, page-size plat(s) showing the location of the proposed area of activity (Section B. 2 or C. 2 of Attachment 1). In addition, each applicant for a geological or geophysical permit must submit the appropriate attachment to section D of the Application. This includes a detailed map of the proposed activity for Section D. 8 (Geological Application) or Section D. 12 (Geophysical Application). Only applicants for a notice of scientific research must complete a Nonexclusive Use Agreement (Attachment 2).

The information provided on the Application for Permit (excluding section D) and on the Nonexclusive Use Agreement, including continuation sheets and the page-size plat s), is considered NON-PROPRIETARY INFORMATION. These non-proprietary portions of the application constitute the "public information" copy of Form BOEM-0327 and with the executed permit will be available to the public upon request.

The information listed in Section D is considered PROPRIETARY INFORMATION and you should NOT attach it to the public information copy. BOEM will not make this information available to the public without the consent of the potential permittee or for a period mandated by law or regulation. However, BOEM may determine that earlier release is necessary for the proper development of the area permitted.

Modifications to Approved Permits

The BOEM Regional Supervisor must approve any modification to the permitted operations.

Filing Locations for Permits to Conduct Explorations for Mineral Resources and for Permits or Notices to Conduct Scientific Research

File one original, one copy of the original, one digital copy, and one public copy (all with original signatures) at the following locations at least 30 days before you begin operations. BOEM recommends that you submit your notice or application 90-120 days prior to beginning your work to ensure timely review of your notice by BOEM.
A. For the OCS off the State of Alaska:

Regional Supervisor for Resource Evaluation
Bureau of Ocean Energy Management
Alaska OCS Region
3801 Centerpoint Drive
Suite \#500
Anchorage, Alaska 99503-5823
B. For the OCS in the Gulf of Mexico and off the Atlantic Coast:

Regional Supervisor for Resource Evaluation
Bureau of Ocean Energy Management
Gulf of Mexico OCS Region
1201 Elmwood Park Boulevard
New Orleans, Louisiana 70123-2394
C. For the OCS off the States of California, Oregon, Washington, or Hawaii:

Regional Supervisor, Office of Strategic Resources
Bureau of Ocean Energy Management
Pacific OCS Region
760 Paseo Camarillo
Suite \#102
Camarillo, California 93010-6092

UNITED STATES
 DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT

Gulf of Mexico OCS Region

(Insert Appropriate Regional Office

APPLICATION FOR PERMIT TO CONDUCT GEOLOGICAL OR GEOPHYSICAL EXPLORATION FOR MINERAL RESOURCES OR SCIENTIFIC RESEARCH ON THE OUTER CONTINENTAL SHELF

(Section 11, Outer Continental Shelf Lands Act of August 7, 1953, as amended on September 18, 1978, by Public Law 95-372, 92 Statute 629, 43 U.S.C. 1340; and 30 CFR Parts 551 and 251)

Shell Offshore Inc.

Name of Applicant
701 Poydras, Room 2418
Number and Street
New Orleans, LA 70139

> City, State, and Zip Code

Application is made for the following activity: (check one)

Geological exploration for mineral resources

Geological scientific research

Geophysical exploration for mineral resources

Geophysical scientific research

Submit: Original plus three copies, totaling four copies, which include one copy of the original, one digital copy, and one public copy (all with original signatures .

To be completed by BOEM

Permit Number: \qquad Date: \qquad

A. General Information

1. The activity will be conducted by:

Magseis Fairfield
Service Company Name
9811 Katy Fwy Suite 1100
Address
Houston, TX 77024
City, State, Zip
281-275-7613
Telephone/FAX Numbers
steve.mcintosh@magseisfairfield.com
E-Mail Address
2 The purpose of the activity is:

For Shell E\&P Co.
Purchaser(s) of the Data
701 Poydras St., Rm. 2418
Address
New Orleans, LA 70139
City, State, Zip
832-933-5878
Telephone/FAX Numbers
vishram.rambaran@shell.com
E-Mail Address
Mineral exploration
\qquad Scientific research
3. Describe your proposed survey activities (i.e., vessel use, benthic impacts, acoustic sources, etc.) and describe the environmental effects of the proposed activity, including potential adverse effects on marine life. Describe what steps are planned to minimize these adverse effects (mitigation measures). For example: 1) Potential Effect: Excessive sound level Mitigation; Soft Start, Protected Species Observers (PSO's), mammal exclusion zone or 2) Potential Effect: Bottom disturbance; Mitigation: ROV deployment/retrieval of bottom nodes) (use continuation sheets as necessary or provide a separate attachment. Label as BOEM-0327 Section A General Information.): There will be no adverse effects on marine life. The use of airgun sources will follow NTL 2016-G02.

Additionally, the use of a Passive Acoustic Monitoring PAM) should be implemented following NTL 2016-G02.
4. The expected commencement date is: June 1, 2022

The expected completion date is:
December 31, 2022
5. The name of the individual(s) in charge of the field operation is:

Vishram Rambaran
May be contacted at:
150 N. Dairy Ashford Rd., Houston TX 77079
Telephone Local) 832-933-5878 Marine) see below
Email Address: vishram.rambaran@shell.com
Olympus Artimis Bridge: +47 70081666
Swanco Sword Bridge: +4723673065
6. The vessel(s) to be used in the operation is are):

Vessel Name s)	Vessel Model	Registry Number(s)	Radio Call Sign(s)	Registered Owner(s)
V Sanco Sword	Source Vessel	9662100	IMO)	ZDNE7

7. The port from which the vessel(s) will operate is:
8. Briefly describe the navigation system (vessel navigation only):
dGPD

B. Complete for Geological Exploration for Mineral Resources or Geological Scientific Research

1. The type of operation(s) to be employed is: (check one)
a.
 Deep stratigraphic test, or
b.
 Shallow stratigraphic test with proposed total depth of \qquad , or
c. \qquad Other \qquad
2. Attach a page-size plat showing: 1) The generalized proposed location for each test, where appropriate, a polygon enclosing the test sites may be used; 2) BOEM protraction areas, coastline, point of reference, OCS boundary/3-mile limit; 3) Distance and direction from a point of reference to area of Activity; and 4) Label as "Public Information".

C. Complete for Geophysical Exploration for Mineral Resources or Geophysical Scientific Research

1. The proposed operation:

Seismic Survey
a. Acquisition method (OBN, OBC, Streamer): OBN
b. Type of acquisition: (High Resolution Seismic, 2D Seismic, 3D Seismic, gravity, magnetic, CSEM, etc.)
4D monitor seismic survey

2 Attach a page-size plat showing:
a. The generalized proposed location of the activity with a representative polygon;
b. BOEM protraction areas, coastline, point of reference, OCS boundary/3-mile limit;
c. Distance and direction from a point of reference to area of activity;
d. Label as "Public Information"; and
e. Submit relevant shape files needed to recreate the map as part of the required digital copy.
3. List all energy source types to be used in the operation(s): (Air gun, air gun array s), sub-bottom profiler, sparker, towed dipole, side scan sonar, etc.).
Airgun Source Array
4. Explosive charges will \square will not X be used. If applicable, indicate the type of Explosive and maximum charge size (in pounds) to be used: \qquad

Type \qquad Pounds \qquad Equivalent Pounds ofTNT \qquad
D. Proprietary Information Attachments

Use the appropriate form on page 9 for a "geological" permit application or the form on page 11 for a "geophysical" permit application. You must submit a separate Form BOEM-0327 to apply for each geological or geophysical permit.

E. Certification

I hereby certify that foregoing and attached information are true and correct.
Print Name:Tracy W. Albert
SIGNED Tracy W. Albert
date 2/01/2022
title Sr. Regulatory Specialist
company name: Shell Offshore Inc.

TO BE COMPLETED BY BOEM

Permit No. \qquad Assigned by \qquad Date 07-Feb-2022

This application is hereby:
a. X Accepted
b. \qquad Returned for reasons in the attached DATE 2/8/22

Section D Proprietary Information Attachment Required for an Application for Geophysical Permit

Please provide the information in an attached document labeled BOEM-0327 Section D Proprietary

Information Attachment.

1. Attach detailed narrative and description of the energy source(s) and receiving array.
2. Attach a map view diagram/schematic that illustrates vessel(s) source and receiver(s) configuration. Label each vessel indicating its function and include the dimensions of streamer(s), tow fish, etc. Indicate the number of chase and alternate vessels to be used.

Please see attached material

3. List each energy source to be used (e.g., airgun, airgun array s), sparker, towed dipole, side scan sonar, sub bottom profiler, etc.). Indicate the source's manufacturer, model, Source Level (SL) in dB re $1 \mu \mathrm{~Pa} @ 1 \mathrm{~m}$ in water (RMS) and if applicable, Source Level (SL) in dB re $1 \mu \mathrm{~Pa} @ 1 \mathrm{~m}$ in water (Peak to Peak) and ping rate. If the manufacturer does not provide a peak to peak level (many side scan sonars, etc.), please enter N/A. Additionally, provide the operational frequency ranges.

Energy Source	Manufacturer	Model	Array or Airgun Size (cu. in.)	Source Level (SL) in dB re $1 \mu \mathrm{~Pa} @ 1 \mathrm{~m}$ in water (RMS)	Source Level (SL) in dB re $1 \mu \mathrm{~Pa} @ 1 \mathrm{~m}$ in water (Peak to Peak)	Frequency (Hz, kHz range)	Ping Duration/ Cycle	Ping Rate
Airgun array	Bolt	LLX	5110	-239dB	-264dB	$0-200 \mathrm{~Hz}$	0.1 second	10.5 seconds
Prosuse lemetede Emos Sunder	Sonardyne	Type 8306	NA	$188-200 \mathrm{~dB}$	190-200 dB	$14-19 \mathrm{kHz}$	NA	30 seconds

For air guns/air gun arrays excludes multibeam bathymetry, high frequency subbottom profilers, and side scan sonar systems), provide the maximum distance from the sound source to the 190 , 180 , and 160 dB in RMS dB levels: (Required for Alaska region, GOM region only requires this information for surveys in the GOM that will use simsource during acquisition; Not required for Atlantic permits).

dB level	Maximum Distance from Source
190 dB	
180 dB	
160 dB	

4. State the shot frequency of the source array(s) as shots per minute or shots per linear mile (statute): 32 shots per mile for source lines, 64 shots per mile for sail lines (dual source configuration)
5. List the towing depth (ft / m) of the source array s$)$:

8 to 10 meters
6. If applicable, list the towing depth (ft / m) of the receiver(s):

OBN receivers to be used on seabed
7. CSEM, OBN, Magnetotelluric, and OBC surveys: Describe the receiver deployment and retrieval procedures. Indicate the number and spacing of anyocean bottom receivers, cables, and anchors. If anchors will not be retrieved, provide theirphysical composition and rate of decomposition.

Please refer to the attached material
8. List the navigation/positioning system or method used to position shotpoint locations and/or ocean bottom receivers:
Shot Point: dGPS
OBN Receivers: dGPS and USBL
9. Proposed areal extent (in OCS blocks) for 3D surveys or total number of line milesfor 2D surveys: Walker Ridge Block 508 and surrounding area, source area covering 110 OCS
10. Provide the company identification name of the proposed survey (e.g., Deep Six Survey and list all proposed initial and final processed data sets that will result from survey acquisition..

Stones 2022 4D OBN monitor survey

11. State the estimated date (month and year) on which initial and final processing will be available for all proposed processed data sets:
initial: September 2023, final: December 2023
12. Attach map(s), plat(s), and chart(s) (preferably at a scale of $1: 250,000$) and an electronic version of same showing latitude and longitude, scale, specific protraction areas, OCS boundary/3-mile limit, block numbers. The map, plat or chart should be submitted at a sufficient size and scale to make out all details of the activities shown. The map should be labeled "Proprietary." For 2D data acquisition provide specific track lines with line identifications with the total number of line miles proposed or a representative polygon and total number of blocks for 3D surveys. Along with the hardcopy map, submit on CD or flashdrive (subject to security screening), the necessary ArcGIS shape files to reproduce the map for 2D track lines including individual line names in the attribute table. For 3D surveys provide a representative polygon as an ArcGIS shape file. You must provide a shapefile data set of the latitude/longitude location for all track lines, shot lines, and node placements. This can be submitted at a later time but must be received before activities can take place.

ANNEX «A» to Time CharterParty
M/V SANCO SWORD

YOUR PARTNER IN MARINE SEISMIG OPERATIONS

OUTLINE SPECIFICATION M/V SANCO SWORD

MACHINERY AND PROPELLER PLANTS	
Main propulsion:	$2 \times$ Scana Volda, $2 \times 5500 \mathrm{~kW}$, Nozzle
Main engines:	$4 \times 4000 \mathrm{~kW}$, MAN $32 / 40$ Diesel, 600 rpm
Main gear:	$2 \times$ Scana Volda, twin in, single out
Generators:	$4 \times 2600 \mathrm{~kW}$ each
Propeller:	2×4 bladed Scana, $\varnothing=3900,139 \mathrm{rpm}$
Emergency Aux.	$1 \times 900 \mathrm{~kW}+1 \times 300 \mathrm{~kW}$
Bow thruster:	$1 \times$ Brunvoll Retract./Tunnel, 1000 kW
Stern thruster:	$1 \times$ Brunvoll, tunnel, 800 kW
Starting/Working air Comp:	$2 \times$ Sperre . +1 Atlas Copco
ELECTRIC POWER	
$690 \mathrm{~V}, 440 \mathrm{~V}, 230 \mathrm{~V}$ all 60Hz	
DECK MACHINERY	
Deck Crane:	$2 \times 16 \mathrm{~T} / 13,5 \mathrm{M}-5 \mathrm{~T} / 22 \mathrm{M}$
Provision crane:	$2 \times 1,5 \mathrm{~T} / 13 \mathrm{M}$
Hydraulick power pack:	2×280 bar
Seismic Cable winches:	$12 \times 12000 \mathrm{~m}$ each,
Seismic Gun winches:	$8 \times 1000 \mathrm{~m}$ each,
Auxiliary winches:	18 pcs on gun \& streamer deck

SPEED AND FUEL CONSUMPTION	
Max. speed:	17 knots - $65 \mathrm{~m} 3 /$ day
Service speed:	12 knots - $30 \mathrm{~m} 3 /$ day
Economic speed:	10 knots - $23 \mathrm{~m} 3 /$ day
Seismic shooting:	4,5 knots - $18 \mathrm{~m} 3 /$ day
Bollard pull:	216 tons
Endurance shooting:	140 days
Endurance economic speed:	94 days
IN LINE BUNKERING CAPABILITY	
The vessel is arranged with in line bunkering over the bow	
CAPASITY	
Fuel oil, HFO:	1758 m3
Diesel oil, MGO:	406 m3
Lube oil:	112 m3
Sewage:	16,5 m3
Grey water:	20,6 m3
Dirty oil / Sludge oil:	95,1 m3
Fresh water generator:	$2 \times$ Alfa Laval ($2 \times 20 \mathrm{~m} 3 /$ day $)$
Sewage treatment plant:	Gertsen \& Olufsen BR-011100 BVG
Ballast treatment plant:	MMC Green Technology 150 m 3
Waste compactor:	Delitek, Type DT-500 MC
Incinerator:	Team Tec GS 500 CS
Black water:	JETS FD/VPC-V
Helideck, Sikorsky S-92, Daylight:	D-value 21,0 meter, 14,6 tones

	NAVIGATION EQUIPMENT	
	Anschutz Nautopilot 2025	
GPS:	$2 \times$ Furuno GP-150	
Radar 1:	$1 \times 3 \mathrm{~cm}$ Furuno FCR 2117, Arpa	
Radar 2:	$1 \times 10 \mathrm{~cm}$ Furuno FCR 2137 S, Arpa	
Electronic Chart navigation:	$2 \times$ Furuno TECDIS AW, type Telco	
Gyro 1 \& 2:	$2 \times$ Navigate X Mk1ad GC 80	
GPS compass:	Furuno SC-50	
EPIRB:	$1 \times$ Jotron Tron 40 S	
AIS:	Furuno FA-150 AIS	
C-Joy with track steering:	Kongsberg tracksteering with dedicated software	
Echo sounder bridge:	Furuno FE 700	
Echo sounder, dual frequency:	Simrad EA-600 with 12, 38 \& 200 kHz	
Voyage Data Recorder:	Furuno VR-3000 6G	
Water speed Log:	Nortek VMCP	
Acoustic Current Profiler:	Nortek VMCP	
On-line Nav. system:	SEISMIC	
Primary Navigation:	Clients supply	
GPS receiver:	Clients supply	
Gun array tracking:	Clients supply	
Acoustic / Transducer:	Clients supply	
Gyro:	1×350 mm bottom valve installed	

	LIFE SAVING EQUIPMENT	
Safety manning level:	10 persons	
Rescue / FRC / MOB:	Wedo 700, water jet	
Workboat:	Westplast 950 Seisworker	
Inflatable life rafts:	6×35 persons Viking DK 35	
Life Jackets:	$64 \mathrm{pcs}+6$ kids	
Life buoy:	21 pcs	
Survival suits:	64 pcs	
Emergency radios:	$3 \times$ Sailor SP 3530	
Radar transponders:	$2 \times$ Jotron Tron	
Fire detection system:	Tyco Marine Services	
Fire pumps:	Minerva Marine T2000CV	
Co2 system:	$3 \times$ Allweiler $1 \times 247,4 \mathrm{~m} 3 / \mathrm{h}+$	
Lifesaving capacity max.:	$1 \times 125 \mathrm{~m} 3 / \mathrm{h}+1 \times 50 \mathrm{~m} 3 / \mathrm{h}$	
	Heien Larssen	
	60 persons	

COMMUNICATION	
Fixed satellite line, Irridium:	
Marlink VSAT KU band:	
Inmarsat C:	Sailor 6100
M/F \& H/F:	$2 \times$ SSB, Sailor 6300, 150W
VHF Stationary:	$3 \times$ Sailor
Handheld VHF radios:	$3 \times$ Sailor SP 3530
UHF stationary:	$5 \times$ Motorola GM 360
UHF portable:	$8 \times$ Motorola GP 380
Internal communication:	Alcatel - Lucent
Satellite - Inmarsat Type C:	$2 \times$ Sailor TT 6300
Nav. Tex.:	Furuno NX-700
Satellite com. Equipment:	Sailor 500
Vessel E-mail:	bridge.sword@sanco.no captain.sword@sanco.no
ACCOMMODATION	
Instrument room:	$1 \times$ sep. aircon. with 100% redundancy
Gun Shack:	1 pcs with air-condition
Work Shop:	2 pcs with air-condition
Seismic store:	3 pcs
Mess room:	Seating for 42 persons
Day rooms:	$3 x$ dayrooms 1 conference room 1 internet café
Gymnasium:	One, + Solarium and Sauna
Air condition:	Teknotherm Marine AS / Aeron
Cabins:	46×1 bed with bathroom 7×2 bed with bathroom Hospital with bathroom
Swimming pool:	Outdoor, heated

Sanco Shipping AS | Moljevegen 32 | N-6083 Gjerdsvika | Norway | Tel +47 700263 90| E-mail: ivar@sanco.no

2 VESSEL PARTICULARS

2.1 General

Name	Olympic Artemis
Design	MT 6021
Built	Kleven Yard Norway
Year delivered	2015 (keel laid 2014)
IMO registration	9726217
Call sign	LAFV8
MMSI number	257040610
DNV GL id. number	33885
Inmarsat C number	No 1: 14134216 / No 2: 14134283
Flag state	Norway, NIS
Port of registration	Fosnavaag
Classifications	DNVGL +1A1, SPS, SF, E0, Dynpos AUTR, DK(+), HELDK(S,H), COMF-V(3), Clean Design, Crane, NAUT-OSV(A)
Owner	Olympic Artemis AS
Manager	Olympic Shipping AS Holmsildgata 12, Fosnavåg Brygge 2 etg, 6090 Fosnavåg, Norway Phone: +47 70081224 (Chartering / Operations) Emergency phone for vessel/captain use only: +47 70081666 Emergency phone for clients: +4770081200
Technical contact person	Hans Ove Garnes Operations Manager Phone: +47 70081231 / +47 97098095 hans.garnes@olympic.no cc: chartering@olympic.no
Charterer	Reach Subsea AS Phone: +47 40007710 Emergency phone +4790931914
Charterer's representative	Name: Torstein Grutle, Project Manager Phone: +47 90667936 E-mail: tgr@reachsubsea.no

2.2 Main technical data

Length overall	87.75 m
Length betw. perpendiculars	81.1 m
Breadth	19.0 m
Depth to main deck	8.0 m
Draught	Max draught: 6.35 m
Displacement	6921 t at max draught
DP Class	DP Class 2, DNVGL Dynpos-Autr
ERN DP2	99,99,99,99
Gross tonnage	4744 t
Net tonnage	1423 t
Lightship weight	3784.6 t
Main deck area	$820 \mathrm{~m}^{2}$
Deck strength	Main deck from stern to \#73: $10 \mathrm{t} / \mathrm{m}^{2}$ (including moonpool hatch)
Deck cargo capacity	2000 t
Fuel capacity	1180 m3
Fuel consumption	- 10.5 t/day @ 10.0 kn (one engine) - 14 t/day @ 11.0 kn - 17 t/day @ 12.0 kn - 20.5 t/day @ Full speed - DP average conditions: 5-7 t/day - Harbor: 2.5 t/day
Max speed	13.4 kn
Fresh water capacity	$760 \mathrm{~m}^{3}$
Water ballast	$2500 \mathrm{~m}^{3}$
Moonpool	$4.8 \times 4.8 \mathrm{~m}$
Main crane	Main winch: 60 t @ 14m with AHC and CT. 2000 m wire length. Aux winch: 10 t @ 23 m - no AHC/CT. 500 m wire length.
ROV handling	$2 \times$ Evotec 12 t LARS with AHC, from indoor hangars
ROV	$1 \times$ Kystdesign Supporter on port side. Available space for a second ROV on starboard side

2.3 Engines and propulsion

Main generators	$2 \times$ Caterpillar 3516C $-2250 \mathrm{~kW}-1800 \mathrm{rpm}$ $2 \times$ Caterpillar 3512C $-1785 \mathrm{~kW}-1800 \mathrm{rpm}$ $1 \times$ Caterpillar C32 $-994 \mathrm{~kW}-1800 \mathrm{rpm}$ (harbor generator) Total: 9064 kW $/ 12155 \mathrm{HP}$
Emergency generator	$1 \times$ Volvo Penta D13 - 375 kVA - 1800 rpm
Bow tunnel thrusters	$2 \times 680 \mathrm{~kW}$ Rolls Royce TT1850 FP
Bow retractable thruster	$1 \times 800 \mathrm{~kW}$ Rolls Royce UL1201 FP
Stern tunnel thruster	$1 \times 790 \mathrm{~kW}$ Rolls Royce TT2000 FP
Main azimuth thrusters	$2 \times 1500 \mathrm{~kW}$ Rolls Royce US205P20 CRP
Total propulsion output	$5950 \mathrm{~kW} / 7979 \mathrm{HP}$

Form 327 Section D, Number 1

Seismic Source:

The energy source consists of dual air-gun arrays towed behind a single vessel. Each array is composed of 32 airguns divided between 3 subarrays and has a total output of 5110 cu in (as shown in figure below). The airguns' volumes vary between 90 cu in and 250 cu in . The airguns in each array are synchronized to discharge at the same time and generate a single seismic shot. The arrays alternate shooting resulting in a staggered $50 \mathrm{~m} \times 50 \mathrm{~m}$ shot grid.

Receiving array:
The seismic receivers are MFFN ZXPLOR ocean bottom nodes offered by Mageseis Fairfield. The nodes are placed on the seafloor by ROVs on a nominal $400 \mathrm{~m} \times 400 \mathrm{~m}$ grid and have up to ~ 120 days of battery life. The nodes are passive, continuously recording, autonomous receivers with no external connections while on the seafloor. The nodes are recovered from the seafloor using ROVs following the completion of the survey shot grid.

Form 327 Section D, Number 7

Node deployment and retrieval procedures:

Nodes are placed/recovered individually on the seafloor using two ROVs guided by a USBL navigation system. The ROVs pause to visually inspect the seafloor prior to approaching the preplot node location. Nodes are placed clear of standoff zones such as chemosynthetics, artifacts or subsurface infrastructure. The ROV lands on location and deploys/recovers a node from/to a skid on the base of the ROV. The ROV then departs vertically and transits to the next location.

Node Specification:

Nodes are passive, continuous recording, autonomous receivers with no external connections while on the seafloor with a ~ 120 + day battery life (MFFN ZXPLOR). The MFFN ZXPLOR nodes measure 38.6 cm diameter by 15.2 cm high and weigh 11.8 kg in water.
Node spacing: $400 \mathrm{~m} \times 400 \mathrm{~m}$
Number of nodes: approximately 1325

ZXPLR

Typical Node Specifications

Seismic Data Channels:

4

ADC Resolution:

24 bits (23 + sign)

Sample Interval:

$0.5,1.0,2.0,4.0 \mathrm{~ms}$

Preamplifier Gain

1, 2, 4, 8, 16, 32, 64
(0 dB to 36 dB in 6 dB steps)

Anti-Alias Filter

Digital Decimation Filter
206.5 Hz @ 2 ms (82.6% of Nyquist)

SINC/FIR Linear Phase

Low Cut Filter

1 Hz to $60 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave, or Out
Operating Temperature Range
$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Operating Life
100 days @ 2 ms acquisition

Battery

Charging Temperature Range
$+3^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Recharge Time: < 5 hours

Acquisition Channel

@ 2 ms sample interval, $25^{\circ} \mathrm{C}$,
31.25 Hz , internal test

Total Harmonic Distortion
0.0003\% @ 12 dB gain, - 3 dB Full Scale

Equivalent Input RMS Noise
$0.8 \mu \mathrm{~V}$ @ 0 dB Gain
Maximum Peak Input Signal
2500 mV @ 0 dB Gain
Dynamic Range
127 dB @ 0 dB Gain
Gain Accuracy
0.50\%

Timing Accuracy
$\pm 1 \mathrm{~ms}$ - corrected post-acquisition

Magseis Fairfield reserves the right to change specifications without notice to provide the best possible product.

Self Test Features

Internal Noise (preamp input terminated)
Internal Total Harmonic Distortion
Internal Gain Accuracy
Internal CMRR
Internal Crossfeed
Internal Impulse
Sensor Impedance
Sensor Impulse

Sensors

Geophone
3 orthogonal, omni directional,
15 Hz @ - $3 \mathrm{~dB}, 70 \%$ damped
$69.3 \mathrm{~V} / \mathrm{m} / \mathrm{s}$
Hydrophone
3.0 Hz @ -3 dB, 8.4 V/Bar

Orientation
$\pm 1.5^{\circ}$ tilt indication
$\pm 5^{\circ}$ azimuth (at latitudes within $\pm 50^{\circ}$
of the Equator)

Physical

Weight:
23.5 kg in air,
11.8 kg in water

Dimensions:
38.6 cm diameter by
15.2 cm high

Operating Depth: 4000 m

Request for reduction to the minimum separation distance from water bottom anomalies

Shell respectfully requests a reduction in minimum separation distance of 250ft, for Mageseis Fairfield node placement next to water bottom anomalies, within the proposed Stones survey area.

Review of the BOEM 3D seismic database of water bottom anomalies identified features that could potentially support communities within the proposed survey area.

To support node placement within water bottom anomalous areas and in proximity to any identified communities, Shell proposes photographing the seabed within a circular area of approximately 10 m diameter, around the proposed node location. Three photographs shall be taken from a height of 15 m per node location: Pre-node deployment; post-node deployment and post-node retrieval. In addition, a continuous video feed will be recorded during operations within the water bottom anomalous zones and stored.

It is understood from NTL No. 2009-G40, a minimum separation of 250 ft must be maintained between documented communities or features that could potentially support high-density deepwater benthic communities, and bottom disturbing activities. However, due to the small footprint of the nodes, the accuracy of their positioning and the ability of the ROV to fully document any disturbance caused, it is requested to place the nodes no closer than 5 m from any high-density deepwater benthic communities. If any such communities are present at the proposed location of each node, a new location shall be selected. Shell will provide the photographs and video feeds as described above, for each proposed location within the water bottom anomalous zone. The photos and video shall clearly show the geographic location of each node.

Marine mammal noise impact report

This report is copyright Oakwood Computing Associates Ltd. 2002-. The report is automatically generated using GUNDALF and it may be freely distributed provided it retains all copyright notices and is kept as a whole.

Technical Overview

The following report was compiled using the Gundalf airgun array modelling program.
Gundalf has been calibrated for all modern airgun types including the latest environmental e300 and e500 sources, long-life guns, G guns, and sleeve guns both singly and in clusters. Gundalf users can access airgun calibration information directly within the product in a variety of environments. Gundalf calibration is revisited periodically whenever new data becomes available. The current calibration epoch is given in the header of this report. For more information

Array Summary

The following table includes error bounds for the primary characteristics of the airgun signature: peak to peak, primary to bubble and bubble period. Error bounds are derived during calibration, a time-consuming process involving optimally matching the model to many near- and far-field measurements of different quality, bandwidth and provenance, for both single and clustered airguns. For more on this, see the Modelling Notes at the end of this report and also the online help for calibration in Gundalf itself.

Note that it is important to state the conditions under which the RMS is computed since it depends directly on the length of the window used. Here an energy criterion determines the length when less than the full window must be used, specified as a precentage of the energy in the full window as is the case with drop-out computations. The energy window used is indicated in the table.

The error bounds shown in the table represent 95% confidence intervals for the Gundalf model against its calibration data.

Number of guns	$32(5110.00$ cu.in., 83.74 litres)
Peak to peak in bar-m.	$236.0+/-2.1(23.60+/-0.2 \mathrm{MPa}, 267 \mathrm{~dB}$ re
1 muPa at 1 m.$)$	

Primary to bubble (peak to peak)	$32.5+/-9.6$
Bubble period (s.)	$0.113+/-0.036$
Maximum spectral ripple (dB)	$7(10-70 \mathrm{~Hz})$.
Maximum spectral value (dB)	$220(10-70 \mathrm{~Hz})$.
Average spectral value (dB)	$218(10-70 \mathrm{~Hz})$.
Total acoustic energy (Joules)	826501.8
Total acoustic efficiency (\%)	71.5

Array geometry

The following table lists all the guns modelled in the array along with their characteristics. The last column is completed only if the array has actually been modelled during the interactive session and contains the approximate contribution of that gun as a percentage of the peak to peak amplitude of the whole array. Please note the following:-

- The peak to peak varies only as the cube root of the volume for the same gun type so that even small guns contribute significantly. This is particularly relevant to drop-out analysis.
- The peak to peak can also be depressed due to clustering effects as reported by Strandenes and Vaage (1992), "Signatures from clustered airguns", First Break, 10(8).

$\begin{array}{\|c\|} \hline \text { Gun } \\ \text { number } \end{array}$	Press. psi)	$\begin{array}{\|c\|} \hline \text { Volume } \\ \text { cu.in) } \end{array}$	$\begin{aligned} & \text { Gun } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \hline \mathbf{x} \\ \mathrm{m} .) \end{gathered}$	$\begin{gathered} \mathbf{y} \\ \text { m. } \end{gathered}$	$\begin{gathered} z \\ \mathrm{~m} .) \end{gathered}$	$\begin{gathered} \text { Delay } \\ \text { s.) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Sub- } \\ \text { array } \\ \text { number } \end{array}$	Peak to peak contrib. percen t)	Max. bub. rad m.)
1	2000.00	90.00	$1900 \mathrm{LLX}$	0.000	-6.000	8.000	0.00000	1	3.6	0.3
2	2000.00	155.00	$\begin{aligned} & 1900 \operatorname{LLX} \\ & \hline T \end{aligned}$	2.500	-6.500	8.000	$0 .$	1	3.1	0.4
3	2000.00	155.00	$\begin{aligned} & 1900 \operatorname{LLX} \\ & T^{2} \\ & \hline \end{aligned}$	2.500	-5.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	1	3.2	0.4
4	2000.00	230.00	$\left\lvert\, \begin{aligned} & 1900 \mathrm{LLX} \\ & \hline \mathrm{~T} \end{aligned}\right.$	5.000	-6.500	8.000	0	1	2.7	0.5
5	2000.00	230.00	$\begin{array}{\|l\|} \hline 1900 \operatorname{LLX} \\ \hline T \end{array}$	5.000	-5.500	8.000	0	1	2.6	0.5
6	2000.00	200.00	$1900 \mathrm{LLX}$	7.500	-6.500	8.000	$0 .$	1	2.9	0.5
7	2000.00	200.00	$\left\lvert\, \begin{aligned} & \text { 1900LLX } \\ & T \end{aligned}\right.$	7.500	-5.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	1	2.9	0.5
8	2000.00	155.00	$1900 \mathrm{LLX}$	10.000	-6.500	8.000	$0 .$	1	3.1	0.4
9	2000.00	155.00	$1900 \mathrm{LLX}$	10.000	-5.500	8.000	0	1	3.2	0.4
10	2000.00	140.00	$\left\lvert\, \begin{aligned} & 1900 \mathrm{LLX} \\ & \hline \mathrm{~T} \end{aligned}\right.$	12.500	-6.000	8.000	0	1	3.3	0.4
11	2000.00	90.00	$\left\lvert\, \begin{aligned} & 1900 \mathrm{LLX} \\ & \hline \mathrm{~T} \end{aligned}\right.$	0.000	-0.500	8.000	0	2	3.6	0.3
12	2000.00	90.00	$\begin{array}{\|l\|} \hline 1900 \mathrm{LLX} \\ \hline \end{array}$	0.000	0.500	8.000	$0 .$	2	3.6	0.3
13	2000.00	120.00	$\begin{aligned} & 1900 \mathrm{LLX} \\ & \hline \end{aligned}$	2.500	-0.500	8.000	0.00000	2	3.4	0.4
14	2000.00	120.00	$\frac{1900 L L X}{T}$	2.500	0.500	8.000	0.00000	2	3.4	0.4
15	2000.00	175.00	$\begin{aligned} & \text { 1900LLX } \\ & \hline \end{aligned}$	5.000	-0.500	8.000	0.00000	2	3.0	0.4
16	2000.00	175.00	1900LLX	5.000	0.500	8.000	0.00000	2	3.0	0.4

	Press. psi)	$\begin{gathered} \text { Volume } \\ \text { cu.in) } \end{gathered}$	$\begin{aligned} & \text { Gun } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathbf{x} \\ \mathbf{m} .) \end{gathered}$	$\begin{gathered} \mathbf{y} \\ \mathrm{m} .) \end{gathered}$	$\begin{gathered} z \\ \mathrm{~m} .) \end{gathered}$	Delay s.)		Peak to peak contrib. percen t)$\|$	Max. bub. rad m.)
17	2000.00	250.00	$\begin{array}{\|l\|} \hline T \\ \hline T \end{array}$	7.500	-0.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	2	2.7	0.5
18	2000.00	250.00	\|1900LLX	7.500	0.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	2	2.7	0.5
19	2000.00	120.00	$\begin{array}{\|l\|} \hline 1900 \mathrm{LLX} \\ \hline T \end{array}$	10.000	-0.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	2	3.4	0.4
20	2000.00	120.00	1900LLX	10.000	0.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	2	3.4	0.4
21	2000.00	90.00	$\begin{array}{\|l\|} \hline 1900 \mathrm{LLX} \\ \hline \end{array}$	12.500	-0.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	2	3.6	0.3
22	2000.00	90.00		12.500	0.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	2	3.6	0.3
23	2000.00	140.00	\mid	0.000	6.000	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	3.3	0.4
24	2000.00	155.00	$\begin{aligned} & \text { 1900LLX } \\ & T \end{aligned}$	2.500	5.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	3.2	0.4
25	2000.00	155.00		2.500	6.500	8.000	$\begin{aligned} & 0.00000= \\ & 0 \end{aligned}$	3	3.1	0.4
26	2000.00	200.00	\mid	5.000	5.500	8.000	$\begin{aligned} & 0.00000= \\ & 0 \end{aligned}$	3	2.9	0.5
27	2000.00	200.00	$\begin{aligned} & 1900 \mathrm{LLX} \\ & \hline \end{aligned}$	5.000	6.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	2.9	0.5
28	2000.00	230.00	1900LLX	7.500	5.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	2.6	0.5
29	2000.00	230.00	$\begin{aligned} & \text { 1900LLX } \\ & T \end{aligned}$	7.500	6.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	2.7	0.5
30	2000.00	155.00	$\begin{array}{\|l\|} \hline 1900 \mathrm{LLX} \\ \hline T \end{array}$	10.000	5.500	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	3.2	0.4
31	2000.00	155.00	$\begin{array}{\|l\|} \hline 1900 \mathrm{LLX} \\ \hline T \end{array}$	10.000	6.500	8.000	$0.00000=$	3	3.1	0.4
32	2000.00	90.00	$\begin{aligned} & \text { 1900LLX } \\ & T \end{aligned}$	12.500	6.000	8.000	$\begin{aligned} & 0.00000 \\ & 0 \end{aligned}$	3	3.6	0.3

Array plan and side views

The plan and side views appear below. These are annotated for gun type (colour of floating text indicating volume in cuin.), gun active status (fill colour) and also gun number, matching the table above. The side view is a view from the port side towards the starboard side and shares the same x axis as the plan view. This is annotated identically to the plan view.

Environmental background

This report models the acoustic radiation field of an array of airguns and displays its information in a form suitable for estimating the environmental noise impact on marine mammals.

It particularly uses reference material described in

- "Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals" National Oceanic and Atmospheric Administration (NOAA), (2013) Original draft December 23, p. 1-67 updated to March 2016 proposed changes.
- "Marine mammals and noise" by Richardson, Greene, Malme and Thomson, (1995), Academic Press ISBN 0-12-588441-9.
- "Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations" by Southall et. al. (2007), Aquatic Mammals (33) 4, p. 411-509 ISSN 0167-5427.
- "Revisions to: Technical guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts" by National Marine Fisheries Service (2018), U.S. Dept. of Commer., NOAA. NOAA Technical Memorandum, NMFS-OPR-59.
- "Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects" by Southall et. al. (2019), Aquatic Mammals (45) 2, p. 125-232 DOI 10.1578/AM.45.2.2019.125.

Note that calibration information for frequencies above 2 kHz is sparse. In normal seismic surveying with airguns down to perhaps 20 m , the bandwidth up to 1 kHz is very well served by existing calibration data as can be seen by consulting Gundalf's Help -> Calibration section. However for frequencies above this, data is a little more sparse. The first available dataset was acquired by IFRC in 2003 in the Gulf of Mexico. This dataset has deep-deployed hydrophone information at discrete points in the acoustic radiation field recording out to 25 kHz or so. Gundalf has been calibrated out to 25 kHz using these high-quality data and is within $+/-10 \mathrm{db}$ at 20 kHz against this data as can be seen at:- http://www.leshatton.org/UN2008_Southampton_Hatton.html

It is very unlikely that modelling will get much better than this at these high frequencies as the oscillating bubble itself is highly turbulent and very anisotropic as can be seen by studying:http://www.leshatton.org/two_airgun_videos.html

A more detailed data set appeared through the Svein Vaage experiment in 2009-2013. This was acquired in a Norwegian fjord based measurement facility but is for a limited range of depths. It produces data consistent with that of the 2003 experiment.

Measuring acoustic impact

The output radiated energy in an airgun array signature is normally measured in bar-m. peak to peak. This is only partially suitable for measuring the potential impact on marine mammal hearing as mammals tend to integrate over the amplitude spectrum in a complex non-linear frequency dependent way. In the above mentioned references, a standardised method of measuring impact is now beginning to emerge. This involves two measurements:-

- SPL (Sound Pressure Level). This measures the rapidity of the onset and is the maximum zero to peak measure in dB . relative to 1 muPa at 1 m .
- SEL (Sound Exposure Level). This measure allows an estimate of continued exposure and its effects on TTS (Temporary Threshold Shift) and PTS (Permanent Threshold Shift) to be assessed. It is commonly measured as 90% of the sum of squared pressures over a signal duration measured from the time when the signal reaches 5% of its total, to the time when it reaches 95% of its total. This is then normalised to 1 s . Its units are dB. relative to 1 muPa^2-s. Gundalf uses the method described by Southall et. al. (2007), Appendix A.

Note that both these measures depend on the bandwidth at which a signal is measured. However they are particularly useful to marine biologists and provided the sample interval is sufficiently small, this is not an issue as the airgun is not a high frequency source with very little residual energy above 10 kHz and is typically at least 20 dB down on a ship's depth transponder at 18 kHz according to recent experiments carried out by the IFRC and published by Hatton (2004). Since version 8.1d, Gundalf only uses SPL and SEL so as not to cause confusion in this complex area.

Finally with regard to spectral weighting to adapt to the audiogram response of an animal, Gundalf now uses the increasingly widely adopted M-Weighting described in Southall et. al. $(2007,2019)$, which incorporates the Cetacean Auditory Weighting Functions described in the NOAA report (March 2016 updates).

db. or not dB.

Unfortunately, 'dB' is often used inconsistently in environmental impact reporting. dB are dimensionless and are defined as $20 \log 10(\mathrm{~A} 2 / \mathrm{A} 1)$ where A2 and A1 are amplitude values in some units. To tie them to some absolute unit, dB should always be stated relative to something as follows:

- $d B$ relative to $1 \mathrm{~nm} / \mathrm{s}$ (nanometre/s). This is the standard ANSI unit for the measurement of acoustic particle velocity.
- $d B$ relative to 1 muPa per Hz . at 1 m . This is the standard unit for pressure in the amplitude spectral domain used in exploration seismology following the work of Fricke, Davis and Reed (1985) 'A standard quantitative calibration procedure for marine seismic sources', Geophysics, 50(10), p. 1528-1532. It is independent of signal duration, sample interval and measurement position.
- $d B$ relative to 1 muPa at 1 m . This is exactly the same as the previous unit but it has been integrated over some part of the amplitude spectrum, for example, $1 / 3$ octave or 1 octave around some central frequency as reported in Richardson et. al. (1995). The fact that the spectrum is integrated removes the 'per Hz.' present in the previous unit but for precision, the central frequency, shape and width of the band should be given as for example ' 160 dB rel. 1 muPa at 1 m integrated uniformly over $1 / 3$ octave around 1000 Hz .'

This unit is also used for the SPL, with or without M-weighting or CAWF described in Southall et. al. $(2007,2019)$ and NOAA (March 2016 updates) respectively.

- $d B$ relative to 1 muPa^2-s. This unit is used for the SEL.

Frequency response of common marine mammals

In the original report by Southall et. al. (2007), there were basically five categories of marine mammal functional hearing groups highlighted as updated in the later NOAA report:-

- Low-frequency (LF) cetaceans, (baleen whales): Functional Hearing Range $7 \mathrm{~Hz}-30 \mathrm{kHz}$.
- Mid-frequency (MF) cetaceans, (dolphins, toothed whales, beaked whales, bottlenose whales): Functional Hearing Range $150 \mathrm{~Hz}-160 \mathrm{kHz}$.
- High-frequency (HF) cetaceans, (true porpoises, Kogia, river dolphins, cephalorhynchid, Lagenorhynchus cruciger and L. australis): Functional Hearing Range $200-180 \mathrm{kHz}$.
- Phocid pinnipeds, (true seals): Functional Hearing Range $75 \mathrm{~Hz}-100 \mathrm{kHz}$.
- Otariid pinnipeds, (sea lions and fur seals): Functional Hearing Range $100-40 \mathrm{kHz}$.

These were updated in the Southall et. al. report of 2019 utilising research from the National Marine Fisheries Service (NMFS) (2018) study as follows:-

- Low-frequency (LF) cetaceans
- High-frequency (HF) cetaceans
- Very high-frequency (VHF) cetaceans
- Phocid carnivores in water (PCW)

This report uses this 2019 nomenclature.

Some example environmental criteria

This report was prepared using a maximum frequency of 25 kHz .

NOAA draft criteria(2013,2015,2016)

A very detailed set of criteria for Impulsive / Non-impulsive PTS and TTS onset levels for all five defined categories of marine mammals. Building on the influential Southall criteria described below, these were initially proposed in December 2013. These were subject to a second comment period in July 2015 following various proposed changes and again in a third comment period to March 2016 which consolidated various independent work. These represent probably the most comprehensive guidelines currently available although may still be subject to further changes as more research becomes available.

Southall et. al. criteria $(\mathbf{2 0 0 7}, 2019)$

This report is currently the authoritative source on Marine Mammal Noise Exposure and is likely to become the most influential work in regulatory processes.

Note that each of the regulatory regimes which follows may define its own criteria but in our opinion, it will always be helpful to the regulator to include the performance of the current array relative to the relevant guidelines in the Southall criteria given their authoritative status and ubiquity.

So far, the most commonly used guidelines are the injury criteria on p. 443 of the report and repeated in the table below with corresponding worst case values for the current array (vertically down). The table is relevant to multiple pulse sources and the SEL Mxx refers to the relevant Mweighting, (essentially 3 -octave band-pass filters with slopes of 12 dB per octave, centred between around 500 Hz for low-frequency cetaceans to around 10 kHz for high-frequency cetaceans). SPL/SEL values for this array are conservative here as they are based on the vertically downward pulse, which is significantly louder than a pulse to the side due to the Lloyd's mirror effect (source ghost), so the corresponding section later in the report should be consulted for more detail.

NOTE: SPL/SEL values quoted at 1 m . are nominal only as the array dimensions exceed this making them difficult to interpret in the presence of array directivity. (Marine seismic arrays of even one gun are directive because of the free-surface ghost.)

Category	SPL (Sound Pressure Level) dB re 1 muPa (peak) $10 \mathrm{~Hz}-25 \mathrm{kHz}$	SEL (Sound Exposure Level) dB re 1 muPa^2-s (Mxx) $10 \mathrm{~Hz}-25 \mathrm{kHz}$
Low-frequency Cetaceans (max)	198	
High-frequency Cetaceans (max)	230	198
Very high-frequency Cetaceans max)	230	198
Phocid carnivores (in water) max)	230	186
Current array at 1m. (NOMINAL!)	218	230.2
Current array at 500m.	261.5	176.2
Current array at 1000m.	210.2	170.2
Current array at 2000m.	204.5	164.1
Current array at 3000m.	198.7	160.6
Current array at 5000m.	195.4	156.2
Current array at 10000m.	191.2	150.2

Here we reverse the above table format to give the minimum exclusion radius for various levels of SPL and SEL as commonly requested. The dB level is the maximum tolerance of the animal in either SPL or SEL dB and then the closest the animal may approach without exceeding this level is given in m . in the corresponding column. Note that SPL $d B$ are in different units to SEL dB. If you interested in the SPL exclusion zone range, the $d B$ are relative to 1 muPa (peak), but if you interested in the SEL exclusion zone range, the $d B$ are relative to $1 \mathrm{muPa}{ }^{\wedge} 2-\mathrm{s}$. (SEL is often suffixed with (RMS) because of its definition in Southall et. al.)

Maximum tolerance level dB.)	SPL exclusion zone range m.)	SEL exclusion zone range $\mathrm{m})$.
220	151	3
210	510	10
200	1715	32
190	5762	101
180	19361	321
170	65050	1017
160	218559	3218

Bureau of Ocean Energy Management (BOEM-0327) (USA) (www.boem.gov)

The relevant part of these guidelines can be found in section D. In particular, D. 3 solicits tabular information indicating the manufacturer of the source, model, total energy output per impulse in $d B$ RMS), peak to peak in db, frequency in Hz (if applicable) etc. In particular, column 5 asks for Total Energy Output Peak to Peak in db, Amp, etc.. Unfortunately, this does not state what the dB value is relative to. The closest relevant measure in the Southall criteria above is probably the SPL, (Sound Pressure Level) which is the zero to peak value measured in dB. re 1 muPa at some reference distance. This is most usefully given at the edge of the mitigation zone so that it represents the maximum an animal would experience anywhere outside that zone. The table above shows this at various typical values for the radius of this zone.

Column 6 asks for Total Energy Output rms in db. Arguably the most relevant of the Southall criteria for this is the SEL (Sound Exposure Level). This rms value is given in dB re $1 \mathrm{muPa}{ }^{\wedge} 2$-s relative to some reference distance. Again, this is most usefully given at the edge of the mitigation zone and is shown in the table above.

Column 7 is optional and requests the frequency range in $\mathrm{Hz}-\mathrm{kHz}$. Since there is no reference to slopes or cut-offs, it is difficult to interpret. An airgun array has most of its energy below 1 kHz but mid- and high-frequency cetaceans are increasingly sensitive up to around 20 kHz so although an
airgun array has almost nothing above 10 kHz , the balance between this and the increased sensitivity is not well understood. The detailed sections below attempt to throw some light on this balance.

EPBC Act Policy Statement 2.1 (Australia) www.environment.gov.au/epbc/

For proposed seismic surveys that can demonstrate through sound modelling or empirical measurements that the received acoustic signal at 1 km will not likely exceed 160 dB re 1 muPa ^2-s for 95% of the time, the following safety zones are recommended:

- Observation zone: 3+ km horizontal radius from the acoustic source,
- Low power zone: 1 km horizontal radius from the acoustic source,
- Shut-down zone: 500 m horizontal radius from the acoustic source,

The received acoustic signal in this case corresponds to the SEL in the table above at a mitigation radius of 1000 m .

Joint Nature Conservation Committee Guidelines Aug 2010 (JNCC) UK) jncc.defra.gov.uk

These guidelines primarily focus on mitigation measures for the prevention of injury whilst making the point that the onus is on the entity responsible for the activity to assess whether a disturbance offence is likely to occur. The mitigation zone is considered to be 500m.

The Southall criteria above may therefore be quoted for this mitigation zone radius.

Ambient noise

Note finally that some environmental regimes require that the array be below the expected environmental background noise at a certain range, for example, 150 km from the array. Ambient noise levels are often quoted from the work of Knudsen et. al (1948), "Underwater ambient noise", J. Mar. Res. 7(3), p. 410-429 and are approximately as follows:

- 100-1000Hz: 50-80 dB rel 1 muPa ^2/Hz
- 1000-10000Hz: 35-65 dB rel 1 muPa ^2/Hz
depending on sea state. The levels for this array can be found below in the section on directional exposure within specified depth although at this extreme range, travel path variations may necessitate sophisticated bathymetric modelling.

Modelling Summary

The following table lists the modelling parameters for the array quoted in various commonly used units for convenience.

Environment options ...		
Absorption effects	Yes	
Maximum frequency (kHz)	25	
Estimated spreading factor	19	
Marsh-Schulkin propagation	No	
Marsh-Schulkin duct range (m.)		
SPL/SEL options ...		
Surface layer horizontal range (m.)	N/A	
Surface layer thickness (m.)	1000	
Energy flux range (m.)	20	
Spectral weighting type	1000	
Minimum dB level	Uncorrected	
Maximum dB level	60	
Swept-area options ...	210	
Maximum swept-area range (m.)	5000	
Maximum swept-area depth (m.)	5000	
Swept area low frequency (Hz.)	0	
Swept area high frequency (Hz.)	25000	
Minimum swept dB (rel to 1muPa at 1m)	60	
Maximum swept dB (rel to 1muPa at 1m)	210	
Minimum swept dB (rel to 1muPa at 1m)	60	
Minimum particle velocity dB (rel to 1muPa at 1m)	80	
Maximum particle velocity dB (rel to 1muPa at	170	
1m)		

Signature

This section shows the time signature and the amplitude spectrum of the modelled array. The bubble period was determined automatically using a bubble search start time set to 0.075 s . The computed positions of the bubble peak and bubble trough are shown for QC purposes. If these do not match your visual estimate of the bubble try again with a different bubble search start time. The amplitude spectrum plot comprises two separate displays. One curve shows the amplitude spectrum itself in units of dB. relative to 1 microPa. per Hz . at 1 m . The other curve (in red) follows the SEG guidelines and shows the energy flux in dB . relative to 1 Joule $/ \mathrm{m}^{\wedge} 2 / \mathrm{Hz}$. at 1 m .

Time signature

Amplitude spectrum

SPL/SEL within specified depth

This section shows the SPL (Sound Pressure Level) and SEL (Sound Exposure Level) as a function of direction for a supplied maximum depth. The displays show the view from above and contour the maximum value between the surface and the maximum depth given at each (x, y) position with the boat in the centre. These data are subject optionally to Cetacean or M-weighting functions and geometric spreading, all as specified elsewhere in this report. SPL is calculated peak to peak and SEL is calculated in a window between 5% and 95% of the total energy as recommended in Southall et. al. (2007). Array directivity means that this window varies significantly as a function of direction, implying that the commonly made assumption of 0.1 s for airgun arrays is simply wrong. Gundalf therefore calculates this window explicitly for each angle of departure.

Absorption losses have been included as they can be significant in the higher frequencies. (At 25 kHz , this is typically around 5 dB per km . and may be much higher.) The relationship due to Ross quoted in Richardson et. al. (1995), p. 73 has been used.

SPL range-range at depth: 20 m .

SEL range-range at depth: 20 m .

Swept area - pressure field

This section shows a cross-section underneath the ship at the stated bearing, of the radiation pattern of the array. The radiation pattern shown is the amplitude level in dB. relative to $1 \mathrm{muPa}(\mathrm{rms})$ at 1 m . In other words, the amplitude has been scaled by the rms value of the time signature measured over a window which exactly contains it, before the spectral values have been computed.

The user-specified spreading function is used for range-correction and was given as:- 19 log10(range).

A value of $10 \log 10($ range $)$ corresponds to cylindrical spreading whilst a value of $20 \log 10($ range $)$ corresponds to spherical spreading.

Absorption losses have been included as they can be significant in the higher frequencies. (At 25 kHz , this is typically around 5 dB per km . and may be much higher.) The relationship due to Ross quoted in Richardson et. al. (1995), p. 73 has been used.

Range-depth swept area pressure 0-25000 Hz.

Swept area - particle velocity field

This section shows a cross-section underneath the ship at the stated bearing, of the rms particle velocity field of the array. It is believed that hearing in fish may be responsive to the particle velocity field and some recent experiments have attempted to measure the auditory response of different species of fish as a function of both pressure and particle velocity, (see for example, Popper et. al. (2005), 'Effects of exposure to seismic airgun use on hearing of three fish species', J. Acoust. Soc. Am. 117 (6), June 2005).

It should be noted that this is an over-estimate as fish appear to be much less sensitive to frequencies much above $1-2 \mathrm{kHz}$ whereas this is a broadband calculation.

The standard ANSI unit for acoustic particle velocity is dB . relative to $1 \mathrm{~nm} / \mathrm{s}$ (nanometre/s).

The user-specified spreading function is used for range-correction and was given as:- 19 log10(range).

A value of $10 \log 10(r a n g e)$ corresponds to cylindrical spreading whilst a value of $20 \log 10(r a n g e)$ corresponds to spherical spreading.

Absorption losses have been included as they can be significant in the higher frequencies. (At 25 kHz , this is typically around 5 dB per km . and may be much higher.) The relationship due to Ross quoted in Richardson et. al. (1995), p. 73 has been used.

Range-depth particle velocity field $0-25000 \mathrm{~Hz}$.

Total high frequency energy

The total quantity of acoustic energy emitted into the higher frequency bands is of relevance to echolocators such as odontocete. Airgun arrays are not very rich in such frequencies as demonstrated in the Svein Vaage broadband airgun data which suggests that the high frequency content of an airgun is effectively lost in the background sea-noise above 20 kHz .

For convenience, the total energy budget in Joules is given here along with the total contribution above 10 kHz where echo-location is primarily located. The total average energy flux per shot is also given at the stated radius in Joules / $\mathrm{m}^{\wedge} 2$. For comparison, humans begin to experience pain at around 9 Joules / m^2 / s.)

Total acoustic output (joules)	Total acoustic output (joules) above $\mathbf{1 0 k H z}$.	Average energy flux per shot Joule/m^2) at $\mathbf{1 0 0 0} \mathbf{m}$.
826501.8	25931.2	0.131542

Signature filtering policy

For marine environmental noise reports, Gundalf performs no signature filtering other than that inherent in modelling at a sample interval small enough to simulate an airgun array signature at frequencies up to 50 kHz , and any requested marine animal weighting functions.

For all other kinds of reports, Gundalf performs filtering in this order:-

- If a pre-conditioning filter is chosen, for example, an instrument response, it is applied at the modelling sample interval.
- If the output sample interval is larger than the modelling sample interval, Gundalf applies appropriate anti-alias filtering. (This can be turned off in the event that anti-alias filtering is included in the pre-conditioning filter, in which case Gundalf will issue a warning.)
- Finally, Gundalf applies the chosen set of post-filters, Q, Wiener and band-pass filtering as specified, at the output sample interval. If none are specified, (often known as unfiltered), only the above anti-alias and/or pre-conditioning are applied.

In reports, when filters are applied, they are applied to the notional sources first so that signatures, directivity plots and spectra are all filtered consistently. The abbreviation muPa is used for microPascal throughout.

Finally note that modelled signatures always begin at time zero for reasons of causality.

Physical parameters

The following table gives the values of the physical parameters used. The sea temperature, velocity of sound in sea water, wavelet dominant frequency and average wave height were input parameters.

The surface reflection coefficient was calculated internally by Gundalf using empirical data on the effects of airgun arrays on the sea surface under various deployment conditions, Hatton (2007), https://www.leshatton.org/anelastic_surface_reflection_coefficient.html

The physical parameters used were:-

Sea temperature deg.C)	Velocity of sound in water m.sec-1)	Wavelet dominant frequency Hz.)	Average wave height m.)	Surface reflection coeff.
10	1496	20	0	-0.95

Some notes on the modelling algorithm

The Gundalf airgun modelling engine is the end-product of 20 years of state of the art research. It takes full account of all air-gun interactions including interactions between sub-arrays. No assumptions of linear superposition are made. This means that if you move sub-arrays closer together, the far-field signature will change. The effect is noticeable even when sub-arrays are separated by as much as 10 m . The engine is capable of modelling airgun clusters right down to the 'super-foam' region where the bubbles themselves collide and distort.

Calibration notes

Airgun modelling programs like Gundalf must be calibrated against real data and no computational model is any better than the quality of that calibration. Calibration datasets however are themselves subject to experimental error so Gundalf is calibrated to best fit the various datasets which are used across the extensive range of volumes, pressures and depths available.

In practice, such experimental errors arise for a variety of reasons including

- Depth inaccuracies. These are usually around $3-5 \%$ even in the best facilities particularly if there is sea surface movement.
- How frequently the gun is being cycled during measurement. This is rarely recorded but a warmed up gun might be 50deg C warmer than the sea, changing its normal peak-to-peak and other parameters by $5-10 \%$ compared with when it is first fired.
- Filtering differences. Filtering is recorded but filtering errors are still more frequent than we would like and analog filter v. digital filter differences are also sometimes a factor.

As a guideline, typical individual errors across different measurement datasets for the bestcalibrated guns are of the order of 5% for peak to peak, 15% for primary to bubble and 2% for bubble periods.

Individual gun errors are calculated from the data shown in Help -> Calibration (which themselves accumulate gun data from different sources) and the resulting array error bounds are calculated by accumulating these errors for each gun in the array. The error bounds are calculated as 95% error bounds and for simplicity assume that errors are non-correlated although in practice some are systematic. The total error bound is always greater than any of the individual error bounds and is strongly influenced by the largest gun contributions.

The error bounds simply mean that it is very likely that the true values for these primary characteristics will be within the ranges shown, but it is not possible to be more precise. If other comparison data or models indicate values outside this range, this means that those data or models are very likely to be incompatible with Gundalf's calibration data. This may be due to several causes as described above. For more on calibration see Gundalf's calibration Help pages.

Datasheet

Pressure Inverted Echo Sounder (PIES)

Description

The Pressure Inverted Echo Sounder (PIES) is a long-life sensor logging node that accurately measures the average sound velocity through a column of water from the seabed to the sea surface.
It works by transmitting a wideband acoustic pulse from its stable location on the seabed. This pulse is reflected off the sea surface and returns to the seabed where it is detected by PIES. The resulting data enables two-way travel-time to be calculated.
At the same time, an accurate measurement of depth (distance to the surface) is made using a highly accurate internal pressure sensor.
Average water column velocity can then be calculated directly from the depth and travel time data, noting that speed $=$ distance $/$ time.
The sampling interval of PIES can be configured serially before deployment and also via its internal acoustic telemetry link. This telemetry link also allows recorded data to be transmitted to surface at data rates ranging from 100 to 9,000 bits per second.

A high capacity primary lithium or alkaline battery pack enables deployment for months or even years depending on the transmission sampling interval configured.
PIES is compatible with
Sonardyne's LMF Ultra-ShortBaseline (USBL) systems for positioning during deployment and recovery.

Key Features

- Autonomous sensor logging combined with high speed acoustic telemetry of recorded data
- LMF frequency band utilising Sonardyne Wideband ${ }^{\circledR} 2$ ranging and telemetry protocols
- Freefall deployment possible from surface vessel
- Integrated acoustic release for buoyant ascent to the surface with float
- Long life - with excellent corrosion resistance
- Primary lithium/alkaline battery pack option
- Integrated modem mode with data rates ranging from 100 to 9000 bits per second in multiple frequency bands
- Wireless configuration using surface software and acoustic dunker

Specifications

Pressure Inverted Echo Sounder (PIES)

See Compatt 6 and AMT datasheets for more information.
*Estimated Weights.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL

2020 NOAA Biological Opinion G\&G Permit (PIES Installation) WR Block 508 and Surrounding Areas

1. Deployment of PIES: Will the crane line being detached by the ROV be led back to the vessel via ROV? (will there be a loose cable in the water?)

A vessel crane will be used to deploy the Pressure Inverted Echo Sounder (PIES). The crane line with a PIES will be lowered to 500 ft . water depth where it will be monitored by a Remote Operated Vehicle (ROV) to confirm the rigging and acoustic functionality of the PIES. Once confirmed, the PIES will be lower to the seabed. Once the PIES unit lands on the seabed, the ROV will unlatch the crane line from the PIES unit. The ROV will verify that the crane line is clear of the PIES unit. The crane line will be retrieved and the ROV will return to the surface. The ROV would not monitor the crane line back to the surface. Personnel onboard the vessel will always monitor the crane and ROV activities during deployment and retrieval.

The crane cable line is generally greater than 1 inch in diameter and is rigid and non-flexible line. The image below gives a representative view on the crane and cable used in these types of operations.

These PIES are stand-alone units with no interconnecting cables, meaning that there are no cables or lines in the water associated with PIES units.

The average water depths at Stones where the PIES will be deployed is $\sim 9000 \mathrm{ft}$. The installation of the PIES for Stones will last approximately 1 day. The subsea duration for the PIES at these locations will be approximately 55 days. Retrieving the PIES at the end of acquisition will last approximately 1 day.

In general, PIES measure the two-way travel time of sound waves propagated through the water column from the seabed to the sea surface and back as well as the water pressure (depth) at the seabed which is used to verify the water depth at the PIES locations. The data recorded by the PIES are used to calculate a continuous time history of the average sound velocity and tidal variation throughout the entire water column during the time spent on the seafloor. In addition to being used in marine seismic surveys, PIES are also commonly used in ocean science research applications to gather oceanography data and in various NOAA applications (NOAA Technical Report, OAR-AOML51).

The images below show different steps for PMT (Pressure Monitoring Transponders) installation at Mars (performed in Jan 2017, permitted in 2016) which it is the same design and methodology for deployment for the PIES.

2. Will the up-chirp be focus-directional (i.e. pointed down towards the sediment?) or omnidirectional?

A PIES produces a frequency modulated up-chirp signal to accurately measure the two-way traveltime through the water column. As the name implies, the PIES is very much like a single-beam echosounder on a vessel that measures water depth below the vessel by sending a focused directional signal (produced by an electromechanical transducer) downwards through the water column that bounces off the seafloor and then returns to the surface. The PIES use the same type of directional echosounder signal but sends it from the seabed upwards where it bounces off the surface and returns to the seabed. The PIES simultaneously measure pressure at the seabed. Pressure measurements are converted to depth to find the acoustic distance travelled from the seabed to the surface and back again. By combining the depth and travel time the average sound speed in the water column can be calculated.

Using the source level and operating frequency information on the PIES equipment specification sheet, and assuming a 7 degree beam width (borrowed from source measurements of a traditional single-beam echosounder in a reference source often cited by NMFS), the distance to the Marine Mammal Protection Act behavioral harassment threshold ("Level B" $=160 \mathrm{~dB} \mathrm{SPL}$) would be less than 10 m (range from 2 m to 8 m depending on use of the highest or lowest source level setting). Even if twice the beam width is conservatively assumed, the distance would still be less than 16 m .

The water depth at Stones ($\sim 9000 \mathrm{ft}$) is a little deeper than the maximum recorded diving depth of beaked whales and much deeper than that of sperm whales. Thus, the potential for a sperm whale to be within $10-16 \mathrm{~m}$ of PIES unit when it produces a signal resulting in a harassment take is negligible, especially since the PIES only sends a signal ("ping") once every 30 min .
3. If using a rig or vessel that includes equipment with a potential for entanglement or entrapment (e.g., moon pool, flexible lines/ropes, or gear without turtle guards), your plan/application must describe in detail the equipment and procedures used. For example, if using a moon pool, procedures may include a dedicated contractor, crew member or company representative monitoring the moon pool area during the operations for sea turtles or other marine life. This information must be updated in the Environmental Monitoring and Environmental Mitigation Measures Sections. The Biological Opinion can be found here: https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico.

Shell's activities do not require the use of a moon pool. All equipment deployment will be conducted using cranes and starboard and port hangers.
4. Will your operations utilize pile-driving? If yes, describe.

No
5. Are any new pipelines expected to make landfall? If yes, describe.

No pipelines associated with this permit.
6. Please provide a vicinity map, to support your application under 30CFR§250.1751(a) or $\S 250.1752$ (a), to include all associated support bases proposed for your operations and provide a statement to note if any vessels supporting your proposed activities, including pipelay, supply, and crew vessels, will require crossing or entering the Bryde's whale area (see attached map).

The primary port of call for the vessels supporting this work is Galveston, Texas. This port will serve for all mobilization and demobilization supporting operations. No vessels, in either the normal or extenuating circumstance case, will transit the Bryde's whale area.
7. Any additional information associated with your proposed operations that can assist BOEM in the review of your application as it related to the protection of ESA-listed species and their critical habitat, as outlined in the 2020 Biological Opinion and the applicable Appendices (A, B, C, and J) referenced below. The Biological Opinion can be found here: https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico. The Appendices may be found here:
(https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico).

Appendix A: Seismic survey activities will take place within in the G\&G permitted area. The operations will be the installation and retrieval of PIES units, which will take place before starting Stones OBN acquisition and after the completion of Stones OBN acquisition, respectively.

Appendix B: Shell will comply with GOM Marine and Trash Requirements in Appendix B 2020 NMFS BiOp and BOEM/BSEE Regulations.

Appendix C: Shell will comply with GOM Vessel Strike Avoidance and Protected Species Reporting Requirements in Appendix C and BOEM/BSEE Regulations.

Appendix J: There will be no explosive severance operations or trawling supporting decommissioning conducted from the vessel that may result in potential for entanglement or entrapment of endangered marine species requiring resuscitation measures.

NOAA (NMFS) is requesting additional information regarding the Diver Activities. Please provide specific information related to the following:

1. Specific activity diver will be involved in.

There will be no diver activity associated with the PIES installations.
2. How the line will be weighted, moored or attached.

Not applicable
3. Whether there are separate descent lines that are also loose or if the divers free descending/swimming to the activity area.

Not applicable
4. Whether divers and/or tenders would be able to monitor lines.

Not applicable
5. How long lines are expected to be in the water.

Not applicable
6. How many hours/days the activity will last.

Five PIES will be deployed at Stones. Time to deploy and retrieve a PIES unit is approximately 4 hrs. PIES deployment will last approximately 1 day. PIES retrieval will last approximately 1 day. PIES will be deployed before any node is deployed and will remain on the seafloor until the end of acquisition. Once acquisition is complete all PIES will be retrieved. Retrieval or the PIES units is estimated at 1 day. Survey duration from first node to last node is estimated at 55 days.

PIES Coordinates
CRS - NAD 27 UTM 15N ft
$X(\mathrm{ft}) \quad Y(\mathrm{ft})$
23380359616316
23919009604633
23631009636515
23612709613545
23600709583380

G\&G Permits Request for Information

The following information is requested to ensure BOEM has the details necessary to evaluate your proposed action and ensure it will protect the ESA-listed species covered by the 2020 Biological Opinion. If your activity includes any of the following, please provide additional details on the equipment / technology, procedures for ensuring ESA-listed species are not impacted, and/or results of modeling and analysis of sound associated with pile-driving or air guns.

This information must be included as part of your application.

1. Use of New or Unusual Technology (NUT). N/A
2. Use of a vessel with a moon pool. YES. However, the moonpool will not be used for this survey and as such no moonpool operations are planned.
3. Equipment with an entanglement or entrapment risk (e.g., flexible lines/ropes). ROV operations only:

ROV: Oceaneering Millennium® ${ }^{\circledR}$ Plus Work Class ROV
ROV Tethers: Length: Approximately 3500 Meters
4. Please indicate on a Vicinity Map all associated support bases / ports used and verify that no vessels, including supply and crew vessels, cross or enter the Bryde's whale area. If vessels will enter the Bryde's whale area, you must clearly state this, as additional restrictions will apply.
This permit activity will not enter the Bryde's whale area - see attached Vicinity Map.
5. Provide the total number of days you project to have an active seismic source. 62 Days.
6. Review and update your application to verify the threatened or endangered species, critical habitat, and marine mammal information reflects the requirements found in the 2020 Biological Opinion. Appendices are addressed below

The 2020 Biological Opinion may be found here:
https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico.

The Appendices may be found here:
https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico).

Appendix A: The activity proposed in this Permit does include seismic survey activities.
Appendix B: Shell will comply with the GoM Marine and Trash Requirements in Appendix B 2020 NMFS BiOp and BOEM/BSEE regulations.

Appendix C: Shell will comply with the GoM Vessel Strike Avoidance and Protected Species Reporting Requirements in Appendix C and BOEM/BSEE regulations.

Appendix J: There will be no explosive severance operations or trawling supporting decommissioning conducted from the vessel that may result in potential for entanglement or entrapment of endangered marine species requiring resuscitation measures.

Legend

\square Lease_Blocks
Nodes
\square Node_Polygon
Shot_Polygon
Operating Area

SHELL EXPLORATION \& PRODUCTION COMPANY

Shell Stones OBN

Aliminos Canyon Area

GEODETIC PARAMETERS

Horizontal Coordinate Reference System

CRS name (ESRI): NAD 1927 BLM Zone 15N
CRS name IShell): NAD27 / UTM zone 16N (ffUS) [1241_32066]
CRS code (EPSG): [32066]
Geodetic datum: North American 1927
Projection name: Transverse Mercator
Horizontal units: Foot US

Stones 2022 Receiver Locations
CRS- NAD 27 UTM 15N ft
Line Name Stn Name Pnt Index X (ft) Y (ft)

2	50	1	2305262	9606641
2	51	1	2305262	9607953
3	48	1	2306574	9604672
3	49	1	2306574	9605984
3	50	1	2306574	9607297
3	51	1	2306574	9608609
4	48	1	2307887	9604016
4	49	1	2307887	9605328
4	50	1	2307887	9606641
4	51	1	2307887	9607953
4	52	1	2307887	9609265
4	53	1	2307887	9610578
5	46	1	2309199	9602047
5	47	1	2309199	9603360
5	48	1	2309199	9604672
5	49	1	2309199	9605984
5	50	1	2309199	9607297
5	51	1	2309199	9608609
5	52	1	2309199	9609921
5	53	1	2309199	9611234
6	46	1	2310511	9601391
6	47	1	2310511	9602704
6	48	1	2310511	9604016
6	49	1	2310511	9605328
6	50	1	2310511	9606641
6	51	1	2310511	9607953
6	52	1	2310511	9609265
6	53	1	2310511	9610578
6	54	1	2310511	9611890
6	55	1	2310511	9613202
7	44	1	2311824	9599423
7	45	1	2311824	9600735
7	46	1	2311824	9602047
7	47	1	2311824	9603360
7	48	1	2311824	9604672
7	49	1	2311824	9605984
7	50	1	2311824	9607297
7	51	1	2311824	9608609
7	52	1	2311824	9609921
7	53	1	2311824	9611234
7	54	1	2311824	9612546
7	55	1	2311824	9613858
8	44	1	2313136	9598767
8	45	1	2313136	9600079

8	46	1	2313136	9601391
8	47	1	2313136	9602704
8	48	1	2313136	9604016
8	49	1	2313136	9605328
8	50	1	2313136	9606641
8	51	1	2313136	9607953
8	52	1	2313136	9609265
8	53	1	2313136	9610578
8	54	1	2313136	9611890
8	55	1	2313136	9613202
8	56	1	2313136	9614515
8	57	1	2313136	9615827
9	42	1	2314448	9596798
9	43	1	2314448	9598110
9	44	1	2314448	9599423
9	45	1	2314448	9600735
9	46	1	2314448	9602047
9	47	1	2314448	9603360
9	48	1	2314448	9604672
9	49	1	2314448	9605984
9	50	1	2314448	9607297
9	51	1	2314448	9608609
9	52	1	2314448	9609921
9	53	1	2314448	9611234
9	54	1	2314448	9612546
9	55	1	2314448	9613858
9	56	1	2314448	9615171
9	57	1	2314448	9616483
10	42	1	2315761	9596142
10	43	1	2315761	9597454
10	44	1	2315761	9598767
10	45	1	2315761	9600079
10	46	1	2315761	9601391
10	47	1	2315761	9602704
10	48	1	2315761	9604016
10	49	1	2315761	9605328
10	50	1	2315761	9606641
10	51	1	2315761	9607953
10	52	1	2315761	9609265
10	53	1	2315761	9610578
10	54	1	2315761	9611890
10	55	1	2315761	9613202
10	56	1	2315761	9614515
10	57	1	2315761	9615827
10	58	1	2315761	9617139
10	59	1	2315761	9618452
11	40	1	2317073	9594173

$\left.\begin{array}{lllll}11 & 41 & 1 & 2317073 & 9595486 \\ 11 & 42 & 1 & 2317073 & 9596798 \\ 11 & 43 & 1 & 2317073 & 9598110 \\ 11 & 44 & 1 & 2317073 & 9599423 \\ 11 & 45 & 1 & 2317073 & 9600735 \\ 11 & 46 & 1 & 2317073 & 9602047 \\ 11 & 47 & 1 & 2317073 & 9603360 \\ 11 & 48 & 1 & 2317073 & 9604672 \\ 11 & 49 & 1 & 2317073 & 9605984 \\ 11 & 50 & 1 & 2317073 & 9607297 \\ 11 & 51 & 1 & 2317073 & 9608609 \\ 11 & 52 & 1 & 2317073 & 9609921 \\ 11 & 53 & 1 & 2317073 & 9611234 \\ 11 & 54 & 1 & 2317073 & 9612546 \\ 11 & 55 & 1 & 2317073 & 9613858 \\ 11 & 56 & 1 & 2317073 & 9615171 \\ 11 & 57 & 1 & 2317073 & 9616483 \\ 11 & 58 & 1 & 2317073 & 9617795 \\ 11 & 59 & 1 & 2317073 & 9619108 \\ 12 & 40 & 1 & 2318385 & 9593517 \\ 12 & 43 & 40 & 1 & 2318385\end{array} 9594830\right\}$
$\left.\begin{array}{lllll}13 & 44 & 1 & 2319698 & 9599423 \\ 13 & 45 & 1 & 2319698 & 9600735 \\ 13 & 46 & 1 & 2319698 & 9602047 \\ 13 & 47 & 1 & 2319698 & 9603360 \\ 13 & 48 & 1 & 2319698 & 9604672 \\ 13 & 49 & 1 & 2319698 & 9605984 \\ 13 & 50 & 1 & 2319698 & 9607297 \\ 13 & 51 & 1 & 2319698 & 9608609 \\ 13 & 52 & 1 & 2319698 & 9609921 \\ 13 & 53 & 1 & 2319698 & 9611234 \\ 13 & 54 & 1 & 2319698 & 9612546 \\ 13 & 55 & 1 & 2319698 & 9613858 \\ 13 & 56 & 1 & 2319698 & 9615171 \\ 13 & 57 & 1 & 2319698 & 9616483 \\ 13 & 58 & 1 & 2319698 & 9617795 \\ 13 & 59 & 1 & 2319698 & 9619108 \\ 13 & 60 & 1 & 2319698 & 9620420 \\ 13 & 61 & 1 & 2319698 & 9621732 \\ 14 & 38 & 1 & 2321010 & 9590893 \\ 14 & 39 & 1 & 2321010 & 9592205 \\ 14 & 40 & 1 & 2321010 & 9593517 \\ 14 & 53 & 1 & 1 & 1\end{array}\right) 232232299591549$
$\left.\begin{array}{lllll}15 & 39 & 1 & 2322322 & 9592861 \\ 15 & 40 & 1 & 2322322 & 9594173 \\ 15 & 41 & 1 & 2322322 & 9595486 \\ 15 & 42 & 1 & 2322322 & 9596798 \\ 15 & 43 & 1 & 2322322 & 9598110 \\ 15 & 44 & 1 & 2322322 & 9599423 \\ 15 & 45 & 1 & 2322322 & 9600735 \\ 15 & 46 & 1 & 2322322 & 9602047 \\ 15 & 47 & 1 & 2322322 & 9603360 \\ 15 & 48 & 1 & 2322322 & 9604672 \\ 15 & 49 & 1 & 2322322 & 9605984 \\ 15 & 50 & 1 & 2322322 & 9607297 \\ 15 & 51 & 1 & 2322322 & 9608609 \\ 15 & 52 & 1 & 2322322 & 9609921 \\ 15 & 53 & 1 & 2322322 & 9611234 \\ 15 & 54 & 1 & 2322322 & 9612546 \\ 15 & 55 & 1 & 2322322 & 9613858 \\ 15 & 56 & 1 & 2322322 & 9615171 \\ 15 & 57 & 1 & 2322322 & 9616483 \\ 15 & 58 & 1 & 2322322 & 9617795 \\ 15 & 59 & 1 & 2322322 & 9619108 \\ 15 & 60 & 1 & 2322322 & 9620420 \\ 15 & 54 & 1 & 1 & 1\end{array}\right) 232363599615827$

16	58	1	2323635	9617139		
16	59	1	2323635	9618452		
16	60	1	2323635	9619764		
16	61	1	2323635	9621076		
16	62	1	2323635	9622389		
16	63	1	2323635	9623701		
16	64	1	2323635	9625013		
16	65	1	2323635	9626326		
17	34	1	2324947	9586299		
17	35	1	2324947	9587612		
17	36	1	2324947	9588924		
17	37	1	2324947	9590236		
17	38	1	2324947	9591549		
17	39	1	2324947	9592861		
17	40	1	2324947	9594173		
17	41	1	2324947	9595486		
17	42	1	2324947	9596798		
17	43	1	2324947	9598110		
17	44	1	2324947	9599423		
17	45	1	2324947	9600735		
17	36	36	1	2324947	99602047	17
:---						
17						

$\left.\begin{array}{lllll}18 & 41 & 1 & 2326259 & 9594830 \\ 18 & 42 & 1 & 2326259 & 9596142 \\ 18 & 43 & 1 & 2326259 & 9597454 \\ 18 & 44 & 1 & 2326259 & 9598767 \\ 18 & 45 & 1 & 2326259 & 9600079 \\ 18 & 46 & 1 & 2326259 & 9601391 \\ 18 & 47 & 1 & 2326259 & 9602704 \\ 18 & 48 & 1 & 2326259 & 9604016 \\ 18 & 49 & 1 & 2326259 & 9605328 \\ 18 & 50 & 1 & 2326259 & 9606641 \\ 18 & 51 & 1 & 2326259 & 9607953 \\ 18 & 52 & 1 & 2326259 & 9609265 \\ 18 & 53 & 1 & 2326259 & 9610578 \\ 18 & 54 & 1 & 2326259 & 9611890 \\ 18 & 55 & 1 & 2326259 & 9613202 \\ 18 & 56 & 1 & 2326259 & 9614515 \\ 18 & 57 & 1 & 2326259 & 9615827 \\ 18 & 58 & 1 & 2326259 & 9617139 \\ 18 & 59 & 1 & 2326259 & 9618452 \\ 18 & 60 & 1 & 2326259 & 9619764 \\ 18 & 61 & 1 & 2326259 & 9621076 \\ 18 & 62 & 1 & 2326259 & 9622389 \\ 18 & 48 & 49 & 1 & 1\end{array}\right) 232757299608609$
$\left.\begin{array}{lllll}19 & 52 & 1 & 2327572 & 9609921 \\ 19 & 53 & 1 & 2327572 & 9611234 \\ 19 & 54 & 1 & 2327572 & 9612546 \\ 19 & 55 & 1 & 2327572 & 9613858 \\ 19 & 56 & 1 & 2327572 & 9615171 \\ 19 & 57 & 1 & 2327572 & 9616483 \\ 19 & 58 & 1 & 2327572 & 9617795 \\ 19 & 59 & 1 & 2327572 & 9619108 \\ 19 & 60 & 1 & 2327572 & 9620420 \\ 19 & 61 & 1 & 2327572 & 9621732 \\ 19 & 62 & 1 & 2327572 & 9623045 \\ 19 & 63 & 1 & 2327572 & 9624357 \\ 19 & 64 & 1 & 2327572 & 9625669 \\ 19 & 65 & 1 & 2327572 & 9626982 \\ 19 & 66 & 1 & 2327572 & 9628294 \\ 19 & 67 & 1 & 2327572 & 9629607 \\ 20 & 32 & 1 & 2328884 & 9583019 \\ 20 & 33 & 1 & 2328884 & 9584331 \\ 20 & 34 & 1 & 2328884 & 9585643 \\ 20 & 35 & 1 & 2328884 & 9586956 \\ 20 & 36 & 1 & 2328884 & 9588268 \\ 20 & 57 & 1 & 1 & 2328884\end{array} 9589580\right\}$

20	63	1	2328884	9623701
20	64	1	2328884	9625013
20	65	1	2328884	9626326
20	66	1	2328884	9627638
20	67	1	2328884	9628950
20	68	1	2328884	9630263
20	69	1	2328884	9631575
21	30	1	2330196	9581050
21	31	1	2330196	9582362
21	32	1	2330196	9583675
21	33	1	2330196	9584987
21	34	1	2330196	9586299
21	35	1	2330196	9587612
21	36	1	2330196	9588924
21	37	1	2330196	9590236
21	38	1	2330196	9591549
21	39	1	2330196	9592861
21	40	1	2330196	9594173
21	41	1	2330196	9595486
21	42	1	2330196	9596798
21	43	1	2330196	9598110
21	44	1	2330196	9599423
21	45	1	2330196	9600735
21	46	1	2330196	9602047
21	47	1	2330196	9603360
21	48	1	2330196	9604672
21	49	1	2330196	9605984
21	50	1	2330196	9607297
21	51	1	2330196	9608609
21	52	1	2330196	9609921
21	53	1	2330196	9611234
21	54	1	2330196	9612546
21	55	1	2330196	9613858
21	56	1	2330196	9615171
21	57	1	2330196	9616483
21	58	1	2330196	9617795
21	59	1	2330196	9619108
21	60	1	2330196	9620420
21	61	1	2330196	9621732
21	62	1	2330196	9623045
21	63	1	2330196	9624357
21	64	1	2330196	9625669
21	65	1	2330196	9626982
21	66	1	2330196	9628294
21	67	1	2330196	9629607
21	68	1	2330196	9630919
21	69	1	2330196	9632231

22	30	1	2331509	9580394
22	31	1	2331509	9581706
22	32	1	2331509	9583019
22	33	1	2331509	9584331
22	34	1	2331509	9585643
22	35	1	2331509	9586956
22	36	1	2331509	9588268
22	37	1	2331509	9589580
22	38	1	2331509	9590893
22	39	1	2331509	9592205
22	40	1	2331509	9593517
22	41	1	2331509	9594830
22	42	1	2331509	9596142
22	43	1	2331509	9597454
22	44	1	2331509	9598767
22	45	1	2331509	9600079
22	46	1	2331509	9601391
22	47	1	2331509	9602704
22	48	1	2331509	9604016
22	49	1	2331509	9605328
22	50	1	2331509	9606641
23	30	69	1	1

$\left.\begin{array}{lllll}23 & 33 & 1 & 2332821 & 9584987 \\ 23 & 34 & 1 & 2332821 & 9586299 \\ 23 & 35 & 1 & 2332821 & 9587612 \\ 23 & 36 & 1 & 2332821 & 9588924 \\ 23 & 37 & 1 & 2332821 & 9590236 \\ 23 & 38 & 1 & 2332821 & 9591549 \\ 23 & 39 & 1 & 2332821 & 9592861 \\ 23 & 40 & 1 & 2332821 & 9594173 \\ 23 & 41 & 1 & 2332821 & 9595486 \\ 23 & 42 & 1 & 2332821 & 9596798 \\ 23 & 43 & 1 & 2332821 & 9598110 \\ 23 & 44 & 1 & 2332821 & 9599423 \\ 23 & 45 & 1 & 2332821 & 9600735 \\ 23 & 46 & 1 & 2332821 & 9602047 \\ 23 & 47 & 1 & 2332821 & 9603360 \\ 23 & 48 & 1 & 2332821 & 9604672 \\ 23 & 49 & 1 & 2332821 & 9605984 \\ 23 & 50 & 1 & 2332821 & 9607297 \\ 23 & 51 & 1 & 2332821 & 9608609 \\ 23 & 52 & 1 & 2332821 & 9609921 \\ 23 & 53 & 1 & 2332821 & 9611234 \\ 23 & 34 & 34 & 1 & 1\end{array}\right) 233282199612546$
$\left.\begin{array}{lllll}24 & 36 & 1 & 2334133 & 9588268 \\ 24 & 37 & 1 & 2334133 & 9589580 \\ 24 & 38 & 1 & 2334133 & 9590893 \\ 24 & 39 & 1 & 2334133 & 9592205 \\ 24 & 40 & 1 & 2334133 & 9593517 \\ 24 & 41 & 1 & 2334133 & 9594830 \\ 24 & 42 & 1 & 2334133 & 9596142 \\ 24 & 43 & 1 & 2334133 & 9597454 \\ 24 & 44 & 1 & 2334133 & 9598767 \\ 24 & 45 & 1 & 2334133 & 9600079 \\ 24 & 46 & 1 & 2334133 & 9601391 \\ 24 & 47 & 1 & 2334133 & 9602704 \\ 24 & 48 & 1 & 2334133 & 9604016 \\ 24 & 49 & 1 & 2334133 & 9605328 \\ 24 & 50 & 1 & 2334133 & 9606641 \\ 24 & 51 & 1 & 2334133 & 9607953 \\ 24 & 52 & 1 & 2334133 & 9609265 \\ 24 & 53 & 1 & 2334133 & 9610578 \\ 24 & 54 & 1 & 2334133 & 9611890 \\ 24 & 55 & 1 & 2334133 & 9613202 \\ 24 & 56 & 1 & 2334133 & 9614515 \\ 24 & 57 & 1 & 2334133 & 9615827 \\ 24 & 73 & 70 & 1 & 1\end{array}\right) 233544699586299$

25	35	1	2335446	9587612
25	36	1	2335446	9588924
25	37	1	2335446	9590236
25	38	1	2335446	9591549
25	39	1	2335446	9592861
25	40	1	2335446	9594173
25	41	1	2335446	9595486
25	42	1	2335446	9596798
25	43	1	2335446	9598110
25	44	1	2335446	9599423
25	45	1	2335446	9600735
25	46	1	2335446	9602047
25	47	1	2335446	9603360
25	48	1	2335446	9604672
25	49	1	2335446	9605984
25	50	1	2335446	9607297
25	51	1	2335446	9608609
25	52	1	2335446	9609921
25	53	1	2335446	9611234
25	54	1	2335446	9612546
25	55	1	2335446	9613858
25	56	1	2335446	9615171
26	73	1	1	1

26	34	1	2336758	9585643
26	35	1	2336758	9586956
26	36	1	2336758	9588268
26	37	1	2336758	9589580
26	38	1	2336758	9590893
26	39	1	2336758	9592205
26	40	1	2336758	9593517
26	41	1	2336758	9594830
26	42	1	2336758	9596142
26	43	1	2336758	9597454
26	44	1	2336758	9598767
26	45	1	2336758	9600079
26	46	1	2336758	9601391
26	47	1	2336758	9602704
26	48	1	2336758	9604016
26	49	1	2336758	9605328
26	50	1	2336758	9606641
26	51	1	2336758	9607953
26	52	1	2336758	9609265
26	53	1	2336758	9610578
26	54	1	2336758	9611890
26	75	14	1	1

27	29	1	2338070	9579738
27	30	1	2338070	9581050
27	31	1	2338070	9582362
27	32	1	2338070	9583675
27	33	1	2338070	9584987
27	34	1	2338070	9586299
27	35	1	2338070	9587612
27	36	1	2338070	9588924
27	37	1	2338070	9590236
27	38	1	2338070	9591549
27	39	1	2338070	9592861
27	40	1	2338070	9594173
27	41	1	2338070	9595486
27	42	1	2338070	9596798
27	43	1	2338070	9598110
27	44	1	2338070	9599423
27	45	1	2338070	9600735
27	46	1	2338070	9602047
27	47	1	2338070	9603360
27	74	10	1	2338070

28	24	1	2339383	9572520		
28	25	1	2339383	9573832		
28	26	1	2339383	9575145		
28	27	1	2339383	9576457		
28	28	1	2339383	9577769		
28	29	1	2339383	9579082		
28	30	1	2339383	9580394		
28	31	1	2339383	9581706		
28	32	1	2339383	9583019		
28	33	1	2339383	9584331		
28	34	1	2339383	9585643		
28	35	1	2339383	9586956		
28	36	1	2339383	9588268		
28	37	1	2339383	9589580		
28	38	1	2339383	9590893		
28	39	1	2339383	9592205		
28	40	1	2339383	9593517		
28	41	1	2339383	9594830		
28	42	1	2339383	9596142		
28	43	1	2339383	9597454		
28	65	44	1	2339383	99598767	28
:---						
28						

28	71	1	2339383	9634200
28	72	1	2339383	9635512
28	73	1	2339383	9636824
28	74	1	2339383	9638137
28	75	1	2339383	9639449
28	76	1	2339383	9640762
28	77	1	2339383	9642074
29	22	1	2340695	9570551
29	23	1	2340695	9571864
29	24	1	2340695	9573176
29	25	1	2340695	9574488
29	26	1	2340695	9575801
29	27	1	2340695	9577113
29	28	1	2340695	9578425
29	29	1	2340695	9579738
29	30	1	2340695	9581050
29	31	1	2340695	9582362
29	32	1	2340695	9583675
29	33	1	2340695	9584987
29	34	1	2340695	9586299
29	35	1	2340695	9587612
29	53	1	1	2340695

29	62	1	2340695	9623045
29	63	1	2340695	9624357
29	64	1	2340695	9625669
29	65	1	2340695	9626982
29	66	1	2340695	9628294
29	67	1	2340695	9629607
29	68	1	2340695	9630919
29	69	1	2340695	9632231
29	70	1	2340695	9633544
29	71	1	2340695	9634856
29	72	1	2340695	9636168
29	73	1	2340695	9637481
29	74	1	2340695	9638793
29	75	1	2340695	9640105
29	76	1	2340695	9641418
29	77	1	2340695	9642730
30	22	1	2342007	9569895
30	23	1	2342007	9571207
30	24	1	2342007	9572520
30	25	1	2342007	9573832
30	26	1	2342007	9575145
30	27	1	2342007	9576457
30	49	1	1	2342007

30	53	1	2342007	9610578
30	54	1	2342007	9611890
30	55	1	2342007	9613202
30	56	1	2342007	9614515
30	57	1	2342007	9615827
30	58	1	2342007	9617139
30	59	1	2342007	9618452
30	60	1	2342007	9619764
30	61	1	2342007	9621076
30	62	1	2342007	9622389
30	63	1	2342007	9623701
30	64	1	2342007	9625013
30	65	1	2342007	9626326
30	66	1	2342007	9627638
30	67	1	2342007	9628950
30	68	1	2342007	9630263
30	69	1	2342007	9631575
30	70	1	2342007	9632887
30	71	1	2342007	9634200
30	72	1	2342007	9635512
30	73	1	2342007	9636824
30	74	1	2342007	9638137
30	36	37	1	1

31	40	1	2343320	9594173
31	41	1	2343320	9595486
31	42	1	2343320	9596798
31	43	1	2343320	9598110
31	44	1	2343320	9599423
31	45	1	2343320	9600735
31	46	1	2343320	9602047
31	47	1	2343320	9603360
31	48	1	2343320	9604672
31	49	1	2343320	9605984
31	50	1	2343320	9607297
31	51	1	2343320	9608609
31	52	1	2343320	9609921
31	53	1	2343320	9611234
31	54	1	2343320	9612546
31	55	1	2343320	9613858
31	56	1	2343320	9615171
31	57	1	2343320	9616483
31	58	1	2343320	9617795
31	59	1	2343320	9619108
31	60	1	2343320	9620420
31	79	78	1	1

$\left.\begin{array}{lllll}32 & 27 & 1 & 2344632 & 9576457 \\ 32 & 28 & 1 & 2344632 & 9577769 \\ 32 & 29 & 1 & 2344632 & 9579082 \\ 32 & 30 & 1 & 2344632 & 9580394 \\ 32 & 31 & 1 & 2344632 & 9581706 \\ 32 & 32 & 1 & 2344632 & 9583019 \\ 32 & 33 & 1 & 2344632 & 9584331 \\ 32 & 34 & 1 & 2344632 & 9585643 \\ 32 & 35 & 1 & 2344632 & 9586956 \\ 32 & 36 & 1 & 2344632 & 9588268 \\ 32 & 37 & 1 & 2344632 & 9589580 \\ 32 & 38 & 1 & 2344632 & 9590893 \\ 32 & 39 & 1 & 2344632 & 9592205 \\ 32 & 40 & 1 & 2344632 & 9593517 \\ 32 & 41 & 1 & 2344632 & 9594830 \\ 32 & 42 & 1 & 2344632 & 9596142 \\ 32 & 43 & 1 & 2344632 & 9597454 \\ 32 & 44 & 1 & 2344632 & 9598767 \\ 32 & 45 & 1 & 2344632 & 9600079 \\ 32 & 46 & 1 & 2344632 & 9601391 \\ 32 & 47 & 1 & 2344632 & 9602704 \\ 32 & 69 & 10 & 1 & 1\end{array}\right) 234463299636824$

32	74	1	2344632	9638137
32	75	1	2344632	9639449
32	76	1	2344632	9640762
32	77	1	2344632	9642074
32	78	1	2344632	9643386
32	79	1	2344632	9644699
32	80	1	2344632	9646011
32	81	1	2344632	9647323
33	18	1	2345944	9565302
33	19	1	2345944	9566614
33	20	1	2345944	9567927
33	21	1	2345944	9569239
33	22	1	2345944	9570551
33	23	1	2345944	9571864
33	24	1	2345944	9573176
33	25	1	2345944	9574488
33	26	1	2345944	9575801
33	27	1	2345944	9577113
33	28	1	2345944	9578425
33	29	1	2345944	9579738
33	30	1	2345944	9581050
33	31	1	2345944	9582362
33	35	49	1	1

33	57	1	2345944	9616483
33	58	1	2345944	9617795
33	59	1	2345944	9619108
33	60	1	2345944	9620420
33	61	1	2345944	9621732
33	62	1	2345944	9623045
33	63	1	2345944	9624357
33	64	1	2345944	9625669
33	65	1	2345944	9626982
33	66	1	2345944	9628294
33	67	1	2345944	9629607
33	68	1	2345944	9630919
33	69	1	2345944	9632231
33	70	1	2345944	9633544
33	71	1	2345944	9634856
33	72	1	2345944	9636168
33	73	1	2345944	9637481
33	74	1	2345944	9638793
33	75	1	2345944	9640105
33	76	1	2345944	9641418
33	77	1	2345944	9642730
33	78	1	2345944	9644042
33	79	1	2345944	9645355
33	80	1	2345944	9646667
34	37	1	1	2347257

34	40	1	2347257	9593517
34	41	1	2347257	9594830
34	42	1	2347257	9596142
34	43	1	2347257	9597454
34	44	1	2347257	9598767
34	45	1	2347257	9600079
34	46	1	2347257	9601391
34	47	1	2347257	9602704
34	48	1	2347257	9604016
34	49	1	2347257	9605328
34	50	1	2347257	9606641
34	51	1	2347257	9607953
34	52	1	2347257	9609265
34	53	1	2347257	9610578
34	54	1	2347257	9611890
34	55	1	2347257	9613202
34	56	1	2347257	9614515
34	57	1	2347257	9615827
34	58	1	2347257	9617139
34	59	1	2347257	9618452
34	60	1	2347257	9619764
34	61	1	2347257	9621076
34	62	18	1	2347257

35	19	1	2348569	9566614
35	20	1	2348569	9567927
35	21	1	2348569	9569239
35	22	1	2348569	9570551
35	23	1	2348569	9571864
35	24	1	2348569	9573176
35	25	1	2348569	9574488
35	26	1	2348569	9575801
35	27	1	2348569	9577113
35	28	1	2348569	9578425
35	29	1	2348569	9579738
35	30	1	2348569	9581050
35	31	1	2348569	9582362
35	32	1	2348569	9583675
35	33	1	2348569	9584987
35	34	1	2348569	9586299
35	35	1	2348569	9587612
35	36	1	2348569	9588924
35	37	1	2348569	9590236
35	38	1	2348569	9591549
35	39	1	2348569	9592861
35	40	1	2348569	9594173
35	53	53	1	1

35	66	1	2348569	9628294
35	67	1	2348569	9629607
35	68	1	2348569	9630919
35	69	1	2348569	9632231
35	70	1	2348569	9633544
35	71	1	2348569	9634856
35	72	1	2348569	9636168
35	73	1	2348569	9637481
35	74	1	2348569	9638793
35	75	1	2348569	9640105
35	76	1	2348569	9641418
35	77	1	2348569	9642730
35	78	1	2348569	9644042
35	79	1	2348569	9645355
35	80	1	2348569	9646667
35	81	1	2348569	9647979
35	82	1	2348569	9649292
35	83	1	2348569	9650604
36	16	1	2349881	9562021
36	17	1	2349881	9563333
36	18	1	2349881	9564646
36	19	1	2349881	9565958
36	37	37	1	1

36	45	1	2349881	9600079
36	46	1	2349881	9601391
36	47	1	2349881	9602704
36	48	1	2349881	9604016
36	49	1	2349881	9605328
36	50	1	2349881	9606641
36	51	1	2349881	9607953
36	52	1	2349881	9609265
36	53	1	2349881	9610578
36	54	1	2349881	9611890
36	55	1	2349881	9613202
36	56	1	2349881	9614515
36	57	1	2349881	9615827
36	58	1	2349881	9617139
36	59	1	2349881	9618452
36	60	1	2349881	9619764
36	61	1	2349881	9621076
36	62	1	2349881	9622389
36	63	1	2349881	9623701
36	64	1	2349881	9625013
36	65	1	2349881	9626326
36	66	1	2349881	9627638
36	67	1	2349881	9628950
36	68	1	2349881	9630263
36	69	1	2349881	9631575
36	70	1	2349881	9632887
36	71	1	2349881	9634200
36	72	1	2349881	9635512
36	73	1	2349881	9636824
36	74	1	2349881	9638137
36	75	1	2349881	9639449
36	76	1	2349881	9640762
36	77	1	2349881	9642074
36	78	1	2349881	9643386
36	79	1	2349881	9644699
36	80	1	2349881	9646011
36	81	1	2349881	9647323
36	82	1	2349881	9648636
36	83	1	2349881	9649948
36	84	1	2349881	9651260
36	85	1	2349881	9652573
37	14	1	2351194	9560052
37	15	1	2351194	9561365
37	16	1	2351194	9562677
37	17	1	2351194	9563990
37	18	1	2351194	9565302
37	19	1	2351194	9566614

37	20	1	2351194	9567927
37	21	1	2351194	9569239
37	22	1	2351194	9570551
37	23	1	2351194	9571864
37	24	1	2351194	9573176
37	25	1	2351194	9574488
37	26	1	2351194	9575801
37	27	1	2351194	9577113
37	28	1	2351194	9578425
37	29	1	2351194	9579738
37	30	1	2351194	9581050
37	31	1	2351194	9582362
37	32	1	2351194	9583675
37	33	1	2351194	9584987
37	34	1	2351194	9586299
37	35	1	2351194	9587612
37	36	1	2351194	9588924
37	37	1	2351194	9590236
37	38	1	2351194	9591549
37	39	1	2351194	9592861
37	40	1	2351194	9594173
37	53	1	1	1

37	67	1	2351194	9629607
37	68	1	2351194	9630919
37	69	1	2351194	9632231
37	70	1	2351194	9633544
37	71	1	2351194	9634856
37	72	1	2351194	9636168
37	73	1	2351194	9637481
37	74	1	2351194	9638793
37	75	1	2351194	9640105
37	76	1	2351194	9641418
37	77	1	2351194	9642730
37	78	1	2351194	9644042
37	79	1	2351194	9645355
37	80	1	2351194	9646667
37	81	1	2351194	9647979
37	82	1	2351194	9649292
37	83	1	2351194	9650604
37	84	1	2351194	9651916
37	85	1	2351194	9653229
38	14	1	2352506	9559396
38	15	1	2352506	9560709
38	37	16	1	2352506

38	42	1	2352506	9596142
38	43	1	2352506	9597454
38	44	1	2352506	9598767
38	45	1	2352506	9600079
38	46	1	2352506	9601391
38	47	1	2352506	9602704
38	48	1	2352506	9604016
38	49	1	2352506	9605328
38	50	1	2352506	9606641
38	51	1	2352506	9607953
38	52	1	2352506	9609265
38	53	1	2352506	9610578
38	54	1	2352506	9611890
38	55	1	2352506	9613202
38	56	1	2352506	9614515
38	57	1	2352506	9615827
38	58	1	2352506	9617139
38	59	1	2352506	9618452
38	60	1	2352506	9619764
38	61	1	2352506	9621076
38	62	1	2352506	9622389
38	85	72	1	1

39	13	1	2353818	9558740		
39	14	1	2353818	9560052		
39	15	1	2353818	9561365		
39	16	1	2353818	9562677		
39	17	1	2353818	9563990		
39	18	1	2353818	9565302		
39	19	1	2353818	9566614		
39	20	1	2353818	9567927		
39	21	1	2353818	9569239		
39	22	1	2353818	9570551		
39	23	1	2353818	9571864		
39	24	1	2353818	9573176		
39	25	1	2353818	9574488		
39	26	1	2353818	9575801		
39	27	1	2353818	9577113		
39	28	1	2353818	9578425		
39	29	1	2353818	9579738		
39	30	1	2353818	9581050		
39	31	1	2353818	9582362		
39	32	1	2353818	9583675		
39	53	1	1	2353818	9584987	93
:---						
39						
39						

39	60	1	2353818	9620420
39	61	1	2353818	9621732
39	62	1	2353818	9623045
39	63	1	2353818	9624357
39	64	1	2353818	9625669
39	65	1	2353818	9626982
39	66	1	2353818	9628294
39	67	1	2353818	9629607
39	68	1	2353818	9630919
39	69	1	2353818	9632231
39	70	1	2353818	9633544
39	71	1	2353818	9634856
39	72	1	2353818	9636168
39	73	1	2353818	9637481
39	74	1	2353818	9638793
39	75	1	2353818	9640105
39	76	1	2353818	9641418
39	77	1	2353818	9642730
39	78	1	2353818	9644042
39	79	1	2353818	9645355
39	80	1	2353818	9646667
39	81	1	2353818	9647979
39	27	27	1	2353818

40	31	1	2355131	9581706
40	32	1	2355131	9583019
40	33	1	2355131	9584331
40	34	1	2355131	9585643
40	35	1	2355131	9586956
40	36	1	2355131	9588268
40	37	1	2355131	9589580
40	38	1	2355131	9590893
40	39	1	2355131	9592205
40	40	1	2355131	9593517
40	41	1	2355131	9594830
40	42	1	2355131	9596142
40	43	1	2355131	9597454
40	44	1	2355131	9598767
40	45	1	2355131	9600079
40	46	1	2355131	9601391
40	47	1	2355131	9602704
40	48	1	2355131	9604016
40	79	1	2355131	9605328
40	70	70	1	2355131

40	78	1	2355131	9643386
40	79	1	2355131	9644699
40	80	1	2355131	9646011
40	81	1	2355131	9647323
40	82	1	2355131	9648636
40	83	1	2355131	9649948
40	84	1	2355131	9651260
40	85	1	2355131	9652573
40	86	1	2355131	9653885
40	87	1	2355131	9655197
40	88	1	2355131	9656510
40	89	1	2355131	9657822
41	10	1	2356443	9554803
41	11	1	2356443	9556115
41	12	1	2356443	9557428
41	13	1	2356443	9558740
41	14	1	2356443	9560052
41	15	1	2356443	9561365
41	16	1	2356443	9562677
41	17	1	2356443	9563990
41	18	1	2356443	9565302
41	19	1	2356443	9566614
41	20	1	1	2356443

41	45	1	2356443	9600735
41	46	1	2356443	9602047
41	47	1	2356443	9603360
41	48	1	2356443	9604672
41	49	1	2356443	9605984
41	50	1	2356443	9607297
41	51	1	2356443	9608609
41	52	1	2356443	9609921
41	53	1	2356443	9611234
41	54	1	2356443	9612546
41	55	1	2356443	9613858
41	56	1	2356443	9615171
41	57	1	2356443	9616483
41	58	1	2356443	9617795
41	59	1	2356443	9619108
41	60	1	2356443	9620420
41	61	1	2356443	9621732
41	62	1	2356443	9623045
41	63	1	2356443	9624357
41	64	1	2356443	9625669
41	85	11	1	2356443

42	12	1	2357755	9556772
42	13	1	2357755	9558084
42	14	1	2357755	9559396
42	15	1	2357755	9560709
42	16	1	2357755	9562021
42	17	1	2357755	9563333
42	18	1	2357755	9564646
42	19	1	2357755	9565958
42	20	1	2357755	9567270
42	21	1	2357755	9568583
42	22	1	2357755	9569895
42	23	1	2357755	9571207
42	24	1	2357755	9572520
42	25	1	2357755	9573832
42	26	1	2357755	9575145
42	27	1	2357755	9576457
42	28	1	2357755	9577769
42	29	1	2357755	9579082
42	30	1	2357755	9580394
42	31	1	2357755	9581706
42	32	1	2357755	9583019
42	33	1	2357755	9584331
42	34	1	2357755	9585643
42	35	1	2357755	9586956
42	36	1	2357755	9588268
42	37	1	2357755	9589580
42	38	1	2357755	9590893
42	39	1	2357755	9592205
42	40	1	2357755	9593517
42	41	1	2357755	9594830
42	42	1	2357755	9596142
42	43	1	2357755	9597454
42	44	1	2357755	9598767
42	45	1	2357755	9600079
42	46	1	2357755	9601391
42	47	1	2357755	9602704
42	48	1	2357755	9604016
42	49	1	2357755	9605328
42	50	1	2357755	9606641
42	51	1	2357755	9607953
42	52	1	2357755	9609265
42	53	1	2357755	9610578
42	54	1	2357755	9611890
42	55	1	2357755	9613202
42	56	1	2357755	9614515
42	57	1	2357755	9615827
42	58	1	2357755	9617139
42				

42	59	1	2357755	9618452
42	60	1	2357755	9619764
42	61	1	2357755	9621076
42	62	1	2357755	9622389
42	63	1	2357755	9623701
42	64	1	2357755	9625013
42	65	1	2357755	9626326
42	66	1	2357755	9627638
42	67	1	2357755	9628950
42	68	1	2357755	9630263
42	69	1	2357755	9631575
42	70	1	2357755	9632887
42	71	1	2357755	9634200
42	72	1	2357755	9635512
42	73	1	2357755	9636824
42	74	1	2357755	9638137
42	75	1	2357755	9639449
42	76	1	2357755	9640762
42	77	1	2357755	9642074
42	78	1	2357755	9643386
42	79	1	2357755	9644699
42	10	17	1	1

43	22	1	2359068	9570551
43	23	1	2359068	9571864
43	24	1	2359068	9573176
43	25	1	2359068	9574488
43	26	1	2359068	9575801
43	27	1	2359068	9577113
43	28	1	2359068	9578425
43	29	1	2359068	9579738
43	30	1	2359068	9581050
43	31	1	2359068	9582362
43	32	1	2359068	9583675
43	33	1	2359068	9584987
43	34	1	2359068	9586299
43	35	1	2359068	9587612
43	36	1	2359068	9588924
43	37	1	2359068	9590236
43	38	1	2359068	9591549
43	39	1	2359068	9592861
43	40	1	2359068	9594173
43	41	1	2359068	9595486
43	42	1	2359068	9596798
43	43	1	2359068	9598110
43	44	1	2359068	9599423
43	45	1	2359068	9600735
43	46	1	2359068	9602047
43	47	1	2359068	9603360
43	48	1	2359068	9604672
43	49	1	2359068	9605984
43	50	1	2359068	9607297
43	51	1	2359068	9608609
43	52	1	2359068	9609921
43	53	1	2359068	9611234
43	54	1	2359068	9612546
43	55	1	2359068	9613858
43	56	1	2359068	9615171
43	57	1	2359068	9616483
43	58	1	2359068	9617795
43	59	1	2359068	9619108
43	60	1	2359068	9620420
43	61	1	2359068	9621732
43	62	1	2359068	9623045
43	63	1	2359068	9624357
43	64	1	2359068	9625669
43	65	1	2359068	9626982
43	66	1	2359068	9628294
43	67	1	2359068	9629607
43	68	1	2359068	9630919

43	69	1	2359068	9632231
43	70	1	2359068	9633544
43	71	1	2359068	9634856
43	72	1	2359068	9636168
43	73	1	2359068	9637481
43	74	1	2359068	9638793
43	75	1	2359068	9640105
43	76	1	2359068	9641418
43	77	1	2359068	9642730
43	78	1	2359068	9644042
43	79	1	2359068	9645355
43	80	1	2359068	9646667
43	81	1	2359068	9647979
43	82	1	2359068	9649292
43	83	1	2359068	9650604
43	84	1	2359068	9651916
43	85	1	2359068	9653229
43	86	1	2359068	9654541
43	87	1	2359068	9655853
43	88	1	2359068	9657166
43	89	1	2359068	9658478
43	90	1	2359068	9659790
43	91	1	2359068	9661103
44	8	1	1	2360380

44	32	1	2360380	9583019
44	33	1	2360380	9584331
44	34	1	2360380	9585643
44	35	1	2360380	9586956
44	36	1	2360380	9588268
44	37	1	2360380	9589580
44	38	1	2360380	9590893
44	39	1	2360380	9592205
44	40	1	2360380	9593517
44	41	1	2360380	9594830
44	42	1	2360380	9596142
44	43	1	2360380	9597454
44	44	1	2360380	9598767
44	45	1	2360380	9600079
44	46	1	2360380	9601391
44	47	1	2360380	9602704
44	48	1	2360380	9604016
44	49	1	2360380	9605328
44	50	1	2360380	9606641
44	51	1	2360380	9607953
44	52	1	2360380	9609265
44	53	1	2360380	9610578
44	73	17	1	1

44	79	1	2360380	9644699
44	80	1	2360380	9646011
44	81	1	2360380	9647323
44	82	1	2360380	9648636
44	83	1	2360380	9649948
44	84	1	2360380	9651260
44	85	1	2360380	9652573
44	86	1	2360380	9653885
44	87	1	2360380	9655197
44	88	1	2360380	9656510
44	89	1	2360380	9657822
44	90	1	2360380	9659134
44	91	1	2360380	9660447
44	92	1	2360380	9661759
44	93	1	2360380	9663071
45	6	1	2361692	9549554
45	7	1	2361692	9550866
45	8	1	2361692	9552178
45	9	1	2361692	9553491
45	10	1	2361692	9554803
45	11	1	2361692	9556115
45	12	1	2361692	9557428
45	36	13	1	2361692

45	38	1	2361692	9591549
45	39	1	2361692	9592861
45	40	1	2361692	9594173
45	41	1	2361692	9595486
45	42	1	2361692	9596798
45	43	1	2361692	9598110
45	44	1	2361692	9599423
45	45	1	2361692	9600735
45	46	1	2361692	9602047
45	47	1	2361692	9603360
45	48	1	2361692	9604672
45	49	1	2361692	9605984
45	50	1	2361692	9607297
45	51	1	2361692	9608609
45	52	1	2361692	9609921
45	53	1	2361692	9611234
45	54	1	2361692	9612546
45	55	1	2361692	9613858
45	56	1	2361692	9615171
45	57	1	2361692	9616483
45	58	1	2361692	9617795
45	59	1	2361692	9619108
45	60	1	2361692	9620420
45	61	1	2361692	9621732
45	62	1	2361692	9623045
45	63	1	2361692	9624357
45	64	1	2361692	9625669
45	65	1	2361692	9626982
45	66	1	2361692	9628294
45	67	1	2361692	9629607
45	68	1	2361692	9630919
45	69	1	2361692	9632231
45	70	1	2361692	9633544
45	71	1	2361692	9634856
45	72	1	2361692	9636168
45	73	1	2361692	9637481
45	74	1	2361692	9638793
45	75	1	2361692	9640105
45	76	1	2361692	9641418
45	77	1	2361692	9642730
45	78	1	2361692	9644042
45	79	1	2361692	9645355
45	80	1	2361692	9646667
45	81	1	2361692	9647979
45	82	1	2361692	9649292
45	83	1	2361692	9650604
45	84	1	2361692	9651916
45				

45	85	1	2361692	9653229
45	86	1	2361692	9654541
45	87	1	2361692	9655853
45	88	1	2361692	9657166
45	89	1	2361692	9658478
45	90	1	2361692	9659790
45	91	1	2361692	9661103
45	92	1	2361692	9662415
45	93	1	2361692	9663727
46	6	1	2363005	9548898
46	7	1	2363005	9550210
46	8	1	2363005	9551522
46	9	1	2363005	9552835
46	10	1	2363005	9554147
46	11	1	2363005	9555459
46	12	1	2363005	9556772
46	13	1	2363005	9558084
46	14	1	2363005	9559396
46	15	1	2363005	9560709
46	16	1	2363005	9562021
46	17	1	2363005	9563333
46	18	1	2363005	9564646
46	37	19	1	1

46	44	1	2363005	9598767
46	45	1	2363005	9600079
46	46	1	2363005	9601391
46	47	1	2363005	9602704
46	48	1	2363005	9604016
46	49	1	2363005	9605328
46	50	1	2363005	9606641
46	51	1	2363005	9607953
46	52	1	2363005	9609265
46	53	1	2363005	9610578
46	54	1	2363005	9611890
46	55	1	2363005	9613202
46	56	1	2363005	9614515
46	57	1	2363005	9615827
46	58	1	2363005	9617139
46	59	1	2363005	9618452
46	60	1	2363005	9619764
46	61	1	2363005	9621076
46	62	1	2363005	9622389
46	63	1	2363005	9623701
46	64	1	2363005	9625013
46	65	1	2363005	9626326
46	66	1	2363005	9627638
46	67	1	2363005	9628950
46	68	1	2363005	9630263
46	69	1	2363005	9631575
46	70	1	2363005	9632887
46	71	1	2363005	9634200
46	72	1	2363005	9635512
46	73	1	2363005	9636824
46	74	1	2363005	9638137
46	75	1	2363005	9639449
46	76	1	2363005	9640762
46	77	1	2363005	9642074
46	78	1	2363005	9643386
46	79	1	2363005	9644699
46	80	1	2363005	9646011
46	81	1	2363005	9647323
46	82	1	2363005	9648636
46	83	1	2363005	9649948
46	84	1	2363005	9651260
46	85	1	2363005	9652573
46	86	1	2363005	9653885
46	87	1	2363005	9655197
46	88	1	2363005	9656510
46	89	1	2363005	9657822
46	90	1	2363005	9659134

46	91	1	2363005	9660447
46	92	1	2363005	9661759
46	93	1	2363005	9663071
46	94	1	2363005	9664384
46	95	1	2363005	9665696
47	4	1	2364317	9546929
47	5	1	2364317	9548241
47	6	1	2364317	9549554
47	7	1	2364317	9550866
47	8	1	2364317	9552178
47	9	1	2364317	9553491
47	10	1	2364317	9554803
47	11	1	2364317	9556115
47	12	1	2364317	9557428
47	13	1	2364317	9558740
47	14	1	2364317	9560052
47	15	1	2364317	9561365
47	16	1	2364317	9562677
47	17	1	2364317	9563990
47	18	1	2364317	9565302
47	19	1	2364317	9566614
47	39	1	1	1

47	46	1	2364317	9602047
47	47	1	2364317	9603360
47	48	1	2364317	9604672
47	49	1	2364317	9605984
47	50	1	2364317	9607297
47	51	1	2364317	9608609
47	52	1	2364317	9609921
47	53	1	2364317	9611234
47	54	1	2364317	9612546
47	55	1	2364317	9613858
47	56	1	2364317	9615171
47	57	1	2364317	9616483
47	58	1	2364317	9617795
47	59	1	2364317	9619108
47	60	1	2364317	9620420
47	61	1	2364317	9621732
47	62	1	2364317	9623045
47	63	1	2364317	9624357
47	64	1	2364317	9625669
47	65	1	2364317	9626982
47	86	87	1	2364317

47	93	1	2364317	9663727
47	94	1	2364317	9665040
47	95	1	2364317	9666352
48	4	1	2365629	9546273
48	5	1	2365629	9547585
48	6	1	2365629	9548898
48	7	1	2365629	9550210
48	8	1	2365629	9551522
48	9	1	2365629	9552835
48	10	1	2365629	9554147
48	11	1	2365629	9555459
48	12	1	2365629	9556772
48	13	1	2365629	9558084
48	14	1	2365629	9559396
48	15	1	2365629	9560709
48	16	1	2365629	9562021
48	17	1	2365629	9563333
48	18	1	2365629	9564646
48	19	1	2365629	9565958
48	20	1	2365629	9567270
48	21	1	2365629	9568583
48	22	1	2365629	9569895
48	43	43	1	1

48	48	1	2365629	9604016
48	49	1	2365629	9605328
48	50	1	2365629	9606641
48	51	1	2365629	9607953
48	52	1	2365629	9609265
48	53	1	2365629	9610578
48	54	1	2365629	9611890
48	55	1	2365629	9613202
48	56	1	2365629	9614515
48	57	1	2365629	9615827
48	58	1	2365629	9617139
48	59	1	2365629	9618452
48	60	1	2365629	9619764
48	61	1	2365629	9621076
48	62	1	2365629	9622389
48	63	1	2365629	9623701
48	64	1	2365629	9625013
48	65	1	2365629	9626326
48	66	1	2365629	9627638
48	67	1	2365629	9628950
48	93	89	1	2365629

48	95	1	2365629	9665696
48	96	1	2365629	9667008
48	97	1	2365629	9668321
49	2	1	2366942	9544304
49	3	1	2366942	9545617
49	4	1	2366942	9546929
49	5	1	2366942	9548241
49	6	1	2366942	9549554
49	7	1	2366942	9550866
49	8	1	2366942	9552178
49	9	1	2366942	9553491
49	10	1	2366942	9554803
49	11	1	2366942	9556115
49	12	1	2366942	9557428
49	13	1	2366942	9558740
49	14	1	2366942	9560052
49	15	1	2366942	9561365
49	16	1	2366942	9562677
49	17	1	2366942	9563990
49	18	1	2366942	9565302
49	49	1	1	2366942

49	46	1	2366942	9602047
49	47	1	2366942	9603360
49	48	1	2366942	9604672
49	49	1	2366942	9605984
49	50	1	2366942	9607297
49	51	1	2366942	9608609
49	52	1	2366942	9609921
49	53	1	2366942	9611234
49	54	1	2366942	9612546
49	55	1	2366942	9613858
49	56	1	2366942	9615171
49	57	1	2366942	9616483
49	58	1	2366942	9617795
49	59	1	2366942	9619108
49	60	1	2366942	9620420
49	61	1	2366942	9621732
49	62	1	2366942	9623045
49	63	1	2366942	9624357
49	64	1	2366942	9625669
49	65	1	2366942	9626982
49	66	1	2366942	9628294
49	67	1	2366942	9629607
49	85	87	1	1
49	68	1	2366942	9630919
49	80	1	1	2366942

49	93	1	2366942	9663727
49	94	1	2366942	9665040
49	95	1	2366942	9666352
49	96	1	2366942	9667664
49	97	1	2366942	9668977
50	2	1	2368254	9543648
50	3	1	2368254	9544961
50	4	1	2368254	9546273
50	5	1	2368254	9547585
50	6	1	2368254	9548898
50	7	1	2368254	9550210
50	8	1	2368254	9551522
50	9	1	2368254	9552835
50	10	1	2368254	9554147
50	11	1	2368254	9555459
50	12	1	2368254	9556772
50	13	1	2368254	9558084
50	14	1	2368254	9559396
50	15	1	2368254	9560709
50	16	1	2368254	9562021
50	17	1	2368254	9563333
50	39	18	1	2368254

50	44	1	2368254	9598767
50	45	1	2368254	9600079
50	46	1	2368254	9601391
50	47	1	2368254	9602704
50	48	1	2368254	9604016
50	49	1	2368254	9605328
50	50	1	2368254	9606641
50	51	1	2368254	9607953
50	52	1	2368254	9609265
50	53	1	2368254	9610578
50	54	1	2368254	9611890
50	55	1	2368254	9613202
50	56	1	2368254	9614515
50	57	1	2368254	9615827
50	58	1	2368254	9617139
50	59	1	2368254	9618452
50	60	1	2368254	9619764
50	61	1	2368254	9621076
50	62	1	2368254	9622389
50	63	1	2368254	9623701
50	64	1	2368254	9625013
50	83	1	1	2368254

50	91	1	2368254	9660447
50	92	1	2368254	9661759
50	93	1	2368254	9663071
50	94	1	2368254	9664384
50	95	1	2368254	9665696
50	96	1	2368254	9667008
50	97	1	2368254	9668321
50	98	1	2368254	9669633
50	99	1	2368254	9670945
51	2	1	2369567	9544304
51	3	1	2369567	9545617
51	4	1	2369567	9546929
51	5	1	2369567	9548241
51	6	1	2369567	9549554
51	7	1	2369567	9550866
51	8	1	2369567	9552178
51	9	1	2369567	9553491
51	10	1	2369567	9554803
51	11	1	2369567	9556115
51	35	12	1	2369567

51	40	1	2369567	9594173
51	41	1	2369567	9595486
51	42	1	2369567	9596798
51	43	1	2369567	9598110
51	44	1	2369567	9599423
51	45	1	2369567	9600735
51	46	1	2369567	9602047
51	47	1	2369567	9603360
51	48	1	2369567	9604672
51	49	1	2369567	9605984
51	50	1	2369567	9607297
51	51	1	2369567	9608609
51	52	1	2369567	9609921
51	53	1	2369567	9611234
51	54	1	2369567	9612546
51	55	1	2369567	9613858
51	56	1	2369567	9615171
51	57	1	2369567	9616483
51	58	1	2369567	9617795
51	59	1	2369567	9619108
51	60	1	2369567	9620420
51	63	79	1	2369567
51	76621732			
51	62	1	2369567	9654541
51	63	1	1	2369567

51	87	1	2369567	9655853
51	88	1	2369567	9657166
51	89	1	2369567	9658478
51	90	1	2369567	9659790
51	91	1	2369567	9661103
51	92	1	2369567	9662415
51	93	1	2369567	9663727
51	94	1	2369567	9665040
51	95	1	2369567	9666352
51	96	1	2369567	9667664
51	97	1	2369567	9668977
51	98	1	2369567	9670289
51	99	1	2369567	9671601
52	3	1	2370879	9544961
52	4	1	2370879	9546273
52	5	1	2370879	9547585
52	6	1	2370879	9548898
52	36	1	1	2370879

52	37	1	2370879	9589580
52	38	1	2370879	9590893
52	39	1	2370879	9592205
52	40	1	2370879	9593517
52	41	1	2370879	9594830
52	42	1	2370879	9596142
52	43	1	2370879	9597454
52	44	1	2370879	9598767
52	45	1	2370879	9600079
52	46	1	2370879	9601391
52	47	1	2370879	9602704
52	48	1	2370879	9604016
52	49	1	2370879	9605328
52	50	1	2370879	9606641
52	51	1	2370879	9607953
52	52	1	2370879	9609265
52	53	1	2370879	9610578
52	54	1	2370879	9611890
52	55	1	2370879	9613202
52	56	1	2370879	9614515
52	79	77	1	1

52	84	1	2370879	9651260
52	85	1	2370879	9652573
52	86	1	2370879	9653885
52	87	1	2370879	9655197
52	88	1	2370879	9656510
52	89	1	2370879	9657822
52	90	1	2370879	9659134
52	91	1	2370879	9660447
52	92	1	2370879	9661759
52	93	1	2370879	9663071
52	94	1	2370879	9664384
52	95	1	2370879	9665696
52	96	1	2370879	9667008
52	97	1	2370879	9668321
52	98	1	2370879	9669633
52	99	1	2370879	9670945
52	100	1	2370879	9672258
52	101	1	2370879	9673570
53	4	1	2372191	9546929
53	28	1	2372191	9548241
53	28	1	1	2372191

53	33	1	2372191	9584987
53	34	1	2372191	9586299
53	35	1	2372191	9587612
53	36	1	2372191	9588924
53	37	1	2372191	9590236
53	38	1	2372191	9591549
53	39	1	2372191	9592861
53	40	1	2372191	9594173
53	41	1	2372191	9595486
53	42	1	2372191	9596798
53	43	1	2372191	9598110
53	44	1	2372191	9599423
53	45	1	2372191	9600735
53	46	1	2372191	9602047
53	47	1	2372191	9603360
53	48	1	2372191	9604672
53	49	1	2372191	9605984
53	50	1	2372191	9607297
53	51	1	2372191	9608609
53	52	1	2372191	9609921
53	53	1	2372191	9611234
53	54	1	2372191	9612546
53	55	1	2372191	9613858
53	56	1	2372191	9615171
53	57	1	2372191	9616483
53	58	1	2372191	9617795
53	59	1	2372191	9619108
53	60	1	2372191	9620420
53	61	1	2372191	9621732
53	62	1	2372191	9623045
53	63	1	2372191	9624357
53	64	1	2372191	9625669
53	65	1	2372191	9626982
53	66	1	2372191	9628294
53	67	1	2372191	9629607
53	68	1	2372191	9630919
53	69	1	2372191	9632231
53	70	1	2372191	9633544
53	71	1	2372191	9634856
53	72	1	2372191	9636168
53	73	1	2372191	9637481
53	74	1	2372191	9638793
53	75	1	2372191	9640105
53	76	1	2372191	9641418
53	77	1	2372191	9642730
53	78	1	2372191	9644042
53	79	1	2372191	9645355
5				

53	80	1	2372191	9646667
53	81	1	2372191	9647979
53	82	1	2372191	9649292
53	83	1	2372191	9650604
53	84	1	2372191	9651916
53	85	1	2372191	9653229
53	86	1	2372191	9654541
53	87	1	2372191	9655853
53	88	1	2372191	9657166
53	89	1	2372191	9658478
53	90	1	2372191	9659790
53	91	1	2372191	9661103
53	92	1	2372191	9662415
53	93	1	2372191	9663727
53	94	1	2372191	9665040
53	95	1	2372191	9666352
53	96	1	2372191	9667664
53	97	1	2372191	9668977
53	98	1	2372191	9670289
53	99	1	2372191	9671601
53	100	1	2372191	9672914
53	101	1	2372191	9674226
54	59	1	2373504	9547585
54	24	18	1	1

54	30	1	2373504	9580394
54	31	1	2373504	9581706
54	32	1	2373504	9583019
54	33	1	2373504	9584331
54	34	1	2373504	9585643
54	35	1	2373504	9586956
54	36	1	2373504	9588268
54	37	1	2373504	9589580
54	38	1	2373504	9590893
54	39	1	2373504	9592205
54	40	1	2373504	9593517
54	41	1	2373504	9594830
54	42	1	2373504	9596142
54	43	1	2373504	9597454
54	44	1	2373504	9598767
54	45	1	2373504	9600079
54	46	1	2373504	9601391
54	47	1	2373504	9602704
54	48	1	2373504	9604016
54	49	1	2373504	9605328
54	50	1	2373504	9606641
54	51	1	2373504	9607953
54	54	10	1	1

54	77	1	2373504	9642074
54	78	1	2373504	9643386
54	79	1	2373504	9644699
54	80	1	2373504	9646011
54	81	1	2373504	9647323
54	82	1	2373504	9648636
54	83	1	2373504	9649948
54	84	1	2373504	9651260
54	85	1	2373504	9652573
54	86	1	2373504	9653885
54	87	1	2373504	9655197
54	88	1	2373504	9656510
54	89	1	2373504	9657822
54	90	1	2373504	9659134
54	91	1	2373504	9660447
54	92	1	2373504	9661759
54	93	1	2373504	9663071
54	94	1	2373504	9664384
54	95	1	2373504	9665696
54	96	1	2373504	9667008
54	97	1	2373504	9668321
54	98	1	2373504	9669633
54	99	1	2373504	9670945
54	100	1	2373504	9672258
54	101	1	2373504	9673570
55	24	16	1	1

55	28	1	2374816	9578425
55	29	1	2374816	9579738
55	30	1	2374816	9581050
55	31	1	2374816	9582362
55	32	1	2374816	9583675
55	33	1	2374816	9584987
55	34	1	2374816	9586299
55	35	1	2374816	9587612
55	36	1	2374816	9588924
55	37	1	2374816	9590236
55	38	1	2374816	9591549
55	39	1	2374816	9592861
55	40	1	2374816	9594173
55	41	1	2374816	9595486
55	42	1	2374816	9596798
55	43	1	2374816	9598110
55	44	1	2374816	9599423
55	45	1	2374816	9600735
55	46	1	2374816	9602047
55	47	1	2374816	9603360
55	43	48	1	2374816

55	75	1	2374816	9640105
55	76	1	2374816	9641418
55	77	1	2374816	9642730
55	78	1	2374816	9644042
55	79	1	2374816	9645355
55	80	1	2374816	9646667
55	81	1	2374816	9647979
55	82	1	2374816	9649292
55	83	1	2374816	9650604
55	84	1	2374816	9651916
55	85	1	2374816	9653229
55	86	1	2374816	9654541
55	87	1	2374816	9655853
55	88	1	2374816	9657166
55	89	1	2374816	9658478
55	90	1	2374816	9659790
55	91	1	2374816	9661103
55	92	1	2374816	9662415
55	93	1	2374816	9663727
55	94	1	2374816	9665040
55	95	1	2374816	9666352
55	96	1	2374816	9667664
55	97	1	2374816	9668977
55	98	1	2374816	9670289
55	99	1	2374816	9671601
56	7	1	2376128	9550210
56	8	1	2376128	9551522
56	9	1	2376128	9552835
56	10	1	2376128	9554147
56	11	1	2376128	9555459
56	12	1	2376128	9556772
56	13	1	2376128	9558084
56	14	1	2376128	9559396
56	15	1	2376128	9560709
56	16	1	2376128	9562021
56	17	1	2376128	9563333
56	18	1	2376128	9564646
56	19	1	2376128	9565958
56	20	1	2376128	9567270
56	21	1	2376128	9568583
56	22	1	2376128	9569895
56	23	1	2376128	9571207
56	24	1	2376128	9572520
56	25	1	2376128	9573832
56	26	1	2376128	9575145
56	27	1	2376128	9576457
56	28	1	2376128	9577769

56	29	1	2376128	9579082
56	30	1	2376128	9580394
56	31	1	2376128	9581706
56	32	1	2376128	9583019
56	33	1	2376128	9584331
56	34	1	2376128	9585643
56	35	1	2376128	9586956
56	36	1	2376128	9588268
56	37	1	2376128	9589580
56	38	1	2376128	9590893
56	39	1	2376128	9592205
56	40	1	2376128	9593517
56	41	1	2376128	9594830
56	42	1	2376128	9596142
56	43	1	2376128	9597454
56	44	1	2376128	9598767
56	45	1	2376128	9600079
56	46	1	2376128	9601391
56	47	1	2376128	9602704
56	78	1	1	2376128

56	76	1	2376128	9640762
56	77	1	2376128	9642074
56	78	1	2376128	9643386
56	79	1	2376128	9644699
56	80	1	2376128	9646011
56	81	1	2376128	9647323
56	82	1	2376128	9648636
56	83	1	2376128	9649948
56	84	1	2376128	9651260
56	85	1	2376128	9652573
56	86	1	2376128	9653885
56	87	1	2376128	9655197
56	88	1	2376128	9656510
56	89	1	2376128	9657822
56	90	1	2376128	9659134
56	91	1	2376128	9660447
56	92	1	2376128	9661759
56	93	1	2376128	9663071
56	94	1	2376128	9664384
56	95	1	2376128	9665696
56	96	1	2376128	9667008
56	97	1	2376128	9668321
57	27	26	1	1

57	31	1	2377441	9582362
57	32	1	2377441	9583675
57	33	1	2377441	9584987
57	34	1	2377441	9586299
57	35	1	2377441	9587612
57	36	1	2377441	9588924
57	37	1	2377441	9590236
57	38	1	2377441	9591549
57	39	1	2377441	9592861
57	40	1	2377441	9594173
57	41	1	2377441	9595486
57	42	1	2377441	9596798
57	43	1	2377441	9598110
57	44	1	2377441	9599423
57	45	1	2377441	9600735
57	46	1	2377441	9602047
57	47	1	2377441	9603360
57	78	1	1	2377441

57	78	1	2377441	9644042
57	79	1	2377441	9645355
57	80	1	2377441	9646667
57	81	1	2377441	9647979
57	82	1	2377441	9649292
57	83	1	2377441	9650604
57	84	1	2377441	9651916
57	85	1	2377441	9653229
57	86	1	2377441	9654541
57	87	1	2377441	9655853
57	88	1	2377441	9657166
57	89	1	2377441	9658478
57	90	1	2377441	9659790
57	91	1	2377441	9661103
57	92	1	2377441	9662415
57	93	1	2377441	9663727
57	94	1	2377441	9665040
57	95	1	2377441	9666352
57	96	1	2377441	9667664
57	97	1	2377441	9668977
58	9	29	1	2378753

58	36	1	2378753	9588268
58	37	1	2378753	9589580
58	38	1	2378753	9590893
58	39	1	2378753	9592205
58	40	1	2378753	9593517
58	41	1	2378753	9594830
58	42	1	2378753	9596142
58	43	1	2378753	9597454
58	44	1	2378753	9598767
58	45	1	2378753	9600079
58	46	1	2378753	9601391
58	47	1	2378753	9602704
58	48	1	2378753	9604016
58	49	1	2378753	9605328
58	50	1	2378753	9606641
58	51	1	2378753	9607953
58	52	1	2378753	9609265
58	53	1	2378753	9610578
58	54	1	2378753	9611890
58	55	1	2378753	9613202
58	56	1	2378753	9614515
58	57	1	2378753	9615827
58	58	1	2378753	9617139
58	59	1	2378753	9618452
58	60	1	2378753	9619764
58	61	1	2378753	9621076
58	62	1	2378753	9622389
58	63	1	2378753	9623701
58	64	1	2378753	9625013
58	65	1	2378753	9626326
58	66	1	2378753	9627638
58	67	1	2378753	9628950
58	68	1	2378753	9630263
58	69	1	2378753	9631575
58	70	1	2378753	9632887
58	71	1	2378753	9634200
58	72	1	2378753	9635512
58	73	1	2378753	9636824
58	74	1	2378753	9638137
58	75	1	2378753	9639449
58	76	1	2378753	9640762
58	77	1	2378753	9642074
58	78	1	2378753	9643386
58	79	1	2378753	9644699
58	80	1	2378753	9646011
58	81	1	2378753	9647323
58	82	1	2378753	9648636

$\left.\begin{array}{lllll}58 & 83 & 1 & 2378753 & 9649948 \\ 58 & 84 & 1 & 2378753 & 9651260 \\ 58 & 85 & 1 & 2378753 & 9652573 \\ 58 & 86 & 1 & 2378753 & 9653885 \\ 58 & 87 & 1 & 2378753 & 9655197 \\ 58 & 88 & 1 & 2378753 & 9656510 \\ 58 & 89 & 1 & 2378753 & 9657822 \\ 58 & 90 & 1 & 2378753 & 9659134 \\ 58 & 91 & 1 & 2378753 & 9660447 \\ 58 & 92 & 1 & 2378753 & 9661759 \\ 58 & 93 & 1 & 2378753 & 9663071 \\ 58 & 94 & 1 & 2378753 & 9664384 \\ 58 & 95 & 1 & 2378753 & 9665696 \\ 58 & 96 & 1 & 2378753 & 9667008 \\ 58 & 97 & 1 & 2378753 & 9668321 \\ 59 & 10 & 1 & 2380065 & 9554803 \\ 59 & 11 & 1 & 2380065 & 9556115 \\ 59 & 12 & 1 & 2380065 & 9557428 \\ 59 & 13 & 1 & 2380065 & 9558740 \\ 59 & 14 & 1 & 2380065 & 9560052 \\ 59 & 36 & 36 & 1 & 1\end{array}\right) 23800659561365$

59	42	1	2380065	9596798
59	43	1	2380065	9598110
59	44	1	2380065	9599423
59	45	1	2380065	9600735
59	46	1	2380065	9602047
59	47	1	2380065	9603360
59	48	1	2380065	9604672
59	49	1	2380065	9605984
59	50	1	2380065	9607297
59	51	1	2380065	9608609
59	52	1	2380065	9609921
59	53	1	2380065	9611234
59	54	1	2380065	9612546
59	55	1	2380065	9613858
59	56	1	2380065	9615171
59	57	1	2380065	9616483
59	58	1	2380065	9617795
59	59	1	2380065	9619108
59	60	1	2380065	9620420
59	64	78	1	2380065

59	89	1	2380065	9658478
59	90	1	2380065	9659790
59	91	1	2380065	9661103
59	92	1	2380065	9662415
59	93	1	2380065	9663727
59	94	1	2380065	9665040
59	95	1	2380065	9666352
60	11	1	2381378	9555459
60	12	1	2381378	9556772
60	13	1	2381378	9558084
60	14	1	2381378	9559396
60	15	1	2381378	9560709
60	16	1	2381378	9562021
60	17	1	2381378	9563333
60	18	1	2381378	9564646
60	19	1	2381378	9565958
60	20	1	2381378	9567270
60	21	1	2381378	9568583
60	22	1	2381378	9569895
60	23	1	2381378	9571207
60	24	1	2381378	9572520
60	25	1	2381378	9573832
60	49	19	1	1

$\left.\begin{array}{lllll}60 & 51 & 1 & 2381378 & 9607953 \\ 60 & 52 & 1 & 2381378 & 9609265 \\ 60 & 53 & 1 & 2381378 & 9610578 \\ 60 & 54 & 1 & 2381378 & 9611890 \\ 60 & 55 & 1 & 2381378 & 9613202 \\ 60 & 56 & 1 & 2381378 & 9614515 \\ 60 & 57 & 1 & 2381378 & 9615827 \\ 60 & 58 & 1 & 2381378 & 9617139 \\ 60 & 59 & 1 & 2381378 & 9618452 \\ 60 & 60 & 1 & 2381378 & 9619764 \\ 60 & 61 & 1 & 2381378 & 9621076 \\ 60 & 62 & 1 & 2381378 & 9622389 \\ 60 & 63 & 1 & 2381378 & 9623701 \\ 60 & 64 & 1 & 2381378 & 9625013 \\ 60 & 65 & 1 & 2381378 & 9626326 \\ 60 & 66 & 1 & 2381378 & 9627638 \\ 60 & 67 & 1 & 2381378 & 9628950 \\ 60 & 68 & 1 & 2381378 & 9630263 \\ 60 & 69 & 1 & 2381378 & 9631575 \\ 60 & 70 & 1 & 2381378 & 9632887 \\ 60 & 71 & 1 & 2381378 & 9634200 \\ 60 & 72 & 1 & 2381378 & 9635512 \\ 60 & 73 & 12 & 1 & 2382690\end{array} 99558740\right\}$

61	14	1	2382690	9560052
61	15	1	2382690	9561365
61	16	1	2382690	9562677
61	17	1	2382690	9563990
61	18	1	2382690	9565302
61	19	1	2382690	9566614
61	20	1	2382690	9567927
61	21	1	2382690	9569239
61	22	1	2382690	9570551
61	23	1	2382690	9571864
61	24	1	2382690	9573176
61	25	1	2382690	9574488
61	26	1	2382690	9575801
61	27	1	2382690	9577113
61	28	1	2382690	9578425
61	29	1	2382690	9579738
61	30	1	2382690	9581050
61	31	1	2382690	9582362
61	32	1	2382690	9583675
61	33	1	2382690	9584987
61	34	1	2382690	9586299
61	35	1	2382690	9587612
61	53	36	1	2382690

61	61	1	2382690	9621732
61	62	1	2382690	9623045
61	63	1	2382690	9624357
61	64	1	2382690	9625669
61	65	1	2382690	9626982
61	66	1	2382690	9628294
61	67	1	2382690	9629607
61	68	1	2382690	9630919
61	69	1	2382690	9632231
61	70	1	2382690	9633544
61	71	1	2382690	9634856
61	72	1	2382690	9636168
61	73	1	2382690	9637481
61	74	1	2382690	9638793
61	75	1	2382690	9640105
61	76	1	2382690	9641418
61	77	1	2382690	9642730
61	78	1	2382690	9644042
61	79	1	2382690	9645355
61	80	1	2382690	9646667
61	81	1	2382690	9647979
61	82	1	2382690	9649292
61	83	1	2382690	9650604
61	84	1	2382690	9651916
61	85	1	2382690	9653229
61	86	1	2382690	9654541
61	87	1	2382690	9655853
61	88	1	2382690	9657166
61	89	1	2382690	9658478
61	90	1	2382690	9659790
61	91	1	2382690	9661103
61	92	1	2382690	9662415
61	93	1	2382690	9663727
62	13	1	2384002	9558084
62	14	1	2384002	9559396
62	15	1	2384002	9560709
62	16	1	2384002	9562021
62	17	1	2384002	9563333
62	18	1	2384002	9564646
62	19	1	2384002	9565958
62	20	1	2384002	9567270
62	21	1	2384002	9568583
62	22	1	2384002	9569895
62	23	1	2384002	9571207
62	24	1	2384002	9572520
62	25	1	2384002	9573832
62	26	1	2384002	9575145

62	27	1	2384002	9576457
62	28	1	2384002	9577769
62	29	1	2384002	9579082
62	30	1	2384002	9580394
62	31	1	2384002	9581706
62	32	1	2384002	9583019
62	33	1	2384002	9584331
62	34	1	2384002	9585643
62	35	1	2384002	9586956
62	36	1	2384002	9588268
62	37	1	2384002	9589580
62	38	1	2384002	9590893
62	39	1	2384002	9592205
62	40	1	2384002	9593517
62	41	1	2384002	9594830
62	42	1	2384002	9596142
62	43	1	2384002	9597454
62	44	1	2384002	9598767
62	45	1	2384002	9600079
62	46	1	2384002	9601391
62	47	1	1	2384002

62	74	1	2384002	9638137
62	75	1	2384002	9639449
62	76	1	2384002	9640762
62	77	1	2384002	9642074
62	78	1	2384002	9643386
62	79	1	2384002	9644699
62	80	1	2384002	9646011
62	81	1	2384002	9647323
62	82	1	2384002	9648636
62	83	1	2384002	9649948
62	84	1	2384002	9651260
62	85	1	2384002	9652573
62	86	1	2384002	9653885
62	87	1	2384002	9655197
62	88	1	2384002	9656510
62	89	1	2384002	9657822
62	90	1	2384002	9659134
62	91	1	2384002	9660447
62	92	1	2384002	9661759
62	93	1	2384002	9663071
63	14	1	2385315	9560052
63	35	15	1	2385315

63	41	1	2385315	9595486
63	42	1	2385315	9596798
63	43	1	2385315	9598110
63	44	1	2385315	9599423
63	45	1	2385315	9600735
63	46	1	2385315	9602047
63	47	1	2385315	9603360
63	48	1	2385315	9604672
63	49	1	2385315	9605984
63	50	1	2385315	9607297
63	51	1	2385315	9608609
63	52	1	2385315	9609921
63	53	1	2385315	9611234
63	54	1	2385315	9612546
63	55	1	2385315	9613858
63	56	1	2385315	9615171
63	57	1	2385315	9616483
63	58	1	2385315	9617795
63	59	1	2385315	9619108
63	60	1	2385315	9620420
63	61	1	2385315	9621732
63	62	76	1	2385315

63	88	1	2385315	9657166
63	89	1	2385315	9658478
63	90	1	2385315	9659790
63	91	1	2385315	9661103
64	15	1	2386627	9560709
64	16	1	2386627	9562021
64	17	1	2386627	9563333
64	18	1	2386627	9564646
64	19	1	2386627	9565958
64	20	1	2386627	9567270
64	21	1	2386627	9568583
64	22	1	2386627	9569895
64	23	1	2386627	9571207
64	24	1	2386627	9572520
64	25	1	2386627	9573832
64	26	1	2386627	9575145
64	27	1	2386627	9576457
64	28	1	2386627	9577769
64	29	1	2386627	9579082
64	30	1	2386627	9580394
64	31	1	2386627	9581706
64	32	1	2386627	9583019
64	33	1	2386627	9584331
64	34	1	2386627	9585643
64	35	1	2386627	9586956
64	49	1	1	2386627

64	58	1	2386627	9617139
64	59	1	2386627	9618452
64	60	1	2386627	9619764
64	61	1	2386627	9621076
64	62	1	2386627	9622389
64	63	1	2386627	9623701
64	64	1	2386627	9625013
64	65	1	2386627	9626326
64	66	1	2386627	9627638
64	67	1	2386627	9628950
64	68	1	2386627	9630263
64	69	1	2386627	9631575
64	70	1	2386627	9632887
64	71	1	2386627	9634200
64	72	1	2386627	9635512
64	73	1	2386627	9636824
64	74	1	2386627	9638137
64	75	1	2386627	9639449
64	76	1	2386627	9640762
64	77	1	2386627	9642074
64	78	1	2386627	9643386
64	79	1	2386627	9644699
64	80	1	2386627	9646011
64	81	1	2386627	9647323
64	82	1	2386627	9648636
64	83	1	2386627	9649948
64	84	1	2386627	9651260
64	85	1	2386627	9652573
64	86	1	2386627	9653885
64	87	1	2386627	9655197
64	88	1	2386627	9656510
64	89	1	2386627	9657822
64	90	1	2386627	9659134
64	91	1	2386627	9660447
65	16	1	2387939	9562677
65	17	1	2387939	9563990
65	18	1	2387939	9565302
65	19	1	2387939	9566614
65	20	1	2387939	9567927
65	21	1	2387939	9569239
65	22	1	2387939	9570551
65	23	1	2387939	9571864
65	24	1	2387939	9573176
65	25	1	2387939	9574488
65	26	1	2387939	9575801
65	27	1	2387939	9577113
65	28	1	2387939	9578425

65	29	1	2387939	9579738
65	30	1	2387939	9581050
65	31	1	2387939	9582362
65	32	1	2387939	9583675
65	33	1	2387939	9584987
65	34	1	2387939	9586299
65	35	1	2387939	9587612
65	36	1	2387939	9588924
65	37	1	2387939	9590236
65	38	1	2387939	9591549
65	39	1	2387939	9592861
65	40	1	2387939	9594173
65	41	1	2387939	9595486
65	42	1	2387939	9596798
65	43	1	2387939	9598110
65	44	1	2387939	9599423
65	45	1	2387939	9600735
65	46	1	2387939	9602047
65	47	1	2387939	9603360
65	78	1	2387939	9604672
65	43	1	1	2387939

65	76	1	2387939	9641418
65	77	1	2387939	9642730
65	78	1	2387939	9644042
65	79	1	2387939	9645355
65	80	1	2387939	9646667
65	81	1	2387939	9647979
65	82	1	2387939	9649292
65	83	1	2387939	9650604
65	84	1	2387939	9651916
65	85	1	2387939	9653229
65	86	1	2387939	9654541
65	87	1	2387939	9655853
65	88	1	2387939	9657166
65	89	1	2387939	9658478
66	17	1	2389252	9563333
66	18	1	2389252	9564646
66	19	1	2389252	9565958
66	20	1	2389252	9567270
66	21	1	2389252	9568583
66	22	1	2389252	9569895
66	23	1	2389252	9571207
66	24	1	2389252	9572520
66	25	1	2389252	9573832
66	26	1	2389252	9575145
66	49	1	1	2389252

66	50	1	2389252	9606641
66	51	1	2389252	9607953
66	52	1	2389252	9609265
66	53	1	2389252	9610578
66	54	1	2389252	9611890
66	55	1	2389252	9613202
66	56	1	2389252	9614515
66	57	1	2389252	9615827
66	58	1	2389252	9617139
66	59	1	2389252	9618452
66	60	1	2389252	9619764
66	61	1	2389252	9621076
66	62	1	2389252	9622389
66	63	1	2389252	9623701
66	64	1	2389252	9625013
66	65	1	2389252	9626326
66	66	1	2389252	9627638
66	67	1	2389252	9628950
66	68	1	2389252	9630263
66	69	1	2389252	9631575
66	70	1	2389252	9632887
66	71	1	2389252	9634200
67	23	18	1	1

67	25	1	2390564	9574488
67	26	1	2390564	9575801
67	27	1	2390564	9577113
67	28	1	2390564	9578425
67	29	1	2390564	9579738
67	30	1	2390564	9581050
67	31	1	2390564	9582362
67	32	1	2390564	9583675
67	33	1	2390564	9584987
67	34	1	2390564	9586299
67	35	1	2390564	9587612
67	36	1	2390564	9588924
67	37	1	2390564	9590236
67	38	1	2390564	9591549
67	39	1	2390564	9592861
67	40	1	2390564	9594173
67	41	1	2390564	9595486
67	42	1	2390564	9596798
67	43	1	2390564	9598110
67	44	1	2390564	9599423
67	65	1	1	2390564

67	72	1	2390564	9636168
67	73	1	2390564	9637481
67	74	1	2390564	9638793
67	75	1	2390564	9640105
67	76	1	2390564	9641418
67	77	1	2390564	9642730
67	78	1	2390564	9644042
67	79	1	2390564	9645355
67	80	1	2390564	9646667
67	81	1	2390564	9647979
67	82	1	2390564	9649292
67	83	1	2390564	9650604
67	84	1	2390564	9651916
67	85	1	2390564	9653229
67	86	1	2390564	9654541
67	87	1	2390564	9655853
68	19	1	2391876	9565958
68	20	1	2391876	9567270
68	21	1	2391876	9568583
68	22	1	2391876	9569895
68	23	1	2391876	9571207
68	24	1	2391876	9572520
68	25	1	2391876	9573832
68	26	1	2391876	9575145
68	27	1	2391876	9576457
68	28	1	2391876	9577769
68	29	1	2391876	9579082
68	30	1	2391876	9580394
68	31	1	2391876	9581706
68	32	1	2391876	9583019
68	33	1	2391876	9584331
68	34	1	2391876	9585643
68	35	1	2391876	9586956
68	36	1	2391876	9588268
68	37	1	2391876	9589580
68	38	1	2391876	9590893
68	39	1	2391876	9592205
68	40	1	2391876	9593517
68	41	1	2391876	9594830
68	42	1	2391876	9596142
68	43	1	2391876	9597454
68	44	1	2391876	9598767
68	45	1	2391876	9600079
68	46	1	2391876	9601391
68	47	1	2391876	9602704
68	48	1	2391876	9604016
68	49	1	2391876	9605328

68	50	1	2391876	9606641
68	51	1	2391876	9607953
68	52	1	2391876	9609265
68	53	1	2391876	9610578
68	54	1	2391876	9611890
68	55	1	2391876	9613202
68	56	1	2391876	9614515
68	57	1	2391876	9615827
68	58	1	2391876	9617139
68	59	1	2391876	9618452
68	60	1	2391876	9619764
68	61	1	2391876	9621076
68	62	1	2391876	9622389
68	63	1	2391876	9623701
68	64	1	2391876	9625013
68	65	1	2391876	9626326
68	66	1	2391876	9627638
68	67	1	2391876	9628950
68	68	1	2391876	9630263
68	69	1	2391876	9631575
68	70	1	2391876	9632887
68	71	1	2391876	9634200
68	28	27	1	1

69	29	1	2393189	9579738
69	30	1	2393189	9581050
69	31	1	2393189	9582362
69	32	1	2393189	9583675
69	33	1	2393189	9584987
69	34	1	2393189	9586299
69	35	1	2393189	9587612
69	36	1	2393189	9588924
69	37	1	2393189	9590236
69	38	1	2393189	9591549
69	39	1	2393189	9592861
69	40	1	2393189	9594173
69	41	1	2393189	9595486
69	42	1	2393189	9596798
69	43	1	2393189	9598110
69	44	1	2393189	9599423
69	45	1	2393189	9600735
69	46	1	2393189	9602047
69	47	1	2393189	9603360
69	75	1	1	2393189

69	76	1	2393189	9641418
69	77	1	2393189	9642730
69	78	1	2393189	9644042
69	79	1	2393189	9645355
69	80	1	2393189	9646667
69	81	1	2393189	9647979
69	82	1	2393189	9649292
69	83	1	2393189	9650604
69	84	1	2393189	9651916
69	85	1	2393189	9653229
70	21	1	2394501	9568583
70	22	1	2394501	9569895
70	23	1	2394501	9571207
70	24	1	2394501	9572520
70	25	1	2394501	9573832
70	26	1	2394501	9575145
70	27	1	2394501	9576457
70	28	1	2394501	9577769
70	29	1	2394501	9579082
70	30	1	2394501	9580394
70	34	1	1	2394501

$\left.\begin{array}{lllll}70 & 58 & 1 & 2394501 & 9617139 \\ 70 & 59 & 1 & 2394501 & 9618452 \\ 70 & 60 & 1 & 2394501 & 9619764 \\ 70 & 61 & 1 & 2394501 & 9621076 \\ 70 & 62 & 1 & 2394501 & 9622389 \\ 70 & 63 & 1 & 2394501 & 9623701 \\ 70 & 64 & 1 & 2394501 & 9625013 \\ 70 & 65 & 1 & 2394501 & 9626326 \\ 70 & 66 & 1 & 2394501 & 9627638 \\ 70 & 67 & 1 & 2394501 & 9628950 \\ 70 & 68 & 1 & 2394501 & 9630263 \\ 70 & 69 & 1 & 2394501 & 9631575 \\ 70 & 70 & 1 & 2394501 & 9632887 \\ 70 & 71 & 1 & 2394501 & 9634200 \\ 70 & 72 & 1 & 2394501 & 9635512 \\ 70 & 73 & 1 & 2394501 & 9636824 \\ 70 & 74 & 1 & 2394501 & 9638137 \\ 70 & 75 & 1 & 2394501 & 9639449 \\ 70 & 76 & 1 & 2394501 & 9640762 \\ 70 & 77 & 1 & 2394501 & 9642074 \\ 70 & 36 & 37 & 1 & 1\end{array}\right) 239450199643386$

71	41	1	2395813	9595486
71	42	1	2395813	9596798
71	43	1	2395813	9598110
71	44	1	2395813	9599423
71	45	1	2395813	9600735
71	46	1	2395813	9602047
71	47	1	2395813	9603360
71	48	1	2395813	9604672
71	49	1	2395813	9605984
71	50	1	2395813	9607297
71	51	1	2395813	9608609
71	52	1	2395813	9609921
71	53	1	2395813	9611234
71	54	1	2395813	9612546
71	55	1	2395813	9613858
71	56	1	2395813	9615171
71	57	1	2395813	9616483
71	58	1	2395813	9617795
71	59	1	2395813	9619108
71	60	1	2395813	9620420
71	63	76	1	1

72	27	1	2397126	9576457
72	28	1	2397126	9577769
72	29	1	2397126	9579082
72	30	1	2397126	9580394
72	31	1	2397126	9581706
72	32	1	2397126	9583019
72	33	1	2397126	9584331
72	34	1	2397126	9585643
72	35	1	2397126	9586956
72	36	1	2397126	9588268
72	37	1	2397126	9589580
72	38	1	2397126	9590893
72	39	1	2397126	9592205
72	40	1	2397126	9593517
72	41	1	2397126	9594830
72	42	1	2397126	9596142
72	43	1	2397126	9597454
72	44	1	2397126	9598767
72	45	1	2397126	9600079
72	70	46	1	2397126

72	74	1	2397126	9638137		
72	75	1	2397126	9639449		
72	76	1	2397126	9640762		
72	77	1	2397126	9642074		
72	78	1	2397126	9643386		
72	79	1	2397126	9644699		
72	80	1	2397126	9646011		
72	81	1	2397126	9647323		
72	82	1	2397126	9648636		
72	83	1	2397126	9649948		
73	24	1	2398438	9573176		
73	25	1	2398438	9574488		
73	26	1	2398438	9575801		
73	27	1	2398438	9577113		
73	28	1	2398438	9578425		
73	29	1	2398438	9579738		
73	30	1	2398438	9581050		
73	31	1	2398438	9582362		
73	32	1	2398438	9583675		
73	33	1	2398438	9584987		
73	54	54	1	2398438	99586299	73
:---						
73						

73	61	1	2398438	9621732
73	62	1	2398438	9623045
73	63	1	2398438	9624357
73	64	1	2398438	9625669
73	65	1	2398438	9626982
73	66	1	2398438	9628294
73	67	1	2398438	9629607
73	68	1	2398438	9630919
73	69	1	2398438	9632231
73	70	1	2398438	9633544
73	71	1	2398438	9634856
73	72	1	2398438	9636168
73	73	1	2398438	9637481
73	74	1	2398438	9638793
73	75	1	2398438	9640105
73	76	1	2398438	9641418
73	77	1	2398438	9642730
73	78	1	2398438	9644042
73	79	1	2398438	9645355
73	80	1	2398438	9646667
73	81	1	2398438	9647979
74	25	1	2399750	9573832
74	47	1	1	1

74	51	1	2399750	9607953
74	52	1	2399750	9609265
74	53	1	2399750	9610578
74	54	1	2399750	9611890
74	55	1	2399750	9613202
74	56	1	2399750	9614515
74	57	1	2399750	9615827
74	58	1	2399750	9617139
74	59	1	2399750	9618452
74	60	1	2399750	9619764
74	61	1	2399750	9621076
74	62	1	2399750	9622389
74	63	1	2399750	9623701
74	64	1	2399750	9625013
74	65	1	2399750	9626326
74	66	1	2399750	9627638
74	67	1	2399750	9628950
74	68	1	2399750	9630263
74	69	1	2399750	9631575
74	70	1	2399750	9632887
74	71	1	2399750	9634200
74	72	1	2399750	9635512
74	73	1	2399750	9636824
74	74	1	1	2401063

75	42	1	2401063	9596798
75	43	1	2401063	9598110
75	44	1	2401063	9599423
75	45	1	2401063	9600735
75	46	1	2401063	9602047
75	47	1	2401063	9603360
75	48	1	2401063	9604672
75	49	1	2401063	9605984
75	50	1	2401063	9607297
75	51	1	2401063	9608609
75	52	1	2401063	9609921
75	53	1	2401063	9611234
75	54	1	2401063	9612546
75	55	1	2401063	9613858
75	56	1	2401063	9615171
75	57	1	2401063	9616483
75	58	1	2401063	9617795
75	59	1	2401063	9619108
75	60	1	2401063	9620420
75	61	1	2401063	9621732
75	62	1	2401063	9623045
75	63	1	2401063	9624357
75	64	1	2401063	9625669
75	76	76	1	1

76	36	1	2402375	9588268
76	37	1	2402375	9589580
76	38	1	2402375	9590893
76	39	1	2402375	9592205
76	40	1	2402375	9593517
76	41	1	2402375	9594830
76	42	1	2402375	9596142
76	43	1	2402375	9597454
76	44	1	2402375	9598767
76	45	1	2402375	9600079
76	46	1	2402375	9601391
76	47	1	2402375	9602704
76	48	1	2402375	9604016
76	49	1	2402375	9605328
76	50	1	2402375	9606641
76	51	1	2402375	9607953
76	52	1	2402375	9609265
76	53	1	2402375	9610578
76	54	1	2402375	9611890
76	55	1	2402375	9613202
76	56	1	2402375	9614515
76	57	1	2402375	9615827
76	58	1	2402375	9617139
76	59	1	2402375	9618452
76	60	1	2402375	9619764
76	61	1	2402375	9621076
76	62	1	2402375	9622389
76	63	1	2402375	9623701
76	64	1	2402375	9625013
76	65	1	2402375	9626326
76	66	1	2402375	9627638
76	67	1	2402375	9628950
76	68	1	2402375	9630263
76	69	1	2402375	9631575
76	70	1	2402375	9632887
76	71	1	2402375	9634200
76	72	1	2402375	9635512
76	73	1	2402375	9636824
76	74	1	2402375	9638137
76	75	1	2402375	9639449
76	76	1	2402375	9640762
76	77	1	2402375	9642074
76	78	1	2402375	9643386
76	79	1	2402375	9644699
77	28	1	2403687	9578425
77	29	1	2403687	9579738
77	30	1	2403687	9581050

77	31	1	2403687	9582362
77	32	1	2403687	9583675
77	33	1	2403687	9584987
77	34	1	2403687	9586299
77	35	1	2403687	9587612
77	36	1	2403687	9588924
77	37	1	2403687	9590236
77	38	1	2403687	9591549
77	39	1	2403687	9592861
77	40	1	2403687	9594173
77	41	1	2403687	9595486
77	42	1	2403687	9596798
77	43	1	2403687	9598110
77	44	1	2403687	9599423
77	45	1	2403687	9600735
77	46	1	2403687	9602047
77	47	1	2403687	9603360
77	74	1	1	2403687

78	29	1	2405000	9579082
78	30	1	2405000	9580394
78	31	1	2405000	9581706
78	32	1	2405000	9583019
78	33	1	2405000	9584331
78	34	1	2405000	9585643
78	35	1	2405000	9586956
78	36	1	2405000	9588268
78	37	1	2405000	9589580
78	38	1	2405000	9590893
78	39	1	2405000	9592205
78	40	1	2405000	9593517
78	41	1	2405000	9594830
78	42	1	2405000	9596142
78	43	1	2405000	9597454
78	44	1	2405000	9598767
78	45	1	2405000	9600079
78	46	1	2405000	9601391
78	77	1	1	2405000

$\left.\begin{array}{lllll}78 & 76 & 1 & 2405000 & 9640762 \\ 78 & 77 & 1 & 2405000 & 9642074 \\ 79 & 30 & 1 & 2406312 & 9581050 \\ 79 & 31 & 1 & 2406312 & 9582362 \\ 79 & 32 & 1 & 2406312 & 9583675 \\ 79 & 33 & 1 & 2406312 & 9584987 \\ 79 & 34 & 1 & 2406312 & 9586299 \\ 79 & 35 & 1 & 2406312 & 9587612 \\ 79 & 36 & 1 & 2406312 & 9588924 \\ 79 & 37 & 1 & 2406312 & 9590236 \\ 79 & 38 & 1 & 2406312 & 9591549 \\ 79 & 39 & 1 & 2406312 & 9592861 \\ 79 & 40 & 1 & 2406312 & 9594173 \\ 79 & 41 & 1 & 2406312 & 9595486 \\ 79 & 42 & 1 & 2406312 & 9596798 \\ 79 & 43 & 1 & 2406312 & 9598110 \\ 79 & 44 & 1 & 2406312 & 9599423 \\ 79 & 45 & 1 & 2406312 & 9600735 \\ 79 & 76 & 1 & 2406312 & 9602047 \\ 79 & 70 & 47 & 1 & 2406312\end{array} 99603360\right\}$

79	75	1	2406312	9640105
80	31	1	2407624	9581706
80	32	1	2407624	9583019
80	33	1	2407624	9584331
80	34	1	2407624	9585643
80	35	1	2407624	9586956
80	36	1	2407624	9588268
80	37	1	2407624	9589580
80	38	1	2407624	9590893
80	39	1	2407624	9592205
80	40	1	2407624	9593517
80	41	1	2407624	9594830
80	42	1	2407624	9596142
80	43	1	2407624	9597454
80	44	1	2407624	9598767
80	45	1	2407624	9600079
80	46	1	2407624	9601391
80	47	1	2407624	9602704
80	78	1	2407624	9604016
80	73	49	1	2407624

81	33	1	2408937	9584987
81	34	1	2408937	9586299
81	35	1	2408937	9587612
81	36	1	2408937	9588924
81	37	1	2408937	9590236
81	38	1	2408937	9591549
81	39	1	2408937	9592861
81	40	1	2408937	9594173
81	41	1	2408937	9595486
81	42	1	2408937	9596798
81	43	1	2408937	9598110
81	44	1	2408937	9599423
81	45	1	2408937	9600735
81	46	1	2408937	9602047
81	47	1	2408937	9603360
81	48	1	2408937	9604672
81	49	1	2408937	9605984
81	50	1	2408937	9607297
81	51	1	2408937	9608609
81	52	1	2408937	9609921
81	53	1	2408937	9611234
81	54	1	2408937	9612546
81	55	1	2408937	9613858
81	56	1	2408937	9615171
81	57	1	2408937	9616483
81	58	1	2408937	9617795
81	59	1	2408937	9619108
81	60	1	2408937	9620420
81	61	1	2408937	9621732
81	62	1	2408937	9623045
81	63	1	2408937	9624357
81	64	1	2408937	9625669
81	65	1	2408937	9626982
81	66	1	2408937	9628294
81	67	1	2408937	9629607
81	68	1	2408937	9630919
81	69	1	2408937	9632231
81	70	1	2408937	9633544
81	71	1	2408937	9634856
81	72	1	2408937	9636168
81	73	1	2408937	9637481
82	33	1	2410249	9584331
82	34	1	2410249	9585643
82	35	1	2410249	9586956
82	36	1	2410249	9588268
82	37	1	2410249	9589580
82	38	1	2410249	9590893

82	39	1	2410249	9592205
82	40	1	2410249	9593517
82	41	1	2410249	9594830
82	42	1	2410249	9596142
82	43	1	2410249	9597454
82	44	1	2410249	9598767
82	45	1	2410249	9600079
82	46	1	2410249	9601391
82	47	1	2410249	9602704
82	48	1	2410249	9604016
82	49	1	2410249	9605328
82	50	1	2410249	9606641
82	51	1	2410249	9607953
82	52	1	2410249	9609265
82	53	1	2410249	9610578
82	54	1	2410249	9611890
82	55	1	2410249	9613202
82	56	1	2410249	9614515
82	57	1	2410249	9615827
82	58	1	2410249	9617139
82	59	1	2410249	9618452
82	60	1	2410249	9619764
82	39	73	1	1
83	34	1	2410249	9621076
82	62	1	2410249	9622389
82	63	1	2410249	9623701
83	64	1	24	241561

83	46	1	2411561	9602047
83	47	1	2411561	9603360
83	48	1	2411561	9604672
83	49	1	2411561	9605984
83	50	1	2411561	9607297
83	51	1	2411561	9608609
83	52	1	2411561	9609921
83	53	1	2411561	9611234
83	54	1	2411561	9612546
83	55	1	2411561	9613858
83	56	1	2411561	9615171
83	57	1	2411561	9616483
83	58	1	2411561	9617795
83	59	1	2411561	9619108
83	60	1	2411561	9620420
83	61	1	2411561	9621732
83	62	1	2411561	9623045
83	63	1	2411561	9624357
83	64	1	2411561	9625669
83	65	1	2411561	9626982
83	66	1	2411561	9628294
83	67	1	2411561	9629607
83	68	1	1	2411561

84	56	1	2412874	9614515
84	57	1	2412874	9615827
84	58	1	2412874	9617139
84	59	1	2412874	9618452
84	60	1	2412874	9619764
84	61	1	2412874	9621076
84	62	1	2412874	9622389
84	63	1	2412874	9623701
84	64	1	2412874	9625013
84	65	1	2412874	9626326
84	66	1	2412874	9627638
84	67	1	2412874	9628950
84	68	1	2412874	9630263
84	69	1	2412874	9631575
84	70	1	2412874	9632887
84	71	1	2412874	9634200
85	36	1	2414186	9588924
85	37	1	2414186	9590236
85	38	1	2414186	9591549
85	39	1	2414186	9592861
85	40	1	2414186	9594173
85	41	1	2414186	9595486
85	42	1	2414186	9596798
85	43	1	2414186	9598110
85	44	1	2414186	9599423
85	45	1	2414186	9600735
85	46	1	2414186	9602047
85	47	1	2414186	9603360
85	48	1	2414186	9604672
85	49	1	2414186	9605984
85	50	1	2414186	9607297
85	51	1	2414186	9608609
85	52	1	2414186	9609921
85	53	1	2414186	9611234
85	54	1	2414186	9612546
85	55	1	2414186	9613858
85	56	1	2414186	9615171
85	57	1	2414186	9616483
85	58	1	2414186	9617795
85	59	1	2414186	9619108
85	60	1	2414186	9620420
85	61	1	2414186	9621732
85	62	1	2414186	9623045
85	63	1	2414186	9624357
85	64	1	2414186	9625669
85	65	1	2414186	9626982
85	66	1	2414186	9628294

85	67	1	2414186	9629607
85	68	1	2414186	9630919
85	69	1	2414186	9632231
86	37	1	2415498	9589580
86	38	1	2415498	9590893
86	39	1	2415498	9592205
86	40	1	2415498	9593517
86	41	1	2415498	9594830
86	42	1	2415498	9596142
86	43	1	2415498	9597454
86	44	1	2415498	9598767
86	45	1	2415498	9600079
86	46	1	2415498	9601391
86	47	1	2415498	9602704
86	48	1	2415498	9604016
86	49	1	2415498	9605328
86	50	1	2415498	9606641
86	51	1	2415498	9607953
86	52	1	2415498	9609265
86	53	1	2415498	9610578
86	54	1	2415498	9611890
86	55	1	2415498	9613202
86	43	43	1	1
86	43	1	2415498	9614515
87	49	1	2416811	9604672
87	57	1	1	2416811

87	49	1	2416811	9605984		
87	50	1	2416811	9607297		
87	51	1	2416811	9608609		
87	52	1	2416811	9609921		
87	53	1	2416811	9611234		
87	54	1	2416811	9612546		
87	55	1	2416811	9613858		
87	56	1	2416811	9615171		
87	57	1	2416811	9616483		
87	58	1	2416811	9617795		
87	59	1	2416811	9619108		
87	60	1	2416811	9620420		
87	61	1	2416811	9621732		
87	62	1	2416811	9623045		
87	63	1	2416811	9624357		
87	64	1	2416811	9625669		
87	65	1	2416811	9626982		
87	66	1	2416811	9628294		
87	67	1	2416811	9629607		
88	39	1	2418123	9592205		
88	63	50	1	2418123	99593517	96
:---						
88						

88	67	1	2418123	9628950
89	40	1	2419435	9594173
89	41	1	2419435	9595486
89	42	1	2419435	9596798
89	43	1	2419435	9598110
89	44	1	2419435	9599423
89	45	1	2419435	9600735
89	46	1	2419435	9602047
89	47	1	2419435	9603360
89	48	1	2419435	9604672
89	49	1	2419435	9605984
89	50	1	2419435	9607297
89	51	1	2419435	9608609
89	52	1	2419435	9609921
89	53	1	2419435	9611234
89	54	1	2419435	9612546
89	55	1	2419435	9613858
89	56	1	2419435	9615171
89	57	1	2419435	9616483
89	58	1	2419435	9617795
89	59	1	2419435	9619108
90	57	53	1	1

90	61	1	2420748	9621076
90	62	1	2420748	9622389
90	63	1	2420748	9623701
90	64	1	2420748	9625013
90	65	1	2420748	9626326
91	42	1	2422060	9596798
91	43	1	2422060	9598110
91	44	1	2422060	9599423
91	45	1	2422060	9600735
91	46	1	2422060	9602047
91	47	1	2422060	9603360
91	48	1	2422060	9604672
91	49	1	2422060	9605984
91	50	1	2422060	9607297
91	51	1	2422060	9608609
91	52	1	2422060	9609921
91	53	1	2422060	9611234
91	54	1	2422060	9612546
91	55	1	2422060	9613858
91	56	56	1	1

92	63	1	2423372	9623701
93	44	1	2424685	9599423
93	45	1	2424685	9600735
93	46	1	2424685	9602047
93	47	1	2424685	9603360
93	48	1	2424685	9604672
93	49	1	2424685	9605984
93	50	1	2424685	9607297
93	51	1	2424685	9608609
93	52	1	2424685	9609921
93	53	1	2424685	9611234
93	54	1	2424685	9612546
93	55	1	2424685	9613858
93	56	1	2424685	9615171
93	57	1	2424685	9616483
93	58	1	2424685	9617795
93	59	1	2424685	9619108
93	60	1	2424685	9620420
93	61	1	2424685	9621732
94	55	1	2425997	9600079
94	56	1	2425997	9601391
94	50	47	1	1

95	57	1	2427309	9616483
95	58	1	2427309	9617795
95	59	1	2427309	9619108
96	47	1	2428622	9602704
96	48	1	2428622	9604016
96	49	1	2428622	9605328
96	50	1	2428622	9606641
96	51	1	2428622	9607953
96	52	1	2428622	9609265
96	53	1	2428622	9610578
96	54	1	2428622	9611890
96	55	1	2428622	9613202
96	56	1	2428622	9614515
96	57	1	2428622	9615827
96	58	1	2428622	9617139
96	59	1	2428622	9618452
97	48	1	2429934	9604672
97	49	1	2429934	9605984
97	50	1	2429934	9607297
97	51	1	2429934	9608609
99	53	53	53	1

101	53	1	2435184	9611234
102	53	1	2436496	9610578

UNITED STATES
 DEPARTMENT OF THE INTERIOR BUREAU OF OCEAN ENERGY MANAGEMENT

Gulf of Mexico OCS Region

Insert Appropriate RegionalOffice

PERMIT FOR GEOPHYSICAL EXPLORATION FOR MINERAL RESOURCES OR SCIENTIFIC RESEARCH ON THE OUTER CONTINENTAL SHELF

In consideration of the terms and conditions contained herein and the authorization granted hereby, this permit is entered into by and between the United States of America the Government), acting through the Bureau of Ocean Energy Management (BOEM of the Department of the Interior, and

Shell Offshore Inc.
(Name of Permittee)
701 Poydras, Suite 2418
Number and Street)
New Orleans, LA 70139
City, State, and ZipCode
PERMITNUMBER: L22-001 DATE: 31-Jan-2022

This permit is issued pursuant to the authority of the Outer Continental Shelf Lands Act, as amended (43 U.S.C. 1331 et seq. , hereinafter called the "Act," and Title 30 Code of Federal Regulations Parts 551 (Geological and Geophysical G G) Explorations of the Outer Continental Shelf). The permittee must conduct all activities in compliance with the terms and conditions of this permit, including the "Stipulations," "Environmental Protective Provisions," and the approved "Application for Permit," which are attached to and incorporated into this permit. The permittee must conduct all geophysical exploration or scientific research activities in compliance with the Act, the regulations in 30 CFR Parts 551 and 251, and other applicable statutes and regulations whether such statutes and regulations are enacted, promulgated, issued, or amended before or after this permit is issued. Some of the provisions of 30 CFR Parts 551 and 251 are restated in this permit for emphasis. However, all of the provisions of 30 CFR Parts 551 and 251 apply to this permit. The permittee should note particularly that G G activities may cause incidental "taking" of animals under the Marine Mammal Protection Act (16 U.S.C. 1361 et seq.) or the Endangered Species Act (16 U.S.C. § 1531 et seq.). Any such incidental taking is not authorized by this permit, and it may only be authorized by the National Marine Fisheries Service or the U.S. Fish and Wildlife Service. The permittee should contact these two agencies to address any questions about these laws or requirements.

Paperwork Reduction Act of 1995 PRA Statement: This permit refers to information collection requirements contained in 30 CFR Parts 551 and 251 regulations. The Office of Management and Budget (OMB) has approved those reporting requirements under OMB Control Number 1010-0048.

Section I. Authorization

The Government authorizes the permittee to conduct:

Geophysical exploration for mineral resources as defined in 30 CFR 551.1.
Geophysical scientific research as defined in 30 CFR 551.1. A permit is required forany geophysical investigation that involves the use of solid or liquid explosives or developing data and information for proprietary use or sale.

This permit authorizes the permittee to conduct the above geophysical activity during the period from March 07, 2023 to March 07, 2024 in the following area s :
See attached map
The permittee shall not conduct any geophysical operation (i.e., active sound source(s)) outside of the permitted area specified herein even if no data is collected or obtained from such operations.
Geophysical operations shall not be conducted "in-transit" to the permitted area and may only proceed once the survey vessel enters the permitted area. This restriction does not apply to Alaska.)

Extensions of the time period specified above must be requested in writing. A permit plusextensions for activities will be limited to a period of not more than 1 year from the original issuance date of the permit. Inspection and reporting of geophysical exploration activities, suspension and cancellation of authority to conduct exploration or scientific research activities under permit, and penalties and appeals will be carried out in accordance with 30 CFR 551.8, 551.9, and 551.10.

The authority of the Regional Director may be delegated to the Regional Supervisor for Resource Evaluation for the purposes of this permit.

Section II. Type s) of Operations and Technique s

The permittee will employ the following type(s) of operations:
OBN Seismic Surveys
\qquad ; and
will utilize the following instruments and/or technique s) in such operations:
Air gun source array, seafloor seismographs (nodes), seafloor deployed inverted
echosounders PIES)

Section III. Reports on Operations

A. Status Reports

1. In the Gulf of Mexico and Atlantic OCS Regions:

The permittee must submit status reports every two months in a manner approved or prescribed by
the Regional Supervisor, Resource Evaluation (here after referred to as Supervisor . The report must include a map of appropriate scale showing traverse lines, protraction areas, blocks, and block numbers (if map scale permits). The map should be a cumulative update for each status reportand clearly illustrate the planned traverse lines one color) and the portion of those traverse lines in which data acquisition has been completed to date (a second color). Please indicate the cumulative total line miles 2D) or blocks (3D) of data acquired. The map should be submitted in digital format preferably as a GeoPDF.

2. In the Alaska and Pacific OCS Regions:

The permittee must submit status reports weekly in a manner approved or prescribed by the Regional Supervisor, Resource Evaluation (here after referred to as Supervisor). The report must include a map of appropriate scale showing the location and extent of acquired lines of 2D data or traverse lines for 3D data and the 3-mile limit when data collection is adjacent to the OCS boundary or other important boundaries as specified by BOEM. The map should be a cumulative update for each status report and clearly illustrate the planned lines (one color and the portion of those lines in which data acquisition has been completed to date a second color). The reportmust show the activity of the source vessel i.e., no seismic activity, time and location when a mitigation gun is on, ramp-up, and full acquisition mode). Protected Species Observer (PSO reports must also be included. Please indicate the cumulative total line miles (2D) or square miles 3D) of data acquired. The map should be submitted in digital format as a PDF and ESRI file -gdb-feature class(s) or shape files.

B. The permittee must submit to the Supervisor a Final Report within 30 days after the completion of operations. The final report must contain the following:

1. In the Gulf of Mexico and Atlantic OCS Regions:

i. The total number of 2D line miles or OCS blocks of geophysical data acquired as well as the "typical" or average sail miles per block for the survey;
ii. A brief daily log of operations. A suggested format for the daily \log of operations would include, but is not limited to, a table that provides the name of the survey, a date column, a column for number of line miles or blocks collected each day, and an operations column. Preferably, the date column would commence on the date in which the vessel begins to transit to the permitted area and end on the date in which the vessel either transits away from the permitted area or when operations pertinent to the permitted activity are completed. The corresponding operations column would contain a brief description of the operations for each day listed in the date column noting activities such as the major work stoppages, no data acquired, and other pertinent activities. This may be submitted as a digital Word document or as an Excel spreadsheet;
iii. A PDF or, preferably, a GeoPDF or shape file indicating the areal extent of the data actually acquired;
iv. The start and finish dates on which the actual geophysical exploration or scientific research activities were performed;
v. A narrative summary of any: (a) hydrocarbon slicks or environmental hazards observed and b) adverse effects of the geophysical exploration or scientific research activities on the environment, aquatic life, archaeological resources, or other uses of the area in which the activities were conducted;
vi. The estimated date on which the processed or interpreted data or information will be available for inspection by BOEM;
vii. A CD or DVD containing a single, final edited navigational data file. Shot point locations should be provided in both latitude/longitude degrees and in x, y coordinates. The single navigational file should be in either SEG-P1 or UKOOA P190 format for either twodimensional or three-dimensional geophysical data. Two-dimensional data should be decimated to the first, last, and every tenth shot point. Three-dimensional data should be decimated at every line and first and last CDP. A single ESRI shape file containing navigational data and one shape file with post-plot locations of any geophysical equipment on the seafloor i.e., ocean bottom nodes, CSEM, etc.) should also be submitted if applicable;
viii. Identification of geocentric ellipsoid NAD 27 or NAD 83 used as a reference for the data or sample locations; and
ix. Such other descriptions of the activities conducted as may be specified by the Supervisor.

2. In the Alaska and Pacific OCS Regions:

i. The total number of 2D line miles or square miles for 3D surveys and the number of OCS blocks of geophysical data acquired, as well as total number of traverse miles for the survey;
ii. A weekly report.
iii. Chart(s), map(s), or plat(s) depicting the areas in which any exploration or scientific research activities were conducted. These graphics must clearly indicate the location of the activities so that the data produced from the activities can be accurately located and identified;
iv. The start and finish dates on which the actual geophysical exploration or scientific research activities were performed;
v. A narrative summary of any: (a) hydrocarbon slicks or environmental hazards observed, b) adverse effects of the geophysical exploration or scientific research activities on the environment, aquatic life, archaeological resources, or other uses of the area in which the activities were conducted, and (c) safety incidents;
vi. The estimated date on which the processed or interpreted data or information will be available for inspection by BOEM;
vii. A final edited navigation file on suitable storage medium of all data or sample locations in latitude/longitude degrees including datum used. The navigation for 2D lines should include line name and location for the first, last, and every tenth SP. For 3D surveys, please submit a
navigation file for the acquired track lines that includes the location of the first and last SP and/or the corner locations for the area acquired. Contact the G G permitting office for the specific navigation required for this permitted activity. The digital file is to be formatted in standard SEG-P1, UKOOA P1-90 or other current, standard industry format, coded in ASCII. A printed data listing and a format statement are to be included;
viii. Identification of geocentric ellipsoid (NAD 83) used as a reference for the data or sample locations; and
ix. Such other descriptions of the activities conducted as may be specified by the Supervisor.
C. The Final Report is a stand-alone document containing all the pertinent information regarding the permit.

Section IV. Submission, Inspection, and Selection of Geophysical Data and Information

A. The permittee must notify the Supervisor, in writing, when the permittee has completed the initial processing and interpretation of any geophysical data and information collected under an exploration permit or a scientific research permit that involves developing data and information for proprietary use or sale. If the Supervisor asks if the permittee has further processed or interpreted any geophysical data and information collected under a permit, the permittee must respond within 30 days. If further processing of the data and information is conducted, it is the responsibility of the permittee to keep the most current resulting products available in the event the Supervisor requests the current status of data processing. At any time within 10 years after receiving notification of the completion of the acquisition activities conducted under the permit, the Supervisor may request that the permittee submit for inspection and possible retention all or part of the geophysical data, processed geophysical information, and interpreted geophysical information.

After a period of 10 years from the issuance of the permit, the permittee must notify the Supervisor in writing if their intention is to no longer maintain all or part of the geophysical data, processed geophysical information, and interpreted geophysical information, and provide the Supervisor 30 days to request that the permittee submit for inspection and possible retention all or part of the geophysical data, processed geophysical information, and interpreted geophysical information.
B. The Supervisor will have the right to inspect and select the geophysical data, processed geophysical information, or interpreted geophysical information. This inspection will be performed onthe permittee's premises unless the Supervisor requests that the permittee submit the data or information to the Supervisor for inspection. Such submission must be within 30 days following the receipt of the Supervisor's request unless the Supervisor authorizes a later delivery date. If the inspection is done on the permittee's premises, the permittee must submit the geophysical data or information selected within 30 days following receipt of the Supervisor's request, unless the Supervisor authorizes a longer period of time for delivery. The data or information requested for inspection or selected by the Supervisor must be submitted regardless of whether the permittee and the Government have or have not concluded an agreement for reimbursement. If the Supervisor decides to retain all or a portion of the geophysical data or information, the Supervisor will notify the permittee, in writing, of this decision.
C. In the event that a third party obtains geophysical data, processed geophysical information, or interpreted geophysical information from a permittee, or from another third party, by sale, trade, license agreement, or other means:

1. The third party recipient of the data and information assumes the obligations under this section except for notification of initial processing and interpretation of the data and information and is subject to the penalty provisions of 30 CFR Part 550, Subpart N; and
2. A permittee or third party that sells, trades, licenses, or otherwise provides the data and information to a third party must advise the recipient, in writing, that accepting these obligations is a condition precedent of the sale, trade, license, or other agreement; and
3. Except for license agreements, a permittee or third party that sells, trades, or otherwise provides data and information to a third party must advise the Supervisor in writing within 30 days of the sale, trade, or other agreement, including the identity of the recipient of the data and information; or
4. With regard to license agreements, a permittee or third party that licenses data and information to a third party, within 30 days of a request by the Supervisor, must advise the Supervisor, in writing, of the license agreement, including the identity of the recipient of the data and information.
D. Each submission of geophysical data, processed geophysical information, and interpreted geophysical information must contain, unless otherwise specified by the Supervisor, the following:
5. An accurate and complete record of each geophysical survey conducted under the permit, including digital navigational data and final location maps of all surveys;
6. All seismic data developed under a permit presented in a format and of a quality suitable for processing;
7. Processed geophysical information derived from seismic data with extraneous signals and interference removed, presented in a format and of a quality suitable for interpretive evaluation, reflecting state-of-the-art processing techniques; and
8. Other geophysical data, processed geophysical information, and interpreted geophysical information obtained from, but not limited to, shallow and deep subbottom profiles, bathymetry, side-scan sonar, gravity, magnetic, and electrical surveys, and special studies such as refraction, shear wave, and velocity surveys.

Section V. Reimbursement to Permittees

A. After the delivery of geophysical data, processed geophysical information, and interpreted geophysical information requested by the Supervisor in accordance with subsection IV of this permit, and upon receipt of a request for reimbursement and a determination by BOEM that the requested reimbursement is proper, BOEM will reimburse the permittee or third party for the reasonable costs of reproducing the submitted data and information at the permittee s or third party's lowest rate or at the lowest commercial rate established in the area, whichever is less.
B. If the processing was in a form and manner other than that used in the normal conduct of the permittee's business at BOEM's request, BOEM will reimburse the permittee or third party for the reasonable costs of processing or reprocessing such data. Requests for reimbursement must identify processing costs separate from acquisition costs.
C. The permittee or third party will not be reimbursed for the costs of acquiring or interpreting geophysical information.
D. Data and information required under section IV.D.1. of this permit are not considered to be geophysical data or processed geophysical information and must be provided by the permittee at no cost to the Government.

Section VI. Disclosure of Data and Information to the Public

A. BOEM will make data and information submitted by a permittee available in accordance with the requirements and subject to the limitations of the Freedom of Information Act 5 U.S.C. 552) and the implementing regulations (43 CFR Part 2), the requirements of the Act, and the regulations contained in 30 CFR Parts 550 and 250 Oil and Gas and Sulphur Operations in the Outer Continental Shelf , 30 CFR Parts 551 and 251, and 30 CFR Parts 552 and 252 Outer Continental Shelf OCS) Oil and Gas Information Program).
B. Except as specified in this section, or Section VIII, or in 30 CFR Parts 550, 552, 250, and 252, no data or information determined by BOEM or the Bureau of Safety and Environmental Enforcement to be exempt from public disclosure under subsection A of this section will be provided to any affected State or be made available to the executive of any affected local government or to the public, unless the permittee or third party and all persons to whom such permittee has sold, traded, or licensed the data or information under promise of confidentiality agree to such an action.
C. Geophysical data and processed or interpreted geophysical information submitted under a permit, and retained by BOEM, will be disclosed as follows:

1. Except for deep stratigraphic tests, BOEM will make available to the public geophysical data 50 years after the date of issuance of the permit under which the data were collected see 30 CFR 551.14).
2. Except for deep stratigraphic tests, BOEM will make available to the public processed geophysical information and interpreted geophysical information 25 years after the date of issuance of the permit under which the original data were collected see 30 CFR 551.14).
3. BOEM will make available to the public all geophysical data and information and geophysical interpretations related to a deep stratigraphic test, at the earlier of the following times: (a) 25 years after the completion of the test, or b for a lease sale held after the test well is completed, 60 calendar days after the Department of the Interior executes the first lease for a block, any part of which is within 50 geographic miles (92.6 kilometers) of the site of the completed test.
D. All line-specific preplot or postplot plat s , and navigation tapes, including but not limited to seismic survey traverses and shotpoint locations, submitted as a requirement of 30 CFR 551.7, 551.12, or 251.7, will be considered as "PROPRIETARY INFORMATION." Such information will not be made available to the public without the consent of the permittee for a period of 25 years from the date of issuance of the permit, unless the Director, BOEM, determines that earlier release is necessary for the proper development of the area permitted.
E. All other information submitted as a requirement of 30 CFR 551.8 and determined by BOEM to be exempt from public disclosure will be considered as "PROPRIETARY." Such data andinformation will not be made available to the public without the consent of the permittee for a period of up to 25 years from the date of issuance of the permit as addressed in 30 CFR 551.14, unless the Director, BOEM, determines that earlier release is necessary for the proper development of the area permitted. The executed permit will be considered as "PROPRIETARY" except the public information copy, which will be available to the public upon request and on BOEM's website.
F. The identities of third party recipients of data and information collected under a permit will be kept confidential. The identities will not be released unless the permittee and the third parties agree to the disclosure.

Section VII. Disclosure to Independent Contractors

BOEM reserves the right to disclose any data or information acquired from a permittee to an independent contractor or agent for the purpose of reproducing, processing, reprocessing, or interpreting such data or information. When practicable, BOEM will advise the permittee who provided the data or information of intent to disclose the data or information to an independent contractor or agent. BOEM's notice of intent will afford the permittee a period of not less than 5 working days within which to comment on the intended action. When BOEM so advises a permittee of the intent to disclose data or information to an independent contractor or agent, all other owners of such data or information will be deemed to have been notified of BOEM's intent. Prior to any such disclosure, the contractor or agent will be required to execute a written commitment not to sell, trade, license, or disclose any data or information to anyone without the express consent of BOEM.

Section VIII. Sharing of Information with Affected States

A. At the time of soliciting nominations for the leasing of lands within 3 geographic miles of the seaward boundary of any coastal State, BOEM, pursuant to the provisions of 30 CFR Parts 552.7 252.7 and subsections 8(g and 26(e) (43 U.S.C. 1337(g and 1352(e)) of the Act, will provide the Governor of the State (or the Governor's designated representative) the following information that has been acquired by BOEM on such lands proposed to be offered for leasing:

1. All information on the geographical, geological, and ecological characteristics of the areas and regions proposed to be offered forleasing;
2. An estimate of the oil and gas reserves in the area proposed for leasing; and
3. An identification of any field, geological structure, or trap located within 3 miles of the seaward boundary of the State.
B. After the time of receipt of nominations for any area of the OCS within 3 geographic miles of the seaward boundary of any coastal State and Area Identification in accordance with the provisions of Subparts D and E of 30 CFR Part 556, BOEM, in consultation with the Governor of the State (or the Governor's designated representative), will determine whether any tracts being given further consideration for leasing may contain one or more oil or gas reservoirs underlying both the OCS and lands subject to the jurisdiction of the State.
C. At any time prior to a sale, information acquired by BOEM that pertains to the identification of potential and/or proven common hydrocarbon-bearing areas within 3 geographic miles of the seaward boundary of any such State will be shared, upon request by the Governor and pursuant to the provisions of 30 CFR Parts 552.7 and 252.7 and subsections 8 g and 26(e) of the Act, with the Governor of such State or the Governor's designated representative .
D. Knowledge obtained by a State official who receives information under subsections A, B, and C of this section will be subject to the requirements and limitations of the Act and the regulations contained in 30 CFR Parts 550, 551, 552, 250, 251, and 252.

Section IX. Permit Modifications

The Department will have the right at any time to modify or amend any provisions of this permit, except that the Department will not have such right with respect to the provisions of Sections VI, VII, and VIII hereof, unless required by an Act of Congress.

IN WITNESS WHEREOF the parties have executed this permit and it will be effective as of the date of signature by the Supervisor.

PERMITTEE:
Tracy W. Albert
(Signature of Permittee

Tracy Albert
(Type or Print Name of Permittee

Sr. Regulatory Specialist
Title
2/01/2021
(Date

THE UNITED STATES OF AMERICA:
MATTHEW WILSON Wigitilly signed by MATHEW Date: 2023.03.07 14:56:35-06'00'
Signature of Regional Supervisor

Matthew G. Wilson
(Type or Print Name of RegionalSupervisor)

03/07/2023
(Date

Legend

\square Lease_Blocks
Nodes
\square Node_Polygon
Shot_Polygon
Operating Area

SHELL EXPLORATION \& PRODUCTION COMPANY

Shell Stones OBN

Aliminos Canyon Area

GEODETIC PARAMETERS

Horizontal Coordinate Reference System

CRS name (ESRI): NAD 1927 BLM Zone 15N
CRS name IShell): NAD27 / UTM zone 16N (ffUS) [1241_32066]
CRS code (EPSG): [32066]
Geodetic datum: North American 1927
Projection name: Transverse Mercator
Horizontal units: Foot US

August 22, 2023

Regional Supervisor, Resource Evaluation
Bureau of Ocean Energy Management
Gulf of Mexico OCS Region
1201 Elmwood Park Boulevard
New Orleans, LA 70123-2394
Attn: Robert Mohollen - Data Acquisition and Special Projects Unit - MS 5123
SUBJECT: Vessel Change // L22-001 Stones Survey - Geophysical Permit for OBN 4D Seismic Survey Walker Ridge and Surrounding Area

Gentlemen:
We need to update the vessels being used in above referenced Permit. The Siddis Mariner will replace the Olympic Artemis as ROV Node vessel. The Artemis Artic source vessel will replace Fulmar Explorer. The Siddis Mariner doesn't have a moon pool. The source vessel, Artemis Artic doesn't have moon pool. Both vessels will be in operations for the entire the survey.

The new vessels Fleet offered to be used in this survey are as follows:

Vessel Name	Model	Registry No.	Radio Call Sign	Registered Owner	Marine No.
Siddis Mariner	ROV Node Vessel	9581291	WVEY	Siddis Mariner AS	+4751505560
Artemis Artic	Source Vessel	9207510 $(I M O)$	LZK3	Artemis Shipping AS	+4770113920

Please contact me at 504.425.4652 or at tracy.albert@shell.com if you have any questions or require additional information.

Sincerely,

Tracy Albert
Sr. Regulatory Specialist

For Regional Supervisor
BOEM
OFFSHORE RESOURCE EVALUATION
GULF OF MEXICO OCS REGION

Approved
August 29, 2023
Approved No. __Vessel Change

CLASS STATUS REPORT

 CURRENT STATUS
ARTEMIS ARCTIC ARTEMIS SHIPPING AS

Report date: 2023-06-22
IMO number: 9207510
DNV number: 20369

DNV

Name of vessel	DNV ID no.
ARTEMIS ARCTIC	20369
IMO 9207510	

VESSEL INFORMATION

DNV id. no.	$\mathbf{2 0 3 6 9}$	Operational status	Laid up
IMO no.	$\mathbf{9 2 0 7 5 1 0}$		
Vessel name	ARTEMIS ARCTIC	Signal letters	LJZK3
Type	$\mathbf{9 1 5}$ - Seismographic research ship	Port of registration	BERGEN
Date of keel laid	$\mathbf{1 9 9 8 - 0 9}$	Flag	Norway
Date of build	$\mathbf{1 9 9 9 - 1 0}$		
Date of commissioning		Equipment letter	\mathbf{s}
Gross tonnage (ITC 69)	$\mathbf{3 9 4 7}$	Gross tonnage (pre 69)	$\mathbf{0}$
Previous name(s)	BOS ARCTIC (2011), OCEAN TRAWLER (2007),		
Class notation	w1A1 HELDK TMON		

Other classification society

OWNER / MANAGER / DOC HOLDER INFORMATION

Owner	Artemis Shipping AS	Owner no.	$\mathbf{1 0 0 9 6 4 3 7}$
Manager	Maritim Management AS	Manager no.	$\mathbf{1 0 0 0 0 7 7 2}$
Address	Keiser Wilhelms gate 23		
City/ZIP	$\mathbf{6 0 0 3}$ Ålesund		
Country	Norway	DOC Holder no.	$\mathbf{1 0 0 0 0 7 7 2}$

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510

DNV ID no. 20369

VESSEL CERTIFICATES

Class certificates

Certificate description	Code	Issued	Location
Classification compliance document	CLCE	$2021-06-08$	Houston

Statutory certificates

- issued by DNV on behalf of other party

Certificate description	Code	Issued	Location	Valid until	Type	Status
Load line compliance document	ILLC	2021-06-08	Houston	2023-07-03	Full term	
Cargo ship safety construction compliance document	CCC	2021-06-08	Houston	2023-07-03	Full term	
Cargo ship safety equipment compliance document	CEC	2021-06-08	Houston	2023-07-03	Full term	
Cargo ship safety radio compliance document	CRC	2021-06-08	Houston	2023-07-03	Full term	
Safety management compliance document - vessel	ISM-VE	2022-06-22	Houston	2027-09-04	Full term	
Ship security compliance document	ISPS	2022-06-22	Houston	2027-09-01	Full term	
Maritime Labour Convention compliance document	MLC	2022-06-22	Houston	2027-09-01	Full term	
Oil pollution prevention compliance document - vessels other that oil tankers	OPP-A	2021-06-08	Houston	2023-07-03	Full term	
Sewage pollution prevention compliance document	SPP	2021-06-08	Houston	2023-07-03	Full term	
Air pollution prevention compliance document	IAPP	2021-06-08	Houston	2023-07-03	Full term	
Energy efficiency compliance document	EEC	2021-06-08	Houston		Full term	
Anti-fouling system compliance document	AFS	2021-06-08	Houston		Full term	
Accommodation of crews compliance document - ILO 92	ILO92	2021-06-08	Houston		Full term	
Accommodation of crews (supplementary provisions) compliance document - ILO 133	ILO133	2021-06-08	Houston		Full term	
Inventory of hazardous materials compliance document (EU regulation)	EU-REC-IHM	2021-06-08	Houston	2023-07-03	Full term	
Tonnage measurement compliance document	TMC	2021-06-08	Houston		Full term	

DNV

Name of vessel
 ARTEMIS ARCTIC IMO 9207510

VESSEL SURVEYS

Class surveys

Survey description	Code	Last survey	Location	Next survey [from, to]
Main class renewal	MC.R	$2018-06-28$	Houston	2023-04-03, 2023-07-03

Statutory surveys

Survey description	Code
Load line renewal	ILLC.R
Load line annual	ILLC.A
Safety construction renewal	CCC.R
Safety construction intermediate	CCC.In
Safety construction annual	CCC.A
Safety equipment renewal	CEC.R
Safety equipment periodical	CEC.In
Safety equipment annual	CEC.A
Safety radio renewal	CRC.R
Safety radio periodical	CRC.A
Safety management - vessel, renewal audit	ISM-VE.R
Safety management - vessel, intermediate	ISM-VE.In
audit	

IMPORTANT

The vessel's class will be automatically suspended if Annual, Intermediate or Renewal surveys are not carried out within the end of their respective range dates.

RELEVANT INTERNATIONAL CONVENTION CERTIFICATES NOT LISTED ARE ASSUMED ISSUED BY THE FLAG ADMINISTRATION.

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510

Survey description	Code	Last survey	Location	Next survey [from, to]
Ship security renewal audit	ISPS.R	$2022-06-22$	Houston	$2027-06-01,2027-09-01$
Ship security intermediate audit	ISPS.In	$2020-08-13$	New Orleans	$2024-09-01,2025-09-01$
Maritime Labour Convention renewal	MLC.R	$2022-06-22$	Houston	$2027-06-01,2027-09-01$
Maritime Labour Convention intermediate	MLC.In	$2020-08-13$	New Orleans	$2024-09-01,2025-09-01$
Oil pollution prevention, type A renewal	OPP-A.R	$2018-06-28$	Houston	$2023-04-03,2023-07-03$
Oil pollution prevention, type A intermediate	OPP-A.In	$2021-06-08$	Houston	$2025-04-03,2026-10-03$
Oil pollution prevention, type A annual	OPP-A.A	$2022-05-20$	Houston	$2023-04-03,2023-07-03$
Sewage pollution prevention renewal survey	SPP.R	$2018-06-28$	Houston	$2023-04-03,2023-07-03$
Air pollution prevention renewal	IAPP.R	$2018-06-28$	Houston	$2023-04-03,2023-07-03$
Air pollution prevention intermediate	IAPP.In	$2021-06-08$	Houston	$2025-04-03,2026-10-03$
Air pollution prevention annual	IAPP.A	$2022-05-20$	Houston	$2023-04-03,2023-07-03$
Inventory of hazardous materials (EU	EU-REC-			$2023-04-03,2023-07-03$
regulation) renewal survey	IHM.R			$2023-04-03,2023-07-03$

DNV

Name of vessel	DNV ID no.
ARTEMIS ARCTIC	$\mathbf{2 0 3 6 9}$
IMO 9207510	
CONDITIONS	

Conditions related to class

None

Conditions related to statutory certificates

None

DNV

Name of vessel	DNV ID no.
ARTEMIS ARCTIC	$\mathbf{2 0 3 6 9}$
IMO 9207510	
RECORDINGS	

Test name

Sea and sanitary valves examination date

Test date
2017-06-30

Name of vessel	DNV ID no.
ARTEMIS ARCTIC	20369
IMO 9207510	

MEMORANDA FOR OWNERS

Memoranda related to class certificate

No.
MO 5 Issued date Issued at
2004-10-25 ULS
Indent in bulbous bow. Indent found on starboard side of bulb between
stem and first frame. The plate is set in approx. lo cm.

Name of vessel	DNV ID no.
ARTEMIS ARCTIC	20369
IMO 9207510	

No.	
	With reference to the DNV survey statement, dated 2021-02-02 and MO 23, the vessel is no longer designed or constructed to carry ballast water, thus the BWM convention is not applicable according to Article 3, par. 2 (a). This MO will become invalid in case of any modification to the ballast system. In case of change of class the new classification society must be notified.
MO 28	$2022-11-21$ Register and Data Management
	Laid up vessel: Before any operation, trading or leaving lay-up site, overdue surveys and conditions of class shall be carried out. During lay-up, components in use shall be surveyed within due date. An annual survey of laid up vessel shall be carried out when due. If the lay-up period exceeds 12 months, the vessel shall be surveyed and tested before re-entering service, the extent depending on lay-up time, maintenance and preservative measures taken. As a minimum, a sea trial for function testing of the machinery shall be carried out.

Memoranda related to statutory certificates

No.	Issued date	Issued at
$\text { MO } 25$	2021-02-09	Høvik Stab Tonnage
	The change test is 1.63 ballast ins re-inclined MSC/Circ.	lightship for disp led July en the ch

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510
 SURVEYS OF MACHINERY ITEMS

DNV ID no.
20369

Code Description

Propulsion and steering (400)

MDETST	Propulsion engine
MDECAS	Propulsion engine > Engine casing
MDECYA	Propulsion engine $>$ Cylinder head 1 A
MDECYA	Propulsion engine $>$ Cylinder head 2
MDECYA	Propulsion engine > Cylinder head 3
MDECYA	Propulsion engine $>$ Cylinder head 4
MDECYA	Propulsion engine > Cylinder head 5
MDECYA	Propulsion engine > Cylinder head 6
MDECYA	Propulsion engine > Cylinder head 7
MDECYA	Propulsion engine $>$ Cylinder head 8
MDECYA	Propulsion engine > Cylinder head 9F
MDECYL	Propulsion engine > Cylinder liner 1A
MDECYL	Propulsion engine > Cylinder liner 2
MDECYL	Propulsion engine > Cylinder liner 3
MDECYL	Propulsion engine > Cylinder liner 4
MDECYL	Propulsion engine > Cylinder liner 5
MDECYL	Propulsion engine > Cylinder liner 6
MDECYL	Propulsion engine > Cylinder liner 7
MDECYL	Propulsion engine > Cylinder liner 8
MDECYL	Propulsion engine > Cylinder liner 9F
MDEPIS	Propulsion engine $>$ Piston and connecting rod arrangement 1A
MDEPIS	Propulsion engine > Piston and connecting rod arrangement 2
MDEPIS	Propulsion engine > Piston and connecting rod arrangement 3
MDEPIS	Propulsion engine $>$ Piston and connecting rod arrangement 4
MDEPIS	Propulsion engine > Piston and connecting rod arrangement 5
MDEPIS	Propulsion engine $>$ Piston and connecting rod arrangement 6
MDEPIS	Propulsion engine $>$ Piston and connecting rod arrangement 7
MDEPIS	Propulsion engine $>$ Piston and connecting rod arrangement 8
MDEPIS	Propulsion engine $>$ Piston and connecting rod arrangement 9 F
MDECRA	Propulsion engine > Crankshaft arrangement
MDECRB	Propulsion engine $>$ Crank bearing 1A
MDECRB	Propulsion engine > Crank bearing 2
MDECRB	Propulsion engine $>$ Crank bearing 3
MDECRB	Propulsion engine > Crank bearing 4
MDECRB	Propulsion engine > Crank bearing 5
MDECRB	Propulsion engine > Crank bearing 6
MDECRB	Propulsion engine > Crank bearing 7
MDECRB	Propulsion engine $>$ Crank bearing 8

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510

DNV ID no.

Code	Description
MDECRB	Propulsion engine > Crank bearing 9F
MDEMAB	Propulsion engine $>$ Main bearing 10F
MDEMAB	Propulsion engine $>$ Main bearing 1A
MDEMAB	Propulsion engine $>$ Main bearing 2
MDEMAB	Propulsion engine $>$ Main bearing 3
MDEMAB	Propulsion engine $>$ Main bearing 4
MDEMAB	Propulsion engine $>$ Main bearing 5
MDEMAB	Propulsion engine $>$ Main bearing 6
MDEMAB	Propulsion engine $>$ Main bearing 7
MDEMAB	Propulsion engine $>$ Main bearing 8
MDEMAB	Propulsion engine $>$ Main bearing 9
MDEVID	Propulsion engine $>$ Vibration dampers
MDECAM	Propulsion engine > Camshaft arrangement
MDEFUO	Propulsion engine $>$ Fuel system
MDESCA	Propulsion engine > Combustion air cooler (and Scavenge arrangement)
MDETUR	Propulsion engine $>$ Turbocharger
MDESTA	Propulsion engine > Starting system, pneumatic
CPDFOU	Propulsion driver foundation
REDGEA	Propulsion reduction gear
TRUSHA	Propulsion thrust shaft
CPTBEA	Propulsion thrust bearing, axial plain
CPRCOU	Propulsion shaft coupling, elastic
CPPSER	Propeller, controllable pitch > Controllable pitch servo mechanism
CPPHPS	Controllable pitch propeller hydraulic power system
AUTHYM	Manoeuvring thruster hydraulic motor 3A
AUTEPU	Manoeuvring thruster electric power unit 1F
AUTEPU	Manoeuvring thruster electric power unit 2F
Electr	ic power (500)
MEPTST	Main generator engine
MEPDIE	Main generator engine
MEPTUR	Main generator engine > Turbocharger
MEPTST	Main generator engine SI
MEPDIE	Main generator engine SI
MEPTUR	Main generator engine SI > Turbocharger SI
MEPDIE	Main generator engine SO
MEPTST	Main generator engine SO
MEPTUR	Main generator engine SO > Turbocharger SO
SHGPTO	Main generator power take off (Shaft generator)
MEPGEN	Main generator
MEPGEN	Main generator (Shaft generator)
MEPGEN	Main generator SI

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510

DNV ID no.
20369

Code	Description
MEPGEN	Main generator SO
MEPSWL	Main switchboard
MEPSWL	Main distribution switchboards
ELECNV	Main power transformers (Transformer/convertor)
EEPSWL	Emergency distribution switchboard
ELECNV	Emergency power transformers (Transformer/convertor)
MaChinery- and marine piping systems (600)	

FUOPIP	Fuel oil piping
FUOPUI	Fuel oil pumping unit (Booster for separator)
FUOPUI	Fuel oil pumping unit (Booster, aux. Eng. not att.)
FUOPUI	Fuel oil pumping unit (Transfer)
FUOPUI	Fuel oil pumping unit (Boiler)
FUOPUI	Fuel oil pumping unit A (Feed, ME)
FUOPUI	Fuel oil pumping unit F (Booster, ME)
FUOHEA	Fuel oil heater, electric (Separator)
LUOPIP	Lubricating oil piping
LUOPUI	Lubricating oil pumping unit (Booster, Separator)
LUOPUI	Lubricating oil pumping unit (Transfer)
LUOPUI	Lubricating oil pumping unit (AT) (Gear)
LUOPUI	Lubricating oil pumping unit (AT) (Priming)
LUOPUI	Lubricating oil pumping unit (AT) (Main)
LUOPUI	Lubricating oil pumping unit P (Gear)
LUOPUI	Lubricating oil pumping unit S (Main)
LUOHEA	Lubricating oil heater, electric (Separator)
LUOCOO	Lubricating oil cooler (Gear)
LUOCOO	Lubricating oil cooler (Main, Fresh Water, Attached)
SWCPIP	Sea water piping
SWCPUI	Sea water pumping unit (Aux. Machinery)
SWCPUI	Sea water pumping unit A (ME)
SWCPUI	Sea water pumping unit F (ME)
FWCPIP	Fresh water piping
FWCPUI	Fresh water pumping unit (Preheater)
FWCPUI	Fresh water pumping unit (AT) (Low Temp.)
FWCPUI	Fresh water pumping unit (AT) (High Temp.)
FWCPUI	Fresh water pumping unit P (High Temp.)
FWCPUI	Fresh water pumping unit S (Low Temp.)
FWCCOO	Fresh water cooler (Aux. Machinery)
FWCCOO	Fresh water cooler P (Central)
FWCCOO	Fresh water cooler S (Central)
FWCHEA	Fresh water heater, electric
SAMCUI	Starting air compressor unit, main SI

DNV

Name of vessel
 ARTEMIS ARCTIC

DNV ID no.

Code Description
SAMCUI Starting air compressor unit, main SO
SAECUI Starting air compressor unit, emergency
COAPIP Starting air piping
SAMARE Starting air receiver, main L (Other)
SAMARE Starting air receiver, main U (Other)
COADRY Control air dryers (Instrument)
BILPIP Bilge water piping
BBFPUI Bilge water pumping unit 3 (Compressor Room)
BBFPUI Bilge water pumping unit A
BBFPUI Bilge water pumping unit F
OBWPUI Oily bilge water pumping unit (Seperator)
Navigation, communication and control (700)
NAVSWL Navigation light switchboards
Safety (800)
BBFPUI Fire water pumping unit, main C
BBFPUI Fire water pumping unit, main P
BBFPUI Fire water pumping unit, main S
FIEPUI Fire water pumping units, emergency

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510
 SURVEYED HULL ITEMS

The listing of previous surveys may not be exhaustive.

Code	Description	Last survey
Main	StruCture (100)	$2017-09-04$
HOV	Void centre tank $(-002-001)$	$2017-09-04$
HOV	Void side tank P(034-041)	$2017-09-04$
HOV	Void side tank P(A--005)	$2017-09-04$
HOV	Void side tank S(004-014)	$2017-09-04$
HOV	Void side tank S(034-041)	$2017-09-04$
HOV	Void side tank S(A--005)	$2017-09-04$
HOV	Void space (Duct keel)	$2017-09-04$
HOV	Void space (Cofferdam)	$2017-09-04$

Stability, watertight and weathertight integrity (200)
Propulsion and steering (400)
Machinery- and marine piping systems (600)

HOV	Fuel oil tank 2P(078-085) (Last: Renewal)	$2013-04-29$
HTS	Fuel oil tank 2P(078-085) (Last: Renewal)	$2013-04-29$
HOV	Fuel oil tank 2S(078-085)	$2017-09-04$
HTS	Fuel oil tank 2S(078-085)	$2017-09-04$
HTS	Fuel oil tank P(004-009) (Service) (Last: Renewal)	$2008-07-03$
HOV	Fuel oil tank P(004-009) (Service) (Last: Renewal)	$2008-07-03$
HTS	Fuel oil tank P(011-013) (Service Boiler) (Last: Renewal)	$2008-07-03$
HOV	Fuel oil tank P(011-013) (Service Boiler) (Last: Renewal)	$2008-07-03$
HOV	Fuel oil tank S(004-009) (Settling)	$2017-09-04$
HTS	Fuel oil tank S(004-009) (Settling)	$2017-09-04$
HOV	Fuel oil side tank 3P(065-078)	$2017-09-04$
HTS	Fuel oil side tank 3P(065-078)	$2017-09-04$
HTS	Fuel oil side tank 3S(065-078) (Last: Renewal)	$2008-07-03$
HOV	Fuel oil side tank 3S(065-078) (Last: Renewal)	$2008-07-03$
HTS	Fuel oil side tank P(-005-009)	$2017-09-04$
HOV	Fuel oil side tank P(-005-009)	$2017-09-04$
HTS	Fuel oil side tank S(-005-009)	$2017-09-04$
HOV	Fuel oil side tank S(-005-009)	$2017-09-04$
HTS	Fuel oil double bottom tank 4P(059-078) (Last: Renewal)	$2008-07-03$
HOV	Fuel oil double bottom tank 4P(059-078) (Last: Renewal)	$2008-07-03$
HTS	Fuel oil double bottom tank 4S(059-078)	$2017-09-04$
HOV	Fuel oil double bottom tank 4S(059-078)	$2017-09-04$
HTS	Fuel oil double bottom tank 5C(044-059)	$2017-09-04$

DNV

Name of vessel
 ARTEMIS ARCTIC IMO 9207510

DNV ID no. 20369

Code	Description	st survey
HOV	Fuel oil double bottom tank 5C(044-059)	2017-09-04
HTS	Fuel oil double bottom tank 5P(044-059) (Last: Renewal)	2008-07-03
HOV	Fuel oil double bottom tank 5P(044-059) (Last: Renewal)	2008-07-03
HOV	Fuel oil double bottom tank 5S(044-059) (Last: Renewal)	2013-04-29
HTS	Fuel oil double bottom tank 5S(044-059) (Last: Renewal)	2013-04-29
HTS	Fuel oil double bottom tank 6C(034-044) (Last: Renewal)	2013-04-29
HOV	Fuel oil double bottom tank 6C(034-044) (Last: Renewal)	2013-04-29
HOV	Fuel oil double bottom tank 6P(034-044)	2017-09-04
HTS	Fuel oil double bottom tank 6P(034-044)	2017-09-04
HTS	Fuel oil double bottom tank 6S(034-044) (Last: Renewal)	2013-04-29
HOV	Fuel oil double bottom tank 6S(034-044) (Last: Renewal)	2013-04-29
HTS	Fuel oil aft peak tank 7C(-003-009)	2017-09-04
HOV	Fuel oil aft peak tank 7C(-003-009)	2017-09-04
HOV	Fuel oil aft peak tank 7P(-003-009)	2017-09-04
HTS	Fuel oil aft peak tank 7P(-003-009)	2017-09-04
HOV	Fuel oil aft peak tank 7S(-003-004)	2017-09-04
HTS	Fuel oil aft peak tank 7S(-003-004)	2017-09-04
HOV	Lubricating oil tank P(000-001.5) (Steering) (Last: Renewal)	2008-07-03
HTS	Lubricating oil tank P(000-001.5) (Steering) (Last: Renewal)	2008-07-03
HOV	Lubricating oil tank P(-004.5--002.5) (AE) (Last: Renewal)	2008-07-03
HTS	Lubricating oil tank P(-004.5--002.5) (AE) (Last: Renewal)	2008-07-03
HOV	Lubricating oil tank S(004-014) (Hydraulic) (Last: Renewal)	2008-07-03
HTS	Lubricating oil tank S(004-014) (Hydraulic) (Last: Renewal)	2008-07-03
HTS	Lubricating oil double bottom tank C(019-030) (System) (Last: Renewal)	2008-07-03
HOV	Lubricating oil double bottom tank C(019-030) (System) (Last: Renewal)	2008-07-03
HTS	Lubricating oil double bottom tank S(025-032) (Dirty)	2017-09-04
HOV	Lubricating oil double bottom tank S(025-032) (Dirty)	2017-09-04
HOV	Lubricating oil engine room tank S(016-019) (Hydraulic) (Last: Renewal)	2008-07-03
HTS	Lubricating oil engine room tank S(016-019) (Hydraulic) (Last: Renewal)	2008-07-03
HTS	Lubricating oil engine room tank S(019-021) (Gear) (Last: Renewal)	2013-04-29
HOV	Lubricating oil engine room tank S(019-021) (Gear) (Last: Renewal)	2013-04-29
HTS	Lubricating oil engine room tank S(024-027) (Hydraulic) (Last: Renewal)	2008-07-03
HOV	Lubricating oil engine room tank S(024-027) (Hydraulic) (Last: Renewal)	2008-07-03
HTS	Sludge double bottom tank P(019-025)	2017-09-04
HOV	Sludge double bottom tank P(019-025)	2017-09-04
HTS	Fresh water tank P(004-014)	2017-09-04
HOV	Fresh water tank P(004-014)	2017-09-04
HOV	Fresh water side tank P(016-027)	2017-09-04
HTS	Fresh water side tank P(016-027)	2017-09-04
HOV	Fresh water double bottom tank P(G-044)	2017-09-04
HTS	Fresh water double bottom tank P(G-044)	2017-09-04
HOV	Fresh water double bottom tank S(019-025) (Drop)	2017-09-04

DNV

Name of vessel
 ARTEMIS ARCTIC
 IMO 9207510

DNV ID no.

Code	Description	Last survey
HTS	Fresh water double bottom tank S(019-025) (Drop)	$2017-09-04$
HOV	Fresh water double bottom tank S(G-044)	$2017-09-04$
HTS	Fresh water double bottom tank S(G-044)	$2017-09-04$
HOV	Fresh water fore peak tank C(085-F)	$2017-09-04$
HTS	Fresh water fore peak tank C(085-F)	$2017-09-04$
HOV	Fresh water aft peak tank C(A--003)	$2017-09-04$
HTS	Fresh water aft peak tank C(A--003)	$2017-09-04$
HOV	Drain water engine room tank C(009-011) (Fuel Oil)	$2017-09-04$
HTS	Drain water engine room tank C(009-011) (Fuel Oil)	$2017-09-04$
HTS	Drain water engine room tank S(021-024) (Hydraulic)	$2017-09-04$
HOV	Drain water engine room tank S(021-024) (Hydraulic)	$2017-09-04$
HTS	Sewage holding tank S(074-079)	$2017-09-04$
HOV	Sewage holding tank S(074-079)	

DNV

Name of vessel	DNV ID no.
ARTEMIS ARCTIC	$\mathbf{2 0 3 6 9}$
IMO 9207510	
TANKS AND SPACES ANNUAL	

None

Siddis Mariner
 VS 485 MPSV

TECHNICAL OUTLINE SPECIFICATION FIELD SUPPLY-, PIPE CARRIER, LIGHT CONSTRUCTION \& ROV- SHIP Delivery from Kleven Maritime: March 2011

MAIN DESCRIPTION	
Type	: FIELD SUPPLY, PIPE CARRIER LIGHT CONSTRUCTION \& ROV SHIP.
Classification	: DnV + 1A1,Ice-C E0, SF, Dynpos AUTR, Class notation CLEAN DESIGN, $\mathrm{dk}(+)\left(10 \mathrm{t} / \mathrm{m}^{2}\right)$, hl(p), LFL*, OIL REC, COMF-V (3)C(3), NAUT OSV(A)
	,Option: FI-FI I, DEICE-C
	Built according to NOFO 2005, Capasity: $1800 \mathrm{~m}^{3}$ 1 Roll Reduction tank aft below $1^{\text {st }}$ deck
Certificates:	World Wide 1966 Loadline Conv, SOLAS,MARPOL Standby 200 SPS

13 tanks for mud,brine,slope, base oil,spesial products and metanol are combinated with ORO.
All cargo pumps are frequency controlled.
The cement bulk system includes dust collector with dust cyclone for the bulk tanks with automatic drainage. Liquid Mud and Special Product tanks is free of any stiffeners, girders or floors. 6 off agitators for dedicated mud tanks installed. Wash water syst. w/wash.mash. for brine, mud and slop tanks to be heated to 80 degree Celsius.
The Metanol tank is made of stainless steel.
The Special Product tank is made of stainless steel.

MACHINERY / D/E-PROPULSION	PERFORMANCE		
Genset. outp.	$: 4 \times$ Cat 3516 C , each 2188kW -Tot.:8752kW.	Max speed, approx.:	15
Main az.thrstrs	$: 2 \times 2200 \mathrm{~kW}$ (El. Driven R-R CP AZP100).	Econ speed, approx : $8-11 \mathrm{kn}$	
Fwd. az.thrstr.	$: 1 \times 880 \mathrm{~kW}$ (El. Driven R-R FP).		
Bow thruster	$: 2 \times 1200 \mathrm{~kW}$		
Emergency gen. $: 1 \times 320 \mathrm{ekW}$			
SCR equipment (catalyzer) to reduce Nox			

DECK/RESCUE EQUIPMENT

Tugger Winches : 2×15 tonnes $\quad: 70$ persons, (registered for 72)
Cargo securing winches: 6 located in safe haven, all with
6 winches each side in safe heaven, side of the cargo rail.
Capstans aft : 2×10 tonnes
Windl../Mooring : 2 Hydraulic driven
Cranes boat deck : 1 off: 3 te $\times 13 \mathrm{~m}$
1 off: 1 te $\times 10 \mathrm{~m}$
1 off Fast Rescue Craft: MOB with 210 hp engine.
Life rafts $: 3 \times 25 \mathrm{men}$ at each side of the ship Survival Suits for 70 persons.
Lifesaving equipment according to NMD rule requirements.
Stern gate with opening $b=7000 \mathrm{~mm} \times \mathrm{h}=1800 \mathrm{~mm}$.
Removable cargo rail port side 15.6 m and abt. 12 m stern
Option:50 T Offshore Crane, main deck
Option: Heli-Deck
Electrical Power to client: Deck area: $2 \times 690 \mathrm{~V}-1.600 \mathrm{~A}, 2 \times 690 \mathrm{~V}-630 \mathrm{~A}$
Switchboard room: $2 \times 440 \mathrm{~V}-630 \mathrm{~A}$

NAVIGATION EQUIPMENT

$1 \times$ X - band Radar ARPA
1 x S - band Radar ARPA \& interswitch
$2 \times$ Direction finder (VHF and MF)
$1 \times$ DGPS $700+$ Inmarsat C $1 \times$ Watch keeping receiver
$3 \times$ Gyro / Autopilot
$1 \times$ Echo-sounder
$1 \times$ Navtex-receiver
$1 \times$ ECDIS voyage computer w/back-up
DP reference systems: $2 \mathrm{xDGPS}, 2 \mathrm{xMRU}, 1 \mathrm{x}$ Fanbeam, Radarscan, HiPAP 501

COMMUNICATION EQUIPMENT

According to GMDSS A3

1 x MF/HF Radio w/radio telex \& DSC

2 x VHF duplex \& DSC
1 x VHF semiduplex /4 x VHF portable
2 x Mobile telephone
1 x intercom w/radio / loudhailer
Various communications equipment.

Cabins $\quad: 16 \times 1$ (single) bed cabins
Cabins $\quad: 27 \times 2$ (double) bed cabins
Hospital : 1 off + ward 2 beds
Mess / dayroom : Abt 32 / 3 off.
Dayroom smokers: 8 persons
Coffee shop : 1 off, main deck
Reception : 1 off, main deck
Wardrobe : 1 off, main deck w/ lockers
Deck office : 5 off
Sky lobby / Dayroom / Deck view area: 1 off

ACCOMMODATION

The ship is diesel electric driven (frequency controlled propellers, pumps, fans) -supply ship/ pipe carrier, which is designed to meet the general market, in addition to be specially designed for field supply \& ROV duties, equipped with efficient azimuth thrusters and a dynamic positioning system for safe and economic world wide service.

The ship is designed for low fuel consumption and excellent sea-keeping. This in addition to low noise and vibration in hull and superstructure ensure high comfort. The ship is designed according to the class notation "Clean Design" and "COMFV rate 3 " (comfort class), and high focus are given on reduced fuel consumption, which means lesser emission to the environment.

The latest technology in switch board design from Wärtsilä is installed in the vessel. A system named LLC, Low Loss Concept. This will increase the redundancy of the vessel.

The ship will also be built according to DnV's new notation NAUT OSV(A).
All figures are believed to be correct, but not guaranteed.

Owner:
Siddis Mariner AS, C/O O.H.MELING Management AS Paradisveien 28, P.O. Box 217 NO-4001 STAVANGER, Norway. Tel: +4751505560 - Mob: +47 99272454

United States Department of the Interior
BUREAU OF OCEAN ENERGY MANAGEMENT
New Orleans Office
1201 Elmwood Park Blvd
New Orleans, Louisiana 70123-2394

In Reply Refer To: MS 881A
September 27, 2023

ELECTRONIC MAIL - RETURN RECEIPT REQUESTED

Shell Offshore Inc.
Attention: Ms. Tracy Albert
701 Poydras St., Room 2418
New Orleans, LA 70139
Dear Ms. Albert:
Your request for a program modification for OCS Permit L22-001 received August 22, 2023, has been approved. Modification 01 approves the change in service company to PX Geo, the change in node type to the Manta 1.5 nodes, and the updated source array parameters with the accompanying sound modeling package, as described in the attached request letter. PX Geo will conduct exclusive operations for Shell Offshore Inc. The permitted program is a 4D-OBN seismic survey.

Our National Environmental Policy Act (NEPA) review of the subject action is complete and results in a Finding of No Significant Impact (FONSI). This FONSI is conditioned on adherence to the conditions of approval that ensure environmental protection, consistent environmental policy, and safety as required by NEPA, as amended, and is valid only insofar as the conditions are met in Attachment A. Furthermore, any conditions stated in the applicable Letter of Authorization issued by the National Marine Fisheries Service must also be followed. Before starting acquisition, you are required to notify BOEM of your survey start date. BOEM must be advised of the end date immediately upon survey completion.

If you have any questions, please call Robert Mohollen at (504) 736-2840 (robert.mohollen@boem.gov) or the Office of Resource Evaluation, Data Acquisition and Special Projects Unit at (504) 736-3231 (GGPermitsGOMR@boem.gov).

Sincerely,
TEREE $\quad \begin{aligned} & \text { Digitally signed by } \text { TEREE } \\ & \text { CAMPs }\end{aligned}$
CAMPBELL Date: 2023.09.27
For Carlos Alonso
Resource Studies Section Chief
New Orleans Office
Office of Resource Evaluation

Our National Environmental Policy Act (NEPA) review of the subject action is complete and results in a Finding of No Significant Impact (FONSI). This FONSI is conditioned on adherence to the following mitigation and monitoring measures that ensure environmental protection, consistent environmental policy, and safety as required by NEPA, as amended, and is valid only insofar as the following conditions are met:

Conditions of Approval

1. Compliance with Biological Opinion Terms and Conditions and Reasonable and Prudent Measures: This approval is conditioned upon compliance with the Reasonable and Prudent Measures and implementing Terms and Conditions of the Biological Opinion issued by the National Marine Fisheries Service on March 13, 2020, and the amendment issued on April 26, 2021. This includes mitigation, particularly any appendices to Terms and Conditions applicable to the plan, as well as record-keeping and reporting sufficient to allow BOEM and BSEE to comply with reporting and monitoring requirements under the BiOp; and any additional reporting required by BOEM or BSEE developed as a result of BiOp implementation. The NMFS Biological Opinion may be found here: (https://www.fisheries.noaa.gov/resource/document/biological-opinion-federally-regulated-oil-and-gas-program-activities-gulf-mexico). The Appendices and protocols may be found here: (https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico). The amendment provided updates to Appendices A, C and I which may be found here: https://repository.library.noaa.gov/view/noaa/29355.
2. Notification of Intention to Transit Rice's Whale Area Condition of Approval (COA): Operators or their recognized representative must notify the Bureau of Ocean Energy Management (BOEM) or Bureau of Safety and Environmental Enforcement (BSEE) as appropriate of their intention to transit through the Rice's (formerly Bryde's in 2020 Biological Opinion and subsequent amendment) whale area (from 100- to 400-meter isobaths from 87.5° W to $27.5^{\circ} \mathrm{N}$ as described in the species' status review plus an additional 10 km around that area) (see figure below) when this transit is associated with either an initial plan/application or as part of a change to an existing plan/application when either vessel route and/or support base changes. If proposing to transit through any portion of the Rice's whale area, the BOEM Permit/Plan holder shall submit their notification to transit and concurrence to fulfil the reporting requirements as stated below to BOEM/BSEE (protectedspecies@boem.gov and protectedspecies@bsee.gov). In the case of a post-approval change in vessel route or change in a support base, your intention to transit through the Rice's whale area should be made by contacting the BOEM or BSEE Point of Contact for the most recent applicable permit or application. Please be advised that changes to the use of a support base may trigger a revised plan (e.g., 30 CFR § 550.283), revised application, or modified permit (for geological and geophysical [G\&G] activities). You will be required to follow the requirements defined below as originally outlined (as Bryde's whale) in the 2020 Biological Opinion and April 2021 Amendment to the Incidental Take Statement and Revised Appendices issued by the National Marine Fisheries Service (NMFS). Note these conditions of approval refer to the species as the Rice's whale (Balaenoptera ricei). Until 2021, the species was known as Bryde's whale (Balaenoptera edeni).
3. Vessel operators and crews must maintain a vigilant watch for Rice's whales and slow down, stop their vessel, or alter course, as appropriate and regardless of vessel size, to avoid striking any Rice's whale. Visual observers monitoring the 500 m vessel strike avoidance zone for Rice's whales can be either third-party observers or crew members (e.g., captain), but crew members responsible for these duties must be provided sufficient training to distinguish aquatic protected species to broad taxonomic groups, as well as those specific
species detailed further below. If the species is indistinguishable, then operators should assume it is a Rice's whale and act accordingly (see below).

4. If transiting within the Rice's whale area (figure below), operators must notify BOEM and/or BSEE of their plans prior to transit and include what port is used for mobilization and demobilization and explain why the transit is necessary. If an unavoidable emergency transit through this area occurs (i.e., safety of the vessel or crew is in doubt or the safety of life at sea is in question), it must be reported immediately after the emergency is over and must include all required information referenced herein. After completing transit through the Rice's whale area, you must prepare a report of transit describing the time the vessel entered and departed the Rice's whale area, any Rice's whale sightings or interactions (e.g., vessel avoidance) that occurred during transit, and any other marine mammal sightings or interactions. Minimum reporting information is described below:
i. The plan, permit or other BOEM or BSEE number used to identify the activity;
ii. Automatic Identification System (AIS), if available;
iii. Time and date vessel entered and exited the Rice's whale area;
iv. Time, date, water depth, and location (latitude/longitude) of the first sighting of the animal;
v. Name, type, and call sign of the vessel in which the sighting occurred;
vi. Species identification (if known) or description of the animal involved;
vii. Approximate size of animal (if known);
viii. Condition of the animal during the event and any observed injury / behavior (if known);
ix. Photographs or video footage of the animal, if available;
x. General narrative and timeline describing the events that took place;
xi. Time and date vessel departed Rice's whale area;
xii. Trackline (e.g., time, location, and speed) of vessel while within Rice's whale area; and
xiii. Environmental conditions, including Beaufort Sea State (BSS) and any other relevant weather conditions including cloud cover, fog, sun glare, and overall visibility to the horizon.
5. Upon conclusion of transit, operators must submit reports to protectedspecies@boem.gov and protectedspecies@bsee.gov within 24 hours of transit through the Rice's whale area. The title of the email should include "Transit through Rice's Whale Area."
6. All vessels, regardless of size, must observe a $10-\mathrm{knot}$, year-round speed restriction in the Rice's whale area during daylight hours. The only exception to the $10-\mathrm{knot}$ vessel speed restriction would be when observing the speed restriction would cause the safety of the vessel or crew to be in doubt or the safety of life at sea to be in question.
7. All vessels must maintain a minimum separation distance of 500 m from Rice's whales. If a whale is observed but cannot be confirmed as a species other than a Rice's whale, the vessel operator must assume that it is a Rice's whale and take appropriate action.
8. All vessels 65 feet or greater associated with oil and gas activity (e.g., source vessels, chase vessels, supply vessels) must have a functioning Automatic Identification System (AIS) onboard and operating at all times as required by the U.S. Coast Guard. If the U.S. Coast Guard does not require AIS for the vessel, it is strongly encouraged. At minimum, the reporting (as specified within this COA) must be followed and include trackline (e.g., time, location, and speed) data.
9. No transit is permissible at nighttime or during low visibility conditions (e.g., BSS 4 or greater) except for emergencies (i.e., when the safety of the vessel or crew would otherwise be in doubt or the safety of life at sea is in question).
10. If an operator while operating within the Rice's whale area
i. Exceeds the 10 -knot vessel speed,
ii. Does not maintain a 500 m minimum separation distance from a Rice's whale, and/or
iii. Conducts transit during nighttime or during low visibility conditions (e.g., BSS 4 or greater), the operator must notify BSEE and BOEM by emailing protectedspecies@bsee.gov and protectedspecies@boem.gov within 24 hours. The notification must be reported as a separate and distinct notification to the transit report with the title "Transit Deviation" in the subject line. The notification must provide a detailed explanation as to why the Transit Deviation occurred.
11. This COA does not remove or alter the need to comply with any other applicable regulatory or legal requirements with respect to vessel operations, including as outlined in the amended Appendix C - Gulf of Mexico Vessel Strike Avoidance and lnjured/Dead Aquatic Protected Species Reporting Protocols.

12. Seismic Survey Operation, Monitoring, and Reporting Guidelines: The applicant will follow the guidance provided under Appendix A: Seismic Survey Mitigation and Protected Species Observer Protocols found in the Biological Opinion amendment issued by the National Marine Fisheries Service on April 26, 2021. The guidance can be accessed on NOAA Fisheries internet website at https://repository.library.noaa.gov/view/noaa/29355.
13. Marine Trash and Debris Awareness and Elimination: The applicant will follow the guidance provided under Appendix B. Gulf of Mexico Marine Trash and Debris Awareness and Elimination Survey Protocols found in the Biological Opinion issued by the National Marine Fisheries Service on March 13, 2020. The guidance can be accessed on NOAA Fisheries internet website at https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico.
14. Vessel-Strike Avoidance/Reporting: The applicant will follow the protocols provided under Appendix C. Gulf of Mexico Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols found in the Biological Opinion amendment issued by the National Marine Fisheries Service on April 26, 2021. The guidance can be accessed on the NOAA Fisheries internet site at https://repository.library.noaa.gov/view/noaa/29355.
15. Sea Turtle Resuscitation Guidelines: The applicant will follow the guidance provided under Appendix J. Sea Turtle Handling and Resuscitation Guidelines found in the Biological Opinion issued by the National Marine Fisheries Service on March 13, 2020. The guidance can be accessed on the NOAA Fisheries internet site at https://www.fisheries.noaa.gov/resource/document/appendices-biological-opinion-federally-regulated-oil-and-gas-program-gulf-mexico.
16. Slack-Line Precautions Condition of Approval: If operations require the use of flexible, small diameter (<2 inch) lines to support operations (with or without divers), operators/contractors must reduce the slack in the lines, except for human safety considerations, to prevent accidental entanglement of protected species (i.e. species protected under the Endangered Species Act [ESA] and/or Marine Mammal Protection Act [MMPA]). This requirement includes tether lines attached to remotely operated equipment. The requirements below must be followed for any activities entailing use of flexible, small diameter lines that will not remain continuously taut, except when complying with these requirements would put the safety of divers, crew, or the vessel at risk:

- Operators must utilize tensioning tools and/or other appropriate procedures to reduce unnecessary looseness in the lines and/or potential looping;
- The lines must remain taut, as long as additional safety risks are not created by this action;
- A line tender must be present at all times during dive operations and must monitor the line(s) the entire time a diver is in the water; and
- Should the line tender and/or diver become aware of an entanglement of an individual protected species, the reporting requirements described in the Reporting Requirements COA must be followed as soon as safety permits.

8. Reporting Requirements Condition of Approval: Review of your proposed activities identified use of equipment that has the potential for entanglement and/or entrapment of protected species (i.e. species protected under the Endangered Species Act [ESA] and/or Marine Mammal Protection Act [MMPA]) that could be present during operations. In case of entrapment, procedures and measures for reporting are dependent upon the situation at hand. These requirements replace those specific to dead and injured species reporting in respective sections of Appendix A (insofar as they relate to geophysical surveys) and Appendix C of the 2020 Biological Opinion on the Bureau of Ocean Energy Management's Oil and Gas Program Activities in the Gulf of Mexico.

Incidents Requiring Immediate Reporting

Certain scenarios or incidents require immediate reporting to Federal agencies; these are described below:

Should any of the following occur at any time, immediate reporting of the incident is required after personnel and/or diver safety is ensured:

- Entanglement or entrapment of a protected species (i.e., an animal is entangled in a line or cannot or does not leave a moon pool of its own volition).
- Injury of a protected species (e.g., the animal appears injured or lethargic). Interaction, or contact with equipment by a protected species.
- Any observation of a leatherback sea turtle within a moon pool (regardless of whether it appears injured, or an interaction with equipment or entanglement/entrapment is observed).

1. As soon as personnel and/or diver safety is ensured, report the incident to National Marine Fisheries Service (NMFS) by contacting the appropriate expert for $24-\mathrm{hr}$ response. If you do not receive an immediate response, you must keep trying until contact is made. Any failed attempts should be documented. Contact information for reporting is as follows:
a. Marine mammals: contact Southeast Region's Marine Mammal Stranding Hotline at 1-877-433-8299.
b. Sea turtles: contact Brian Stacy, Veterinary Medical Officer at 352-2833370. If unable to reach Brian Stacy, contact Lyndsey Howell at 301-3103061. This includes the immediate reporting of any observation of a leatherback sea turtle within a moon pool.
c. Other protected species (e.g., giant manta ray, oceanic whitetip shark, or Gulf sturgeon): contact the ESA Section 7 biologist at 301-427-8413 (nmfs.psoreview@noaa.gov) and report all incidents to takereport.nmfs@noaa.gov.
d. Minimum reporting information is described below:
i. Time, date, water depth, and location (latitude/longitude) of the first discovery of the animal;
ii. Name, type, and call sign of the vessel in which the event occurred;
iii. Equipment being utilized at time of observation;
iv. Species identification (if known) or description of the animal involved;
v. Approximate size of animal;
vi. Condition of the animal during the event and any observed injury / behavior;
vii. Photographs or video footage of the animal, only if able; and
viii. General narrative and timeline describing the events that took place.
2. After the appropriate contact(s) have been made for guidance/assistance as described in 1 above, you may call BSEE at 985-722-7902 (24 hours/day) for questions or additional guidance on recovery assistance needs (if still required) and continued monitoring requirements. You may also contact this number if you do not receive a timely response from the appropriate contact(s) listed in 1. above.
a) Minimum post-incident reporting includes all information described above (under 1.d.i-viii) in addition to the following:
i. NMFS liaison or stranding hotline that was contacted for assistance;
ii. For moon pool observations or interactions:

- Size and location of moon pool within vessel (e.g., hull door or no hull door);
- Whether activities in the moon pool were halted or changed upon observation of the animal; and
- Whether the animal remains in the pool at the time of the report, or if not, the time/date the animal was last observed.

Reporting of Observations of Protected Species within an Enclosed Moon Pool

If a protected species is observed within an enclosed moon pool and does not demonstrate any signs of distress or injury or an inability to leave the moon pool of its own volition, measures described in this section must be followed (only in cases where they do not jeopardize human safety). Although this particular situation may not require immediate assistance and reporting as described under Incidents Requiring Immediate Reporting (see above), a protected species could potentially become disoriented with their surroundings and may not be able to leave the enclosed moon pool of their own volition. In order for operations requiring use of a moon pool to continue, the following reporting measures must be followed:

Within 24 hours of any observation, and daily after that for as long as an individual protected species remains within a moon pool (i.e., in cases where an ESA listed species has entered a moon pool but entrapment or injury has not been observed), the following information must be reported to BSEE (protectedspecies@bsee.gov) and BOEM (protectedspecies@,boem.gov):

1. For an initial report, all information described under 1.d.i-viii above should be included.
2. For subsequent daily reports:
a. Describe the animal's status to include external body condition (e.g., note any injuries or noticeable features), behaviors (e.g., floating at surface, chasing fish, diving, lethargic, etc.), and movement (e.g., has the animal left the moon pool and returned on multiple occasions?);
b. Description of current moon pool activities, if the animal is in the moon pool (e.g., drilling, preparation for demobilization, etc.);
c. Description of planned activities in the immediate future related to vessel movement or deployment of equipment;
d. Any additional photographs or video footage of the animal, if possible;
e. Guidance received and followed from NMFS liaison or stranding hotline that was contacted for assistance;
f. Whether activities in the moon pool were halted or changed upon observation of the animal; and
g. Whether the animal remains in the pool at the time of the report, or if not, the time/date the animal was last observed.
3. Non-Recurring Mitigation Benthic Communities: BOEM review of geophysical activities proposed in L22-001 Mod 1 identified confirmed and potential sensitive sessile benthic resources within the proposed node area. According to NTL 2009-G40, the minimum separation distance for bottom disturbing activities is $76 \mathrm{~m}(250 \mathrm{ft}$.) from any sensitive sessile benthic community (e.g., deepwater coral, chemosynthetic tube worms). Based on the methods described in the application, BOEM authorizes the applicant to deploy nodes with less than 76 $\mathrm{m}(250 \mathrm{ft})$ avoidance of high-density deepwater benthic communities contingent upon the applicant adhering to the mitigations described below:
4. All seafloor disturbances, including nodes, cables, and ROV, must remain a minimum of $5 \mathrm{~m}(16 \mathrm{ft})$ from all sensitive sessile benthic communities.
5. The contractor must photograph the seabed within a $10 \mathrm{~m}(33 \mathrm{ft})$ radius of any node placed within 76 m (250 ft .) of a BOEM anomaly (June 2019 dataset, see link below). Photographs of each such location shall be taken: Pre-node deployment, post-node deployment, and post-node retrieval. The photos shall clearly show the geographic location of each node.
6. If any sessile benthic communities are present at a proposed node location, a new site that allows compliance with the above requirements shall be selected.
7. The contractor must provide an as-placed GIS shapefile of actual OBN locations to demonstrate compliance. Submit the required photographs and shapefile to the BOEM Regional Supervisor, Office of Resource Evaluation, Data Acquisition and Special Projects Unit, within 90 calendar days after you complete the G\&G activity.

Refer to the following BOEM site for GIS data layers of known 3D seismic water bottom anomalies: https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/

The following feature classes have a high probability of supporting sensitive sessile benthic organisms and shall be avoided unless visual inspection and photographic data confirm an absence of high-density deepwater benthic communities:

1. Anomaly_patchreefs (Shallow Water)
2. Anomaly_confirmed_patchreefs (Shallow Water)
3. Seep_anomaly_positives
4. Seep_anomaly_positives_possible_oil
5. Seep_anomaly_positives_confirmed_oil
6. Seep_anomaly_positives_confirmed_gas
7. Seep_anomaly_confirmed_corals
8. Seep_anomaly_confirmed_organisms
9. Seep_anomaly_confirmed_hydrate
10. Seep_anomaly_confirmed_carbonate
11. Anomaly_Cretaceous
12. Anomaly_Cretaceous_talus

If you have any question regarding this mitigation, please contact Dr. Alicia Caporaso - Benthic Ecology Lead (Alicia.Caporaso@BOEM.gov) or Dr. Kate Segarra - Biological Sciences Unit Supervisor (Katherine.Segarra@BOEM.gov).
10. Non-Recurring Mitigation For The Protection of Potential Archaeological Resources: The cultural resources review of Shell Offshore, Inc. application to conduct a 4D OBN survey and PIES sampling within OCS blocks in the Walker Ridge area indicates that potentially significant archaeological resources have been reported in the area of potential effect. There are significant portions of the project area within the OCS that have received either limited or no previous archaeological survey, and these areas are likely to contain archaeological materials that may be impacted by the proposed operations. You must avoid the known potential cultural resources by the distance listed in the attached table. If the applicant discovers man-made debris that appears to indicate the presence of a shipwreck, aircraft, or other man-made structure (e.g., a sonar image or visual confirmation of an iron, steel, or wooden hull, wooden timbers, anchors, concentrations of man-made objects such as bottles or ceramics, piles of ballast rock, or aircraft structures) within or adjacent to the proposed action area during the proposed operations, they will be required to immediately halt operations, take steps to ensure that the site is not disturbed in any way, and contact the BOEM Regional Supervisor for Environment within 48 -hours of its discovery. They must cease all operations within 1,000 feet (305 meters) of the site until the Regional Director instructs you on what steps you must take to assess the site's potential historic significance and what steps you must take to protect it. If a node, ROV, or other activity impacts any submerged object, then the applicant must also submit a report detailing each instance of this activity. This report should include the coordinates of the impact (to DGPS accuracy), a description of the submerged object, any damage that may have resulted from the any operations, and any photographic or video imagery that is collected. The applicant must submit a copy of any data collected as a result of these investigations.
Please direct any questions or correspondence pertaining to these requirements to Scott Sorset at (504) 736-2999 or scott.sorset@boem.gov or archaeology@boem.gov.

Archaeological Targets

$\begin{aligned} & \text { LATITUDE (NAD } \\ & \text { 1927) } \end{aligned}$	LONGITUDE (NAD 1927)	MIN_AVOID_FT
26.470552699	-90.850050488	1600
26.433709258	-90.752087333	1000
26.497785770	-90.774443780	500
26.512588060	-91.124718350	1000

Additional Conditions of Approval:

1. Man-made structure(s) such as pipeline(s) or other potential hazard(s) may be located in the permitted work area; therefore, prior to performing operations that involve seafloor disturbance (e.g., coring), take precautions in accordance with Notice to Lessees and Operators No. 2008-G05, Section VI.B, Shallow Hazards Program (see the BOEM website at: http://www.boem.gov/Regulations/Notices-To-Lessees/2008/08-g05.aspx).
2. If you conduct activities that could disturb the seafloor in an Ordnance Dumping Area (see the BOEM website at: https://www.boem.gov/Ordnance-Dumping- Areas/ for a map), exercise caution, since this area might contain old ordnance, including unexploded shells and depth charges, dumped before 1970. In addition, the U.S. Air Force has released an undeterminable amount of unexploded ordnance in Water Test Areas 1 through 5 (most of the Eastern Planning Area of the GOM).
3. If you discover any site, structure, or object of potential archaeological significance (i.e., cannot be definitively identified as modern debris or refuse) while conducting operations, the provisions of 30 CFR 250.194(c) and NTL 2005-G07, (Archaeological Resource Surveys and Reports) require you to immediately halt operations within 1,000 feet of the area of discovery and report this discovery to the Regional Supervisor (RS) of the Office of Environment (OE) within 48 hours. Every reasonable effort must be taken to preserve the archaeological resource from damage until the RS of OE has told you how to protect it.
4. Comply with the provisions of NTL 2009-G39, Biologically-Sensitive Underwater Features and Areas, effective January 27, 2010, (see the BOEM website at: https://www.boem.gov/Regulations/Notices-To-Lessees/2009/09-G39.aspx). If you conduct activities near an identified biologically sensitive topographic features (see the specific list at https://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of-Mexico-Region/topoblocks-pdf.aspx), in the Live Bottom "Pinnacle Trend" Area, or Live Bottom "Low Relief" Area (see the BOEM website at https://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of-Mexico-Region/topomap-pdf.aspx for a map of all three features), the following measures apply:
a. Ensure you do not anchor or otherwise disturb the seafloor within 152 meters (500 feet) of a designated "No Activity Zone." Information on the activities that
disturbed the seafloor within 305 meters (1,000 feet) of the "No Activity Zone" of a biologically sensitive topographic feature shall be submitted to BOEM (see "d" below.)
b. Do not anchor or otherwise disturb the seafloor within 30 meters (100 feet) of any identified pinnacles or other hard bottoms that have a vertical relief of eight feet or more. Information on the activities that disturbed the seafloor within 61 meters (200 feet) of pinnacles in the "Pinnacle Trend" Area shall be submitted to BOEM (see "d" below.)
c. Do not anchor or otherwise disturb the seafloor near any identified live bottom low relief features. Information on the activities that disturbed the seafloor within 30 meters (100 feet) of live bottom low relief features in the Live Bottom "Low Relief" Area shall be submitted to BOEM (see "d" below.)
d. Within 90 calendar days of completing activities, submit information regarding seafloor disturbances to BOEM New Orleans Office Data Acquisition and Special Project Unit (see page 5 of these "Protective Measures" for the address) a PDF map and the appropriate shape files to reproduce the map, showing the location of the seafloor disturbance relative to these features.
5. If you conduct activities in water depths 300 meters (984 feet) or greater, make sure that you do not anchor, use anchor chains, wire, ropes, or cables, or otherwise disturb the seafloor within 76 meters (250 feet) of any features or areas that could support deep water sessile benthic communities. Refer to NTL No. 2009-G40, Deepwater Chemosynthetic Communities, effective January 27, 2010 (see the BOEM website at: http://www.boem.gov/Regulations/Notices-To-Lessees/2009/09-G40.aspx). Also, refer to the BOEM website for GIS data layers of known 3D seismic water bottom anomalies at https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/.

The following feature classes have a high probability of supporting sensitive sessile benthic organisms and shall be avoided unless visual inspection and photographic data confirm an absence of high-density deepwater benthic communities:
13. Anomaly_patchreefs (Shallow Water)
14. Anomaly_confirmed_patchreefs (Shallow Water)
15. Seep_anomaly_positives
16. Seep_anomaly_positives_possible_oil
17. Seep_anomaly_positives_confirmed_oil
18. Seep_anomaly_positives_confirmed_gas
19. Seep_anomaly_confirmed_corals
20. Seep_anomaly_confirmed_organisms
21. Seep_anomaly_confirmed_hydrate
22. Seep_anomaly_confirmed_carbonate
23. Anomaly_Cretaceous
24. Anomaly_Cretaceous_talus

Within 90 calendar days after completing activities that disturbed the seafloor within 152 meters (500 feet) of features or areas that could support high-density chemosynthetic communities, submit to the BOEM New Orleans Office Data Acquisition and Special Project Unit (see page 5 of these "Protective Measures" for the address) a PDF map and the appropriate shape files to reproduce the map, showing the location of the seafloor disturbance relative to these features
6. Comply with the provisions of NTL 2009-G39, Biologically-Sensitive Underwater Features and Areas of the Gulf of Mexico, effective January 27, 2010, (see the BOEM website at: http://www.boem.gov/Regulations/Notices-To-Lessees/2009/09- G39.aspx). If you discover any high-relief topographic feature with a relief greater than eight (8) feet while conducting activities, report the discovery to the BOEM New Orleans Office Regional Director. Make sure you do not anchor on or otherwise disturb such a feature. Within 90 calendar days after completing an activity that disturbed the seafloor within 30 meters (100 feet) of such a feature, submit to the BOEM New Orleans Office Data Acquisition and Special Project Unit (see page 5 of these "Protective Measures" for the address) a map at a scale of 1 inch $=1,000$ feet with DGPS accuracy, showing the location of the seafloor disturbance relative to the feature.
7. Before you conduct activities that could disturb the seafloor within 254 meters (1,000 feet) of a Texas artificial reef site or artificial reef permit area, within 152 meters (500 feet) of a Louisiana artificial reef site or artificial reef permit area, or could disturb the seafloor within a General Permit Area established by the States of Texas, Alabama or Florida for the placement of artificial reef material, contact the appropriate State reef management agency. See the BOEM websites at: http://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of- Mexico-Region/artreefmap.aspx for a map and http://www.boem.gov/Environmental- Stewardship/Environmental-Studies/Gulf-of-Mexico-Region/artreefcontacts-pdf.aspx for State contacts.
8. If you conduct activities within the boundaries of the Flower Gardens National Marine Sanctuary (Flower Gardens Banks and Stetson Bank), exercise caution to ensure that such activities do not endanger any other users of the Sanctuary. See the BOEM website at: http://www.boem.gov/Environmental-Stewardship/Environmental- Studies/Gulf-of-Mexico-Region/FGNMSmap-pdf.aspx for map. Additionally, activities involve moving the marker buoys at the Sanctuary, contact Mr. G. P. Schmahl, the current Sanctuary Manager, for instructions. See the BOEM website at: http://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Gulf-of- Mexico-Region/FGNMScontacts-pdf.aspx for Mr. Schmahl's contact information. See the BOEM website at: http://www.boem.gov/Environmental-Stewardship/Environmental- Studies/Gulf-of-Mexico-Region/FGNMSbuoys-pdf.aspx for the locations of the Flower Gardens' marker buoys.
9. If your proposed activities will involve using boats from a port located south of the Suwannee River mouth in Florida, make sure that you adhere to the following manatee protection plan:
a. Advise your personnel of the possibility of the presence of manatees in the inland and coastal waters of Florida in the Eastern Gulf of Mexico.
b. Advise your personnel that there are civil and criminal penalties for harming, harassing, or killing manatees, which are protected under the Endangered Species Act, the Marine Mammal Protection Act, and the Florida Manatee Sanctuary Act of 1978.
c. Advise your vessel operators to (1) use the deeper ship channels to the maximum extent possible; (2) avoid collisions with manatees and to stay within the existing channels; and (3) obey all speed restrictions and travel at "no wake/idle" speeds at all times while operating in shallow water or in channels where the draft of the vessel provides less than four (4) feet of clearance. (Areas of manatee concentrations have been identified and speed limit signs have been erected in accordance with Federal, State, and local regulations.)
d. While vessels are berthed in port, advise your vessel operators to use fenders between the dock and the vessel and/or between adjacent vessels berthed side-byside. Make sure that the fenders have a minimum clearance of three feet when compressed between the dock and the vessel
e. Ensure that your vessel operators keep logs detailing any sighting of, collision with, damage to, or death of manatees that occur while you conduct an ancillary activity. If a mishap involving a manatee should occur, make sure that the vessel operator immediately calls the "Manatee Hotline" ((888) 404-3922), and the U.S. Fish and Wildlife Service, Jacksonville Field Office ((904) 232-2580) for north Florida or the U.S. Fish and Wildlife Service, Vero Beach Ecosystem Office ((772) 562-3909) for South Florida.
f. Within 60 calendar days after completing the activity, submit a report summarizing all manatee incidents and sightings to the Florida Marine Research Institute, Florida Fish and Wildlife Conservation Commission, 100 Eighth Avenue SE, St. Petersburg, FL 33701-5095; and to the U.S. Fish and Wildlife Service, 6620 Southpoint Drive South, Suite 310, Jacksonville, FL 32216-0958, for north Florida, or to the U.S. Fish and Wildlife Service, 1339 20th Street, Vero Beach, Florida 32960-3559, for south Florida.
10. The Magnuson-Stevens Fisheries Conservation and Management Act (see 50 CFR 600.725) prohibits the use of explosives to take reef fish in the Exclusive Economic Zone. Therefore, if your activities involve the use of explosives, and the explosions result in stunned or killed fish, do not take such fish on board your vessels. If you do, you could be charged by the National Oceanic and Atmospheric Administration Fisheries Service (NOAA Fisheries Service) with a violation of the aforementioned Act. If you have any questions, contact NOAA Fisheries Service, Office for Law Enforcement, Southeast Division, at (727) 8245344.
11. When operations extend south of approximately 26 degrees north latitude in the Western Gulf of Mexico or 24 degrees to 25 degrees north latitude in the Eastern Gulf of Mexico (the 200-nautical mile provisional maritime also called the Exclusive Economic Zone Conservation Zone Limit), notify the Department of State: Ms. Roberta Barnes, Room 2665, OES/OPA, Department of State, Director, Office of Ocean and Polar Affairs, Washington, D.C., 20520, at (202) 647-0240 or barnesrm@state.gov.
12. As part of the requirements of 30 CFR 551.6(a), if any operation under this Permit and Agreement is to be conducted in a leased area, the Permittee shall take all necessary precautions to avoid interference with operations on the lease and damage of existing structures and facilities. The lessee (or operator) of the leased area will be notified, in writing, before the Permittee enters the leased area, or commences operations, and a copy of the notification will be sent to the Regional Supervisor executing this Permit Agreement.
13. (a) Solid or liquid explosives shall not be used, except pursuant to written authorization from the Regional Supervisor. Requests of the use of such explosives must be in writing, giving the size of charges to be used, the depth at which they are to be detonated, and the specific precautionary methods proposed for the protection of fish, oysters, shrimp, and other natural resources. The use of explosives represents a may affect situation under Section 7 of the Endangered Species Act of 1973, as amended.
(b) The following provisions are made applicable when geophysical exploration on the Outer Continental Shelf using explosives is approved:
i. Each explosive charge will be permanently identified by markings so that unexploded charges may be positively traced to the Permittee and to the specific field party of the Permittee responsible for the explosive charge
ii. The placing of explosive charges on the seafloor is prohibited. No explosive charges shall be detonated nearer to the seafloor than five (5) feet (1.52 meters).
iii. No explosive shall be discharged within 1,000 feet (304.8 meters) of any boat not involved in the survey.
14. Any serious accident, personal injury, or loss of property shall be immediately reported to the Regional Supervisor of Resource Evaluation.
15. All pipes, buoys, and other markers used in connection with seismic work shall be properly flagged and lighted according to the navigation rules of the U.S. Corps of Engineers and the U.S. Coast Guard.

August 24, 2023
Regional Supervisor, Resource Evaluation
Bureau of Ocean Energy Management
Gulf of Mexico OCS Region
1201 Elmwood Park Boulevard
New Orleans, LA 70123-2394
Attn: Robert Mohollen - Data Acquisition and Special Projects Unit - MS 5123
SUBJECT: Modification No. 1 for Contractor and Node Change // L22-001 Stones Survey Geophysical Permit for OBN 4D Seismic Survey Walker Ridge and Surrounding Area

Gentlemen:
We need to update the contractor company name being used in above referenced Permit. PXGEO is the company that is going to operate to acquire the data. Therefore, the node type has been changed to Manta 1.5 .

- The same number of nodes will be used as previously approved.
- The node polygon is unchanged as previously approved.
- Section D is included.
- There will be no cable or anything in the water column.
- There is no cable attached to the node.
- The node deployment will be using ROV and Basket to load the nodes.

The new contractor company and node to be used in this survey are as follows:

Contractor	PXGEO
Node	Manta 1.5

The GUNDALF source modeling generated by TGS and PXGEO produced different results because of the differences in array design and in input parameter. The GUNDALF report submitted with the 2022 Stones Application, modelled the 5110 cubic inch array with the following parameters:

- Sub array separation $-6 m$
- Physical Parameters shown in Table 1

Sea temperature (deg.C)	Velocity of sound in water (m.sec-1)	Wavelet dominant frequency (Hz).	Average wave height (m).	Surface reflection coeff.
10	1496	20	0	-0.95

Table 1 - TGS input Parameters

August 24, 2023
Page 2

The PXGEO GUNDALF report used the following parameter for their 5110 cubic inch array:

- Sub Array separation - 7.5 m
- Physical Parameters shown in Table 2

Sea temperature (deg.C)	Velocity of sound in water (m.sec-1)	Wavelet dominant frequency (Hz).	Average wave height (m).	Surface reflection coeff.
20	1522.1	20	0	-1

Table 2 - PXGEO input Parameters

These changes can generate small variations in the modelled source level, hence the reason the SL numbers in the source table are typical stated as an approximation.

Source Energy Source table:

Please contact me at 504.425.4652 or at tracy.albert@shell.com if you have any questions or require additional information.

Sincerely,

Tracy Albert
Sr. Regulatory Specialist

A. General Information

1. The activity will be conducted by:

PXGEO

Service Company Name
10350 Richmond Ave Ste 800,
Address
Houston, Texas 77042
City, State, Zip
+1 2(713) 904-2244
Telephone/FAX Numbers
brent.obrien@pxgeo.com
E-Mail Address
2 The purpose of the activity is:

For Shell E\&P Co

Purchaser(s) of the Data
701 Poydras Street, Room 2418
Address
New Orleans, LA 70139
City, State, Zip
+1 832-933-5878
Telephone/FAX Numbers
vishram.rambaran@shell.com

E-Mail Address

Mineral exploration
3. Describe your proposed survey activities (i.e., vessel use, benthic impacts, acoustic sources, etc.) and describe the environmental effects of the proposed activity, including potential adverse effects on marine life. Describe what steps are planned to minimize these adverse effects (mitigation measures). For example: 1) Potential Effect: Excessive sound level Mitigation; Soft Start, Protected Species Observers (PSO's), mammal exclusion zone or 2) Potential Effect: Bottom disturbance; Mitigation: ROV deployment/retrieval of bottom nodes) (use continuation sheets as necessary or provide a separate attachment. Label as BOEM-0327 Section A General Information.): There will be no adverse effects on marine life. The use of airgun sources will follow NTL 2016-G02.

Additionally, the use of a Passive Acoustic Monitoring (PAM) should be implemented following NTL 2016-G02.
4. The expected commencement date is: September 22,2023

The expected completion date is:
December 31, 2023
5. The name of the individual(s) in charge of the field operation is:

Vishram Rambaran
May be contacted at:
150 North Dairy Ashford Road, Houston Tx, 77079
Telephone (Local) +18329335878 (Marine) $\begin{aligned} & \text { Siddis Mariner: +4751505560 } \\ & \text { Artemis Arctic: + }+4770113920\end{aligned}$
Email Address: vishram.rambaran@shell.com
6. The vessel(s) to be used in the operation is (are):

Vessel Name (s)	Vessel Model	Registry Number(s)	Radio Call Sign(s)	Registered Owner(s)
Artemis Artic	Source Vessel	$9207510(\mathrm{IMO})$	ZDNE7	Artemis Shipping AS
Siddis Mariner	ROV Vessel	$9726217(\mathrm{IMO})$	LAFV8	Siddis Mariner AS

7. The port from which the vessel(s) will operate is:
8. Briefly describe the navigation system (vessel navigation only):

dGPS

B. Complete for Geological Exploration for Mineral Resources or Geological Scientific Research

1. The type of operation(s) to be employed is: (check one)
a.
 Deep stratigraphic test, or
b.
 Shallow stratigraphic test with proposed total depth of \qquad , or
c. \qquad Other \qquad
2. Attach a page-size plat showing: 1) The generalized proposed location for each test, where appropriate, a polygon enclosing the test sites may be used; 2) BOEM protraction areas, coastline, point of reference, OCS boundary/3-mile limit; 3) Distance and direction from a point of reference to area of Activity; and 4) Label as "Public Information".

C. Complete for Geophysical Exploration for Mineral Resources or Geophysical Scientific Research

1. The proposed operation:

Seismic survey
a. Acquisition method (OBN, OBC, Streamer): OBN
b. Type of acquisition: (High Resolution Seismic, 2D Seismic, 3D Seismic, gravity, magnetic, CSEM, etc.)
4D monitor seismic survey

2 Attach a page-size plat showing:
a. The generalized proposed location of the activity with a representative polygon;
b. BOEM protraction areas, coastline, point of reference, OCS boundary/3- mile limit;
c. Distance and direction from a point of reference to area of activity;
d. Label as "Public Information"; and
e. Submit relevant shape files needed to recreate the map as part of the required digital copy.

Form 327 Section D, Number 7

Stones 4D OBN

Node deployment and retrieval procedures:

Nodes are placed and recovered individually on the seafloor using ROVs guided by a USBL navigation system. The ROVs pause to visually inspect the seafloor prior to approaching the preplot node location. Nodes are placed clear of standoff zones such as chemosynthetic, artifacts or subsurface infrastructure. The ROV lands on location to deploys/recovers nodes from/to a skid on the base of the ROV. The ROV then departs vertically and transits to the next location.

Node Specification:

Nodes are passive, continuous recording, autonomous receivers with no external connections while on the seafloor. The Nodes that will be used, is the Manta 1.5 nodes which have a battery life of ~ 100 + days. The Manta 1.5 node weighs 12.3 kg in water and is cylindrical in shape with a diameter of 35.0 cm and a height of 13.0 cm . The maximum operating depth of the Manta 1.5 node is 3000 m .

Node spacing: $400 \mathrm{~m} \times 400 \mathrm{~m}$

Number of nodes: approximately 5122 (final node locations for acquisition will be a subset of the grid locations provided)

Full array report with directivity

This report is copyright Oakwood Computing Associates Ltd. 2002-. The report is automatically generated using GUNDALF and it may be freely distributed provided it retains all copyright notices and is kept as a whole.

Technical Overview

The following report was compiled using the Gundalf source array modelling program.
Gundalf has been calibrated for all modern airgun types including the latest environmental e300 and e500 sources, long-life guns, G guns, and sleeve guns both singly and in clusters. Gundalf users can access calibration information directly within the product in a variety of environments. Gundalf calibration is revisited periodically whenever new data becomes available. The current calibration epoch is given in the header of this report. For more information

From 2022 it can optionally model a growing number of alternative types, including some sparkers, boomers and marine vibrators.

Array Summary

The following table optionally includes error bounds for the primary characteristics of the source signature where relevant: peak to peak, primary to bubble and bubble period. Error bounds for airguns are derived during calibration where possible, a time-consuming process involving optimally matching the model to many near- and far-field measurements of different quality, bandwidth and provenance, for both single and clustered airguns. Error bounds are not normally available for other source types modelled by Gundalf. For more on this, see the Modelling Notes at the end of this report and also the online help for calibration in Gundalf itself.

Note that it is important to state the conditions under which the RMS is computed since it depends directly on the length of the window used. Here an energy criterion determines the length when less than the full window must be used, specified as a precentage of the energy in the full window as is the case with drop-out computations. The energy window used is indicated in the table.

Note also that some of these parameters, most obviously the peak measurements will depend on the maximum model bandwidth, which is shown for reference. In addition some parameters for example those associated with bubbles are difficult to define for some source types

Where given, the error bounds shown in the table represent 95\% confidence intervals for the Gundalf model against its calibration data.

Number of guns	$32(5110.00$ cu.in., 83.74 litres)
Peak to peak in bar-m.	$141.3(14.13 \mathrm{MPa}, 263 \mathrm{~dB}$ re 1 muPa at 1 m.$)$
Zero to peak in bar-m.	$61.9(6.19 \mathrm{MPa}, 256 \mathrm{~dB}$ re $1 \mathrm{muPa}$. at 1 m.$)$
RMS pressure in bar-m. (full window)	$4.91(0.491 \mathrm{MPa}, 234 \mathrm{~dB}$ re 1muPa. at 1m.)
Primary to bubble (peak to peak)	18.0
Bubble period (s.)	0.090
Maximum spectral ripple (dB)	$10(10-70 \mathrm{Hz})$.
Maximum spectral value (dB)	$221(10-70 \mathrm{~Hz})$.
Average spectral value (dB)	$218(10-70 \mathrm{~Hz})$.
Total acoustic energy (Joules)	657489.9
Total acoustic efficiency (\%)	56.9
Maximum model bandwidth (Hz)	$0-1024$

Gundalf modelling report: 14:51:11, 2023-Apr-03
Version: C8.3f/2023-Jan-31; Epoch: 2023-Jan-31; tim.bunting@pxgeo.com

Array geometry

The following table lists all the guns modelled in the array along with their characteristics. Please note the following:-

- The peak to peak varies only as the cube root of the volume for the same gun type so that even small guns contribute significantly. This is particularly relevant to drop-out analysis.
- The peak to peak can also be depressed due to clustering effects as reported long ago by Strandenes and Vaage (1992), "Signatures from clustered airguns", First Break, 10(8).

$\begin{array}{\|c\|} \hline \text { Gun } \\ \text { number } \end{array}$	Press. psi)	$\begin{array}{\|c\|} \hline \text { Volume } \\ \text { cu.in) } \end{array}$	$\begin{aligned} & \text { Gun } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathbf{x} \\ \mathrm{m} . \end{gathered}$	$\begin{gathered} \mathbf{y} \\ \mathrm{m} .) \end{gathered}$	$\begin{gathered} \mathrm{z} \\ \mathrm{~m} .) \end{gathered}$	$\begin{aligned} & \text { Delay } \\ & \text { s.) } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Sub- } \\ \text { array } \\ \text { number } \end{array}$	Peak to peak contrib. percen t)	Max. bub. rad m.)
1	2000.00	90.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	0.000	-8.000	8.000	0.0000	1	2.8	0.3
2	2000.00	155.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	3.000	-8.500	8.000	0.0000	1	3.1	0.4
3	2000.00	155.00	$\underset{\mathrm{T}}{\substack{1900 \mathrm{LLX}}}$	3.000	-7.500	8.000	0.0000	1	3.1	0.4
4	2000.00	230.00	$\left\lvert\, \begin{gathered} 1900 \operatorname{LLX} \\ \mathrm{~T} \end{gathered}\right.$	6.000	-8.500	8.000	0.0000	1	3.5	0.5
5	2000.00	230.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	6.000	-7.500	8.000	0.0000	1	3.4	0.5
6	2000.00	200.00	$\left\lvert\, \begin{gathered} 1900 \operatorname{LLX} \\ \mathrm{~T} \end{gathered}\right.$	9.000	-8.500	8.000	0.0000	1	3.3	0.5
7	2000.00	200.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ T \end{array}$	9.000	-7.500	8.000	0.0000	1	3.3	0.5
8	2000.00	155.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	12.000	-8.500	8.000	0.0000	1	3.1	0.4
9	2000.00	155.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	12.000	-7.500	8.000	0.0000	1	3.1	0.4
10	2000.00	140.00	$\left\lvert\, \begin{gathered} 1900 \operatorname{LLX} \\ T \end{gathered}\right.$	15.000	-8.000	8.000	0.0000	1	3.3	0.4
11	2000.00	90.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \end{array}$	0.000	-0.500	8.000	0.0000	2	2.7	0.3
12	2000.00	90.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \end{array}$	0.000	0.500	8.000	0.0000	2	2.7	0.3
13	2000.00	120.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	3.000	-0.500	8.000	0.0000	2	2.9	0.4
14	2000.00	120.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	3.000	0.500	8.000	0.0000	2	2.9	0.4
15	2000.00	175.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	6.000	-0.500	8.000	0.0000	2	3.2	0.4
16	2000.00	175.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	6.000	0.500	8.000	0.0000	2	3.2	0.4
17	2000.00	250.00	1500LL	9.000	-0.500	8.000	0.0000	2	3.5	0.5
18	2000.00	250.00	1500LL	9.000	0.500	8.000	0.0000	2	3.5	0.5
19	2000.00	120.00	$\begin{array}{\|c\|} \hline 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	12.000	-0.500	8.000	0.0000	2	2.9	0.4
20	2000.00	120.00	$\begin{array}{\|c\|} \hline 1900 \operatorname{LLX} \\ T \end{array}$	12.000	0.500	8.000	0.0000	2	2.9	0.4

$\begin{array}{\|c\|} \hline \text { Gun } \\ \text { number } \end{array}$	Press. psi)	Volume cu.in)	Gun Type	$\begin{gathered} x \\ m .) \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \mathrm{~m} .) \end{gathered}$	$\begin{gathered} \mathrm{z} \\ \mathrm{~m} .) \end{gathered}$	$\begin{aligned} & \hline \text { Delay } \\ & \text { s.) } \end{aligned}$		Peak to peak contrib. percen t)	Max. bub. rad m.)
21	2000.00	90.00	$\left\lvert\, \begin{gathered} 1900 \operatorname{LLX} \\ \mathrm{~T} \end{gathered}\right.$	15.000	-0.500	8.000	0.0000	2	2.7	0.3
22	2000.00	90.00	$\left\lvert\, \begin{gathered} 1900 \operatorname{LLX} \\ \mathrm{~T} \end{gathered}\right.$	15.000	0.500	8.000	0.0000	2	2.7	0.3
23	2000.00	140.00	$\begin{gathered} 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{gathered}$	0.000	8.000	8.000	0.0000	3	3.3	0.4
24	2000.00	155.00	$\left\lvert\, \begin{gathered} 1900 \operatorname{LLX} \\ \mathrm{~T} \end{gathered}\right.$	3.000	7.500	8.000	0.0000	3	3.1	0.4
25	2000.00	155.00	$\begin{gathered} 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{gathered}$	3.000	8.500	8.000	0.0000	3	3.1	0.4
26	2000.00	230.00	$\begin{array}{\|c\|} \hline 1900 \mathrm{LLX} \\ \mathrm{~T} \end{array}$	6.000	7.500	8.000	0.0000	3	3.4	0.5
27	2000.00	230.00	$\begin{array}{\|c\|} \hline 1900 \mathrm{LLX} \\ \mathrm{~T} \end{array}$	6.000	8.500	8.000	0.0000	3	3.5	0.5
28	2000.00	200.00	$\begin{gathered} 1900 \operatorname{LLX} \\ \mathrm{~T} \\ \hline \end{gathered}$	9.000	7.500	8.000	0.0000	3	3.3	0.5
29	2000.00	200.00	$\begin{array}{\|c\|} \hline 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	9.000	8.500	8.000	0.0000	3	3.4	0.5
30	2000.00	155.00	$\begin{gathered} 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{gathered}$	12.000	7.500	8.000	0.0000	3	3.1	0.4
31	2000.00	155.00	$\begin{gathered} 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{gathered}$	12.000	8.500	8.000	0.0000	3	3.1	0.4
32	2000.00	90.00	$\begin{array}{\|c\|} \hline 1900 \mathrm{LLX} \\ \mathrm{~T} \\ \hline \end{array}$	15.000	8.000	8.000	0.0000	3	2.8	0.3

Array plan and side views

The plan and side views appear below. These are annotated for gun type (colour of floating text indicating volume in cuin. for airguns), gun active status (fill colour) and also gun number, matching the table above. The side view is a view from the port side towards the starboard side and shares the same x-axis as the plan view. This is annotated identically to the plan view.

Array centres

In the plan and side views of the array above, the array geometric centre (CoG), the centre of pressure (CoP) and the centre of energy (CoE) are shown. They are defined as follows:-

- The array geometric centre is defined to be the arithmetic mean of the x, y, z positions for each gun (non-active guns are ignored).
- The centre of pressure is defined to be the array centre when each active gun position is weighted by its contribution to the overall peak to peak pressure value.
- The centre of energy is computed by weighting the coordinates by the self-energy of the active gun at that position. In an interacting array this may be a long way from the centre of pressure as some guns may absorb energy giving a negative self-energy.

Depending on how first breaks are calculated, these can be used for first break analysis.

Spare guns are shown as blue rectangles whilst live guns are shown as green rectangles.
Note that Gundalf by default uses the deepest gun to define time zero for the vertical far-field and it uses the nearest gun to the observation point to define time zero if an observation point is specified. This means that if one gun is accidentally run deep, this will cause the bulk of the signature to appear to be delayed. It is still a matter of debate how an airgun array should be timed. There are several candidates as defined above but it is not currently clear which if any is appropriate in complex scenarios such as Ocean Bottom Deployment. Positions are shown as (x, y, z).

CoG coordinates (m.)	CoP coordinates (m.)	CoE coordinates (m.)
$7.50,0.00,8.00)$	$7.50,0.00,8.00)$	$7.49,-0.00,8.00)$

Array directivity

The following tables show the inline and crossline directivity of the array. These are scaled as db . relative to 1 microPa. per Hz . at 1 m . The inline directivity is annotated to indicate the boat direction and the crossline directivity is annotated with 'Port' to show the correct crossline orientation.

Angle-frequency form

PORT: Crossline directivity

Angle-amplitude form

The following tables show the inline and crossline directivity of the array in (dip angle, amplitude) form. The computed signature (or under option the amplitude spectrum) for each angle is shown in colour varying form for each angle computed with a legend to indicate which is which. The vertical scale indicates the type of plot, time or frequency. Both types of plot are individually scaled and plotted with the same units as the corresponding plots in the Signature Characteristics section. Inline directivity

Array directivity

The following tables show the azimuthal directivity (i.e. plan view) theta-phi plots, at four userspecified frequencies. The dip, theta is the angle to the vertical so a value of zero corresponds to vertically down, (the centre of the plot). The azimuthal angle phi is measured relative to the positive x axis so the boat direction corresponds to a value of phi of 180 degrees as shown by the red arrow. The plots are scaled as dB. relative to 1 muPa . per Hz . at 1 m .

Dip-azimuthal form

Dip/azimuthal directivity: 30 Hz .

Dip/azimuthal directivity: 60 Hz .

Heading 0

Dip/azimuthal directivity: 90 Hz .

Heading 0

Dip/azimuthal directivity: 120 Hz .

Heading 0

Acoustic energy characteristics

The following table lists the individual gun contributions to the acoustic energy field in joules. A negative value means the gun is actually absorbing energy. This is very common in interacting arrays. It does not however mean that the gun is damaging the array performance. Rather it is acting as a catalyst to allow the other guns to perform more efficiently. The total acoustic energy gives the true performance of the array as a whole. See Laws, Parkes and Hatton (1988) Energyinteraction: The long-range interaction of seismic sources, Geophysical Prospecting (36), p333-348 and 38(1) 1990 p. 104 for more details. Note that internal energy is not included in the data below. The true acoustic efficiency of airgun arrays was typically less than 5 percent of the total initial energy until gun clustering became common and the efficiency is now often above 25 percent.

Overall acoustic energy contribution

Total acoustic energy output (j.)	Acoustic energy output due to energyinteraction (j.)	Total potential energy available in array(j.)	Percentage of total potential energy appearing as acoustic energy
657489.9	38242.8	1155784.0	56.9

Individual acoustic energy contributions

Volume (cuin)	x (m.)	y (m.)	z (m.)	Acoustic energy contribution (j.)
90.0	0.00	-8.00	8.00	26143.0
155.0	3.00	-8.50	8.00	33417.0
155.0	3.00	-7.50	8.00	33670.0
230.0	6.00	-8.50	8.00	-12796.9
230.0	6.00	-7.50	8.00	-16431.6
200.0	9.00	-8.50	8.00	7620.0
200.0	9.00	-7.50	8.00	5540.1
155.0	12.00	-8.50	8.00	32233.9
155.0	12.00	-7.50	8.00	32370.8
140.0	15.00	-8.00	8.00	34343.5
90.0	0.00	-0.50	8.00	30817.7
90.0	0.00	0.50	8.00	31046.5
120.0	3.00	-0.50	8.00	36824.7
120.0	3.00	0.50	8.00	36943.0
175.0	6.00	-0.50	8.00	29047.4
175.0	6.00	0.50	8.00	29139.6
250.0	9.00	-0.50	8.00	-10713.9
250.0	9.00	0.50	8.00	-10479.4
120.0	12.00	-0.50	8.00	35939.5
120.0	12.00	0.50	8.00	35964.0
90.0	15.00	-0.50	8.00	30587.6
90.0	15.00	0.50	8.00	30465.0
140.0	0.00	8.00	8.00	34160.4
155.0	3.00	7.50	8.00	33085.6
155.0	3.00	8.50	8.00	33035.7
230.0	6.00	7.50	8.00	-18059.8
230.0	6.00	8.50	8.00	-14102.7
200.0	9.00	7.50	8.00	6532.6
200.0	9.00	8.50	8.00	8904.0
155.0	12.00	7.50	8.00	33049.4
155.0	12.00	8.50	8.00	33059.7
90.0	15.00	8.00	8.00	26133.4

Volume (cuin)	$\mathbf{x (m .)}$	\mathbf{y} (m.)	$\mathbf{z (m .)}$	Acoustic energy contribution (j.)
The red entries denote guns which are catalysing the array by absorbing energy.				

Signature

This section shows the time signature and the amplitude spectrum of the modelled array. The bubble period was determined automatically. The bubble start time was input as 0.1 s . The computed positions of the bubble peak and bubble trough are shown for QC purposes. If these do not match your visual estimate of the bubble, for example, if the filter you are using delays the peak somewhat, try again specifying your own bubble search start time, relative to time zero. The amplitude spectrum plot comprises two separate displays. One curve shows the amplitude spectrum itself in units of dB. relative to 1 microPa. per Hz . at 1 m . The other curve (in red) follows the SEG guidelines and shows the energy flux in dB . relative to $1 \mathrm{Joule} / \mathrm{m}^{\wedge} 2 / \mathrm{Hz}$. at 1 m .

Gundalf modelling report: 14:51:11, 2023-Apr-03
Version: C8.3f/2023-Jan-31; Epoch: 2023-Jan-31; tim.bunting@pxgeo.com

Modelling Summary

The following table lists the modelling parameters for the array quoted in various commonly used units for convenience.

General parameters ...	
Sample interval (s.)	0.0005
Modelling sample interval (s.)	0.0005
Number of samples in signature	4000
Duration of signature (s.)	2.000
Observation point	Infinite far-field
Gun controller variation (s.)	
Pre-filter parameters ...	
Anti-alias/instrument filtering	0
Post-modelling parameters \ldots	
Band-pass filtering pass pre-filter applied	
Standard filter:	
Q filtering	dfsv_0-0_128-72.flt
Wiener filtering	No Q filtering applied

Filter Amplitude Spectrum

This section shows the combined amplitude spectrum of all the Post-modelling filter parameters in units of dB. relative to 1 microPa. per Hz . at 1 m . The output Gundalf signature amplitude spectrum is multiplied by this spectrum. Note that if there is no post-modelling filtering, this will be flat and there is correspondingly no change applied to the modelled signature spectrum.

NOTE: This follows the SEG standard and the work of Fricke et al (1986) in incorporating both amplitude spectrum and the energy flux spectrum (in red) on the same plot.

Amplitude spectrum

Signature filtering policy

For marine environmental noise reports, Gundalf performs no signature filtering other than anti-alias filtering in the modelling engine itself, along with any requested marine animal weighting functions.

For all other kinds of reports, Gundalf performs filtering in this order:-

- If a pre-conditioning filter is chosen, for example, an instrument response, it is applied at the modelling sample interval.
- If the output sample interval is larger than the modelling sample interval, Gundalf applies appropriate anti-alias filtering. (This can be turned off in the event that anti-alias filtering is included in the pre-conditioning filter, in which case Gundalf will issue a warning.)
- Finally, Gundalf applies the chosen set of post-filters, Q, Wiener and band-pass filtering as specified, at the output sample interval. If none are specified, (often known as unfiltered), only the above anti-alias and/or pre-conditioning are applied.

In reports, when filters are applied, they are applied to the notional sources first so that signatures, directivity plots and spectra are all filtered consistently. The abbreviation muPa is used for microPascal throughout.

Finally note that modelled signatures always begin at time zero for reasons of causality.

Physical parameters

The following table gives the values of the physical parameters used where relevant. The sea temperature, velocity of sound in sea water, wavelet dominant frequency and average wave height were input parameters.

The surface reflection coefficient was entered directly.

The physical parameters used were:-

Sea temperature	Velocity of sound in water m.sec-1)	Wavelet dominant frequency Hz.)	Average wave height $\mathbf{m .)}$	Surface reflection coeff.
20	1522.1	20	0	-1

Wilson's formula (W.D. Wilson (1960) "The Journal of the Acoustical Society of America 32(10), October") was used for the velocity of sound.

Some notes on the modelling algorithm

The Gundalf airgun modelling engine is the end-product of 20 years of state of the art research. It takes full account of all air-gun interactions including interactions between sub-arrays. No assumptions of linear superposition are made. This means that if you move sub-arrays closer together, the far-field signature will change. The effect is noticeable even when sub-arrays are separated by as much as 10 m . The engine is capable of modelling airgun clusters right down to the 'super-foam' region where the bubbles themselves collide and distort.

Calibration notes

Airgun modelling programs like Gundalf must be calibrated against real data and no computational model is any better than the quality of that calibration. Calibration datasets however are themselves subject to experimental error so Gundalf is calibrated to best fit the various datasets which are used across the extensive range of volumes, pressures and depths available.

In practice, such experimental errors arise for a variety of reasons including

- Depth inaccuracies. These are usually around $3-5 \%$ even in the best facilities particularly if there is sea surface movement.
- How frequently the gun is being cycled during measurement. This is rarely recorded but a warmed up gun might be 50deg C warmer than the sea, changing its normal peak-to-peak and other parameters by $5-10 \%$ compared with when it is first fired.
- Filtering differences. Filtering is recorded but filtering errors are still more frequent than we would like and analog filter v. digital filter differences are also sometimes a factor.

As a guideline, typical individual errors across different measurement datasets for the bestcalibrated guns are of the order of 5% for peak to peak, 15% for primary to bubble and 2% for bubble periods.

Individual gun errors are calculated from the data shown in Help -> Calibration (which themselves accumulate gun data from different sources) and the resulting array error bounds are calculated by accumulating these errors for each gun in the array. The error bounds are calculated as 95% error bounds and for simplicity assume that errors are non-correlated although in practice some are systematic. The total error bound is always greater than any of the individual error bounds and is strongly influenced by the largest gun contributions.

The error bounds simply mean that it is very likely that the true values for these primary characteristics will be within the ranges shown, but it is not possible to be more precise. If other comparison data or models indicate values outside this range, this means that those data or models are very likely to be incompatible with Gundalf's calibration data. This may be due to several causes as described above. For more on calibration see Gundalf's calibration Help pages.

MANTA ${ }^{\circ}$

4C Ocean Bottom Acquisition System

MANTA GENERAL SPECIFICATIONS

FEATURES \& BENEFITS

- Ocean bottom node suitable for surveys in water depths to $3,000 \mathrm{~m}$
- Flexible placement methods include node on a rope (NOAR), node on a wire (NOAW) or deployment by remotely operated underwater vehicle (ROV)

Modular node combines contemporary microcomponents with recent advances in rechargeable power-dense battery technology

4-C multicomponent sensor incorporates three omnidirectional geophones and a hydrophone. Integrated inclinometer continually records the orientation of the node once it is positioned on the seafloor.

PHYSICAL

Weight in air: Weight in water: Dimensions: Height:
22.7 kg (titanium)
12.3 kg (titanium)

350 mm wide $\times 350 \mathrm{~mm}$ depth
130 mm

OPERATIONAL/ENVIRONMENT
Max operating depth:
3,000m
Operating temperature:
Battery duration:
Battery recharge time:
-5 C to 45 C
100 days
15\% / hour

SENSOR

Hydrophone:
Geophone:
Inclinometer:
HTI-96-Min
Omnidirectional, 14 Hz , with 0.7 damping
3 Axis MEMS, +/- 1.5 deg
DATA RECORDING SYSTEM
Channels recorded:
Sample rates:
4

MSD card:
ADC resolution:
Gain settings:

Anti-aliasing filter: Dynamic range:
DC blocking filter:

TIMING

Clock type:
Residual error after correction: Less than 1 ms over 60 days Time synchronization:

Low power OCXO
$1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}$
64 GB, 120 days, 2 ms sampling
24-bit
3 gain settings with 12 dB step.
Maximum gain optimized for node max water depth.
Linear phase, 86.6\% of Nyquist
>120 dB @ 0 dB gain setting
Selectable

GPS disciplined IEEE 1588 PTPV2

Request for reduction to the minimum separation distance from water bottom anomalies

Shell respectfully requests a reduction in minimum separation distance of 250 ft , for PXGEO node placement next to water bottom anomalies, within the proposed Stones survey area.

Review of the BOEM 3D seismic database of water bottom anomalies identified features that could potentially support communities within the proposed survey area.

To support node placement within water bottom anomalous areas and in proximity to any identified communities, Shell proposes photographing the seabed within a circular area of approximately 10 m diameter, around the proposed node location. Three photographs shall be taken from a height of 15 m per node location: Pre-node deployment; post-node deployment and post-node retrieval. In addition, a continuous video feed will be recorded during operations within the water bottom anomalous zones and stored.

It is understood from NTL No. 2009-G40, a minimum separation of 250 ft must be maintained between documented communities or features that could potentially support high-density deepwater benthic communities, and bottom disturbing activities. However, due to the small footprint of the nodes, the accuracy of their positioning and the ability of the ROV to fully document any disturbance caused, it is requested to place the nodes no closer than 5 m from any high-density deepwater benthic communities. If any such communities are present at the proposed location of each node, a new location shall be selected. Shell will provide the photographs and video feeds as described above, for each proposed location within the water bottom anomalous zone. The photos and video shall clearly show the geographic location of each node.

LETTER OF AUTHORIZATION

Shell Offshore Inc. (Shell) and its designees are hereby authorized under section 101(a)(5)(A) of the Marine Mammal Protection Act (MMPA; 16 U.S.C. 1371(a)(5)(A)) to take marine mammals incidental to geophysical survey activities in the Gulf of Mexico, subject to the provisions of the MMPA and the Regulations Governing Taking Marine Mammals Incidental to Geophysical Survey Activities in the Gulf of Mexico (50 CFR Part 217, Subpart S) (Regulations).

1. This Letter of Authorization (LOA) is valid from the date of issuance through March 31, 2024.
2. This LOA authorizes take incidental to the specified geophysical survey activities (3D ocean bottom node survey in the Stones and surrounding areas) described in Shell's LOA request.

3. General Conditions

(a) A copy of this LOA must be in the possession of the Holder of the Authorization (Holder), vessel operator, other relevant personnel, the lead protected species observer (PSO), and any other relevant designees operating under the authority of the LOA.
(b) The species and/or stocks authorized for taking are listed in Table 1. Authorized take, by Level A and Level B harassment only, is limited to the species and numbers listed in Table 1.
(c) The taking by serious injury or death of any of the species listed in Table 1 or any taking of any other species of marine mammal is prohibited and may result in the modification, suspension, or revocation of this IHA. Any taking exceeding the authorized amounts listed in Table 1 is prohibited and may result in the modification, suspension, or revocation of this IHA.
(d) The Holder must instruct relevant vessel personnel with regard to the authority of the protected species monitoring team (PSO team), and must ensure that relevant vessel personnel and PSO team participate in a joint onboard briefing, led by the vessel operator and lead PSO, prior to beginning work to ensure that responsibilities, communication procedures, protected species monitoring protocols, operational procedures, and LOA requirements are clearly understood. This briefing must be repeated when relevant new personnel join the survey operations before work involving those personnel commences.
(e) The acoustic source must be deactivated when not acquiring data or preparing to acquire data, except as necessary for testing. Unnecessary use of the acoustic source must be avoided. Notified operational capacity (i.e., total array volume)
(not including redundant backup airguns) must not be exceeded during the survey, except where unavoidable for source testing and calibration purposes. All occasions where activated source volume exceeds notified operational capacity must be communicated to the PSO(s) on duty and fully documented. The lead PSO must be granted access to relevant instrumentation documenting acoustic source power and/or operational volume.
(f) PSO requirements:
i. LOA-holders must use independent, dedicated, qualified PSOs, meaning that the PSOs must be employed by a third-party observer provider, must have no tasks other than to conduct observational effort, collect data, and communicate with and instruct relevant vessel crew with regard to the presence of protected species and mitigation requirements (including brief alerts regarding maritime hazards), and must be qualified pursuant to section 5(a) of this LOA. Acoustic PSOs are required to complete specialized training for operating passive acoustic monitoring (PAM) systems and are encouraged to have familiarity with the vessel on which they will be working. PSOs may act as both acoustic and visual observers (but not simultaneously), so long as they demonstrate that their training and experience are sufficient to perform each task.
ii. The Holder must submit PSO resumes for NMFS review and approval prior to commencement of the survey (submit to nmfs.psoreview@noaa.gov). Resumes should include dates of training and any prior NMFS approval, as well as dates and description of last experience, and must be accompanied by information documenting successful completion of an acceptable training course. NMFS is allowed one week to approve PSOs from the time that the necessary information is received by NMFS, after which PSOs meeting the minimum requirements will automatically be considered approved.
iii. At least one visual PSO and two acoustic PSOs aboard each acoustic source vessel must have a minimum of 90 days at-sea experience working in those roles, respectively, with no more than eighteen months elapsed since the conclusion of the at-sea experience. One visual PSO with such experience must be designated as the lead for the entire PSO team. The lead must coordinate duty schedules and roles for the PSO team and serve as the primary point of contact for the vessel operator. (Note that the responsibility of coordinating duty schedules and roles may instead be assigned to a shore-based, third-party monitoring coordinator.) To the maximum extent practicable, the lead PSO must devise the duty schedule such that experienced PSOs are on duty with those PSOs with appropriate training but who have not yet gained relevant experience.
4. Mitigation Requirements
(a) Visual monitoring requirements:
i. During survey operations (i.e., any day on which use of the acoustic source is planned to occur, and whenever the acoustic source is in the water, whether activated or not), a minimum of two PSOs must be on duty and conducting visual observations at all times during daylight hours (i.e., from 30 minutes prior to sunrise through 30 minutes following sunset).
ii. Visual monitoring must begin not less than 30 minutes prior to ramp-up and must continue until one hour after use of the acoustic source ceases or until 30 minutes past sunset.
iii. Visual PSOs must coordinate to ensure 360° visual coverage around the vessel from the most appropriate observation posts, and must conduct visual observations using binoculars and the naked eye while free from distractions and in a consistent, systematic, and diligent manner.
iv. Visual PSOs must immediately communicate all observations of marine mammals to the on-duty acoustic PSO, including any determination by the PSO regarding species identification, distance, and bearing and the degree of confidence in the determination.
v. Any observations of marine mammals by crew members aboard any vessel associated with the survey must be relayed to the PSO team.
vi. During good conditions (e.g., daylight hours; Beaufort sea state (BSS) 3 or less), visual PSOs must conduct observations when the acoustic source is not operating for comparison of sighting rates and behavior with and without use of the acoustic source and between acquisition periods, to the maximum extent practicable.
vii. Visual PSOs may be on watch for a maximum of two consecutive hours followed by a break of at least one hour between watches and may conduct a maximum of 12 hours of observation per 24 -hour period. NMFS may grant an exception for LOA applicants that demonstrate such a "two hours on/one hour off" duty cycle is not practicable, in which case visual PSOs will be subject to a maximum of four consecutive hours on watch followed by a break of at least two hours between watches. Combined observational duties (visual and acoustic but not at the same time) must not exceed 12 hours per 24-hour period for any individual PSO.
(b) Acoustic monitoring requirements:
i. All source vessels must use a towed PAM system at all times when operating in waters deeper than 100 m , which must be monitored by a
minimum of one acoustic PSO beginning at least 30 minutes prior to ramp-up, at all times during use of the acoustic source, and until one hour after use of the acoustic source ceases. "PAM system" refers to calibrated hydrophone arrays with full system redundancy to detect, identify, and estimate distance and bearing to vocalizing cetaceans, coupled with appropriate software to aid monitoring and listening by a PAM operator skilled in bioacoustics analysis and computer system specifications capable of running appropriate software. The PAM system must have at least one calibrated hydrophone (per each deployed hydrophone type and/or set) sufficient for determining whether background noise levels on the towed PAM system are sufficiently low to meet performance expectations. Applicants must provide a PAM plan including description of the hardware and software proposed for use prior to proceeding with any survey where PAM is required.
ii. Acoustic PSOs must immediately communicate all detections of marine mammals to visual PSOs (when visual PSOs are on duty), including any determination by the PSO regarding species identification, distance, and bearing, and the degree of confidence in the determination.
iii. Acoustic PSOs may be on watch for a maximum of four consecutive hours followed by a break of at least two hours between watches, and may conduct a maximum of 12 hours of observation per 24 -hour period. Combined observational duties (visual and acoustic but not at the same time) must not exceed 12 hours per 24-hour period for any individual PSO.
iv. Survey activity may continue for 30 minutes when the PAM system malfunctions or is damaged, while the PAM operator diagnoses the issue. If the diagnosis indicates that the PAM system must be repaired to solve the problem, operations may continue for an additional two hours without acoustic monitoring during daylight hours only under the following conditions:
(A) Sea state is less than or equal to BSS 4;
(B) No marine mammals (excluding delphinids) detected solely by PAM in the applicable exclusion zone in the previous two hours;
(C) NMFS is notified via email as soon as practicable with the time and location in which operations began occurring without an active PAM system; and
(D) Operations with an active acoustic source, but without an operating PAM system, do not exceed a cumulative total of four hours in any 24-hour period.
(c) PSOs must establish and monitor applicable exclusion and buffer zones. These zones must be based upon the radial distance from the edges of the airgun array (rather than being based on the center of the array or around the vessel itself). During use of the acoustic source (i.e., anytime the acoustic source is active, including ramp-up), occurrence of marine mammals within the relevant buffer zone (but outside the exclusion zone) should be communicated to the operator to prepare for the potential shutdown of the acoustic source.
i. Two exclusion zones are defined, depending on the species and context. A standard exclusion zone encompassing the area at and below the sea surface out to a radius of 500 meters from the edges of the airgun array ($0-$ 500 m) is defined. For special circumstances (defined at 4(e)(v) of this LOA), the exclusion zone encompasses an extended distance of 1,500 meters ($0-1,500 \mathrm{~m}$).
ii. During pre-start clearance monitoring (i.e., before ramp-up begins), the buffer zone acts as an extension of the exclusion zone in that observations of marine mammals within the buffer zone would also preclude airgun operations from beginning (i.e., ramp-up). For all marine mammals (except where superseded by the extended $1,500-\mathrm{m}$ exclusion zone), the buffer zone encompasses the area at and below the sea surface from the edge of the 0-500 meter exclusion zone out to a radius of 1,000 meters from the edges of the airgun array $(500-1,000 \mathrm{~m})$. The buffer zone is not applicable when the exclusion zone is greater than 500 meters, i.e., the observational focal zone is not increased beyond 1,500 meters.
(d) A ramp-up procedure, involving a step-wise increase in the number of airguns firing and total active array volume until all operational airguns are activated and the full volume is achieved, is required at all times as part of the activation of the acoustic source. A 30-minute pre-start clearance observation period must occur prior to the start of ramp-up. The Holder must adhere to the following pre-start clearance and ramp-up requirements:
i. The operator must notify a designated PSO of the planned start of ramp-up as agreed upon with the lead PSO; the notification time should not be less than 60 minutes prior to the planned ramp-up.
ii. Ramp-ups must be scheduled so as to minimize the time spent with source activated prior to reaching the designated run-in.
iii. A designated PSO must be notified again immediately prior to initiating ramp-up procedures and the operator must receive confirmation from the PSO to proceed.
iv. Ramp-up must not be initiated if any marine mammal is within the
applicable exclusion or buffer zone. If a marine mammal is observed within the exclusion zone or the buffer zone during the 30 -minute pre-start clearance period, ramp-up must not begin until the animal(s) has been observed exiting the zones or until an additional time period has elapsed with no further sightings (15 minutes for small delphinids and 30 minutes for all other species).
v. Ramp-up must begin by activating a single airgun of the smallest volume in the array and shall continue in stages by doubling the number of active elements at the commencement of each stage, with each stage of approximately the same duration. Total duration must not be less than 20 minutes. The operator must provide information to the PSO documenting that appropriate procedures were followed.
vi. Ramp-up must cease and the source shut down upon observation of marine mammals within the applicable exclusion zone. Once ramp-up has begun, observations of marine mammals within the buffer zone do not require shutdown.
vii. Ramp-up may occur at times of poor visibility, including nighttime, if appropriate acoustic monitoring has occurred with no detections of a marine mammal other than delphinids in the 30 minutes prior to beginning ramp-up. Acoustic source activation may only occur at night where operational planning cannot reasonably avoid such circumstances.
viii. If the acoustic source is shut down for brief periods (i.e., less than 30 minutes) for reasons other than implementation of prescribed mitigation (e.g., mechanical difficulty), it may be activated again without ramp-up if PSOs have maintained constant visual and/or acoustic observation and no visual or acoustic detections of any marine mammal have occurred within the applicable exclusion zone. For any longer shutdown, pre-start clearance observation and ramp-up are required. For any shutdown at night or in periods of poor visibility (e.g., BSS 4 or greater), ramp-up is required, but if the shutdown period was brief and constant observation maintained, pre-start clearance watch is not required.
ix. Testing of the acoustic source involving all elements requires ramp-up. Testing limited to individual source elements or strings does not require ramp-up but does require the pre-start clearance observation period.
(e) Shutdown requirements:
i. Any PSO on duty has the authority to delay the start of survey operations or to call for shutdown of the acoustic source pursuant to these requirements.
ii. The operator must establish and maintain clear lines of communication directly between PSOs on duty and crew controlling the acoustic source to ensure that shutdown commands are conveyed swiftly while allowing PSOs to maintain watch.
iii. When both visual and acoustic PSOs are on duty, all detections must be immediately communicated to the remainder of the on-duty PSO team for potential verification of visual observations by the acoustic PSO or of acoustic detections by visual PSOs.
iv. When the airgun array is active (i.e., anytime one or more airguns is active, including during ramp-up) and (1) a marine mammal appears within or enters the applicable exclusion zone and/or (2) a marine mammal (excluding delphinids) is detected acoustically and localized within the applicable exclusion zone, the acoustic source must be shut down. When shutdown is called for by a PSO, the acoustic source must be immediately deactivated and any dispute resolved only following deactivation.
v. The extended 1,500-m exclusion zone must be applied upon detection (visual or acoustic) of a baleen whale, sperm whale, beaked whale, or Kogia spp. within the zone.
vi. Shutdown requirements are waived for dolphins of the following genera: Tursiops, Stenella, Steno, and Lagenodelphis. If a delphinid is visually detected within the exclusion zone, no shutdown is required unless the PSO confirms the individual to be of a genus other than those listed above, in which case a shutdown is required. Acoustic detection of delphinids does not require shutdown.
vii. If there is uncertainty regarding identification or localization, PSOs may use best professional judgment in making the decision to call for a shutdown.
viii. Upon implementation of shutdown, the source may be reactivated after the marine mammal(s) has been observed exiting the applicable exclusion zone or following a 30 -minute clearance period with no further detection of the marine mammal(s).
(f) Entanglement avoidance. To avoid the risk of entanglement, if conducting surveys using ocean-bottom nodes or similar gear the Holder must:
i. Use negatively buoyant coated wire-core tether cable;
ii. Retrieve all lines immediately following completion of the survey; and
iii. Attach acoustic pingers directly to the coated tether cable; acoustic releases should not be used.
(g) Vessel strike avoidance. The Holder must adhere to the following requirements:
i. Vessel operators and crews must maintain a vigilant watch for all marine mammals and must slow down, stop their vessel, or alter course, as appropriate and regardless of vessel size, to avoid striking any marine mammal. A visual observer aboard the vessel must monitor a vessel strike avoidance zone around the vessel, which shall be defined according to the parameters stated in this subsection. Visual observers monitoring the vessel strike avoidance zone may be third-party observers (i.e., PSOs) or crew members, but crew members responsible for these duties must be provided sufficient training to distinguish marine mammals from other phenomena and broadly to identify a marine mammal as a baleen whale, sperm whale, or other marine mammal;
ii. Vessel speeds must be reduced to 10 kn or less when mother/calf pairs, pods, or large assemblages of marine mammals are observed near a vessel;
iii. All vessels must maintain a minimum separation distance of 500 m from baleen whales;
iv. All vessels must maintain a minimum separation distance of 100 m from sperm whales;
v. All vessels must, to the maximum extent practicable, attempt to maintain a minimum separation distance of 50 m from all other marine mammals, with an exception made for those animals that approach the vessel; and
vi. When marine mammals are sighted while a vessel is underway, the vessel must take action as necessary to avoid violating the relevant separation distance, e.g., attempt to remain parallel to the animal's course, avoid excessive speed or abrupt changes in direction until the animal has left the area. If marine mammals are sighted within the relevant separation distance, the vessel must reduce speed and shift the engine to neutral, not engaging the engines until animals are clear of the area. This does not apply to any vessel towing gear or any vessel that is navigationally constrained.
vii. These requirements do not apply in any case where compliance would create an imminent and serious threat to a person or vessel or to the extent that a vessel is restricted in its ability to maneuver and, because of the restriction, cannot comply.

5. Monitoring Requirements

(a) PSO qualifications:
i. PSOs must successfully complete relevant, acceptable training, including completion of all required coursework and passing (80 percent or greater) a written and/or oral examination developed for the training program.
ii. PSOs must have successfully attained a bachelor's degree from an accredited college or university with a major in one of the natural sciences, a minimum of 30 semester hours or equivalent in the biological sciences, and at least one undergraduate course in math or statistics. The educational requirements may be waived if the PSO has acquired the relevant skills through alternate experience. Requests for such a waiver must be submitted to NMFS and shall include written justification. Requests will be granted or denied (with justification) by NMFS within one week of receipt of submitted information. Alternate experience that may be considered includes, but is not limited to:
(A) secondary education and/or experience comparable to PSO duties;
(B) previous work experience conducting academic, commercial, or government-sponsored marine mammal surveys; or
(C) previous work experience as a PSO; the PSO should demonstrate good standing and consistently good performance of PSO duties.
(b) Equipment. The Holder is required to:
i. Provide PSOs with bigeye binoculars (e.g., $25 \times 150 ; 2.7$ view angle; individual ocular focus; height control) of appropriate quality solely for PSO use. These must be pedestal-mounted on the deck at the most appropriate vantage point that provides for optimal sea surface observation, PSO safety, and safe operation of the vessel.
ii. For each vessel required to use a PAM system, provide a PAM system that has been verified and tested by an experienced acoustic PSO who will be using it during the trip for which monitoring is required;
iii. Work with the selected third-party observer provider to ensure PSOs have all equipment (including backup equipment) needed to adequately perform necessary tasks, including accurate determination of distance and bearing to observed marine mammals. (Equipment specified in A. through G. below may be provided by an individual PSO, the third-party observer provider, or the LOA-holder, but the LOA-holder is responsible for ensuring PSOs have the proper equipment required to perform the duties specified herein.) Such equipment, at a minimum, must include:
(A) Reticle binoculars (e.g., 7×50) of appropriate quality (at least one per PSO, plus backups);
(B) Global Positioning Unit (GPS) (plus backup);
(C) Digital camera with a telephoto lens (the camera or lens should also have an image stabilization system) that is at least 300 mm or equivalent on a full-frame single lens reflex (SLR) (plus backup);
(D) Compass (plus backup);
(E) Radios for communication among vessel crew and PSOs (at least one per PSO, plus backups); and
(F) Any other tools necessary to adequately perform necessary PSO tasks.
(c) Data collection. PSOs must use standardized electronic data forms. PSOs must record detailed information about any implementation of mitigation requirements, including the distance of marine mammals to the acoustic source and description of specific actions that ensued, the behavior of the animal(s), any observed changes in behavior before and after implementation of mitigation, and if shutdown was implemented, the length of time before any subsequent ramp-up or activation of the acoustic source. If required mitigation was not implemented, PSOs must record a description of the circumstances. At a minimum, the following information should be recorded:
i. Vessel names (source vessel and other vessels associated with survey), vessel size and type, maximum speed capability of vessel, port of origin, and call signs;
ii. PSO names and affiliations;
iii. Dates of departures and returns to port with port name;
iv. Dates of and participants in PSO briefings;
v. Dates and times (Greenwich Mean Time) of survey effort and times corresponding with PSO effort;
vi. Vessel location (latitude/longitude) when survey effort began and ended and vessel location at beginning and end of visual PSO duty shifts;
vii. Vessel location at 30-second intervals (if software capability allows) or 5minute intervals (if location must be manually recorded);
viii. Vessel heading and speed at beginning and end of visual PSO duty shifts and upon any line change;
ix. Environmental conditions while on visual survey (at beginning and end of PSO shift and whenever conditions changed significantly), including Beaufort sea state and any other relevant weather conditions including cloud cover, fog, sun glare, and overall visibility to the horizon;
x. Vessel location when environmental conditions change significantly;
xi. Factors that may have contributed to impaired observations during each PSO shift change or as needed as environmental conditions change (e.g., vessel traffic, equipment malfunctions);
xii. Survey activity information, such as acoustic source power output while in operation, number and volume of airguns operating in an array, tow depth of an acoustic source, and any other notes of significance (i.e., pre-start clearance, ramp-up, shutdown, testing, shooting, ramp-up completion, end of operations, streamers, etc.); and
xiii. Upon visual observation of a marine mammal, the following information:
(A) Watch status (sighting made by PSO on/off effort, opportunistic, crew, alternate vessel/platform);
(B) PSO who sighted the animal and PSO location (including height above water) at time of sighting;
(C) Time of sighting;
(D) Vessel coordinates at time of sighting;
(E) Water depth;
(F) Direction of vessel's travel (compass direction);
(G) Speed of the vessel(s) from which the observation was made;
(H) Direction of animal's travel relative to the vessel;
(I) Pace of the animal;
(J) Estimated distance to the animal (and method of estimating distance) and its heading relative to vessel at initial sighting;
(K) Identification of the animal (e.g., genus/species, lowest possible taxonomic level, or unidentified), PSO confidence in identification, and the composition of the group if there is a mix of species;
(L) Estimated number of animals (high/low/best);
(M) Estimated number of animals by cohort (adults, juveniles, group composition, etc.);
(N) Description (as many distinguishing features as possible of each individual seen, including length, shape, color, pattern, scars or markings, shape and size of dorsal fin, shape of head, and blow characteristics);
(O) Detailed behavior observations (e.g., number of blows/breaths, number of surfaces, breaching, spyhopping, diving, feeding, traveling; as explicit and detailed as possible; note any observed changes in behavior), including an assessment of behavioral responses to survey activity;
(P) Animal's closest point of approach (CPA) and/or closest distance from any element of the acoustic source;
(Q) Platform activity at time of sighting (e.g., deploying, recovering, testing, shooting, data acquisition, other); and
(R) Description of any actions implemented in response to the sighting (e.g., delays, shutdown, ramp-up) and time and location of the action.
xiv. Upon acoustic detection of a marine mammal using a PAM system, the following information:
(A) An acoustic encounter identification number, and whether the detection was linked with a visual sighting;
(B) Date and time when first and last heard;
(C) Types and nature of sounds heard (e.g., clicks, whistles, creaks, burst pulses, continuous, sporadic, strength of signal); and
(D) Any additional information recorded such as water depth of the hydrophone array, bearing of the animal to the vessel (if determinable), species or taxonomic group (if determinable), spectrogram screenshot, and any other notable information.

6. Reporting Requirements

(a) Annual reporting:
i. The Holder must submit a summary report to NMFS on all activities and monitoring results within 90 days of the completion of the survey or expiration of the LOA, whichever comes sooner, and must include all information described above under section 5(c) of this LOA. If an issued LOA is valid for greater than one year, the summary report must be submitted on an annual basis.
ii. The report must describe activities conducted and sightings of marine mammals, must provide full documentation of methods, results, and interpretation pertaining to all monitoring, and must summarize the dates and locations of survey operations and all marine mammal sightings (dates, times, locations, activities, associated survey activities, and information regarding locations where the acoustic source was used). In addition to the report, all raw observational data must be made available to NMFS.
iii. For operations requiring the use of PAM, the report must include a validation document concerning the use of PAM, which should include necessary noise validation diagrams and demonstrate whether background noise levels on the PAM deployment limited achievement of the planned detection goals. Copies of any vessel self-noise assessment reports must be included with the report.
iv. The Holder must provide geo-referenced time-stamped vessel tracklines for all time periods in which airguns (full array or single) were operating. Tracklines must include points recording any change in airgun status (e.g., when the airguns began operating, when they were turned off). GIS files must be provided in ESRI shapefile format and include the UTC date and time, latitude in decimal degrees, and longitude in decimal degrees. All coordinates must be referenced to the WGS84 geographic coordinate system.
v. The draft report must be accompanied by a certification from the lead PSO as to the accuracy of the report, and the lead PSO may submit directly to NMFS a statement concerning implementation and effectiveness of the required mitigation and monitoring.
vi. A final report must be submitted within 30 days following resolution of any comments on the draft report.
(b) Comprehensive reporting. The Holder must contribute to the compilation and analysis of data for inclusion in an annual synthesis report addressing all data
collected and reported through annual reporting in each calendar year. The synthesis period shall include all annual reports deemed to be final by NMFS in a given one-year reporting period. The report must be submitted to NMFS within 90 days following the end of a given one-year reporting period.
(c) Reporting of injured or dead marine mammals:
i. In the event that personnel involved in the survey activities discover an injured or dead marine mammal, the Holder must report the incident to the Office of Protected Resources (OPR), NMFS and to the Southeast Regional Stranding Network as soon as feasible. The report must include the following information:
(A) Time, date, and location (latitude/longitude) of the first discovery (and updated location information if known and applicable);
(B) Species identification (if known) or description of the animal(s) involved;
(C) Condition of the animal(s) (including carcass condition if the animal is dead);
(D) Observed behaviors of the animal(s), if alive;
(E) If available, photographs or video footage of the animal(s); and
(F) General circumstances under which the animal was discovered.
ii. In the event of a ship strike of a marine mammal by any vessel involved in the survey activities, the LOA-holder must report the incident to OPR, NMFS and to the Southeast Regional Stranding Network as soon as feasible. The report must include the following information:
(A) Time, date, and location (latitude/longitude) of the incident;
(B) Species identification (if known) or description of the animal(s) involved;
(C) Vessel's speed during and leading up to the incident;
(D) Vessel's course/heading and what operations were being conducted (if applicable);
(E) Status of all sound sources in use;
(F) Description of avoidance measures/requirements that were in place
at the time of the strike and what additional measures were taken, if any, to avoid strike;
(G) Environmental conditions (e.g., wind speed and direction, Beaufort sea state, cloud cover, visibility) immediately preceding the strike;
(H) Estimated size and length of animal that was struck;
(I) Description of the behavior of the marine mammal immediately preceding and following the strike;
(J) If available, description of the presence and behavior of any other marine mammals immediately preceding the strike;
(K) Estimated fate of the animal (e.g., dead, injured but alive, injured and moving, blood or tissue observed in the water, status unknown, disappeared); and
(L) To the extent practicable, photographs or video footage of the animal(s).

7. Actions to Minimize Additional Harm to Live-Stranded (or Milling) Marine Mammals

(a) In the event of a live stranding (or near-shore atypical milling) event within 50 km of the survey operations, where the NMFS stranding network is engaged in herding or other interventions to return animals to the water, the Director of OPR, NMFS (or designee) will advise the Holder of the need to implement shutdown procedures for all active acoustic sources operating within 50 km of the stranding. Shutdown procedures for live stranding or milling marine mammals include the following:
i. If at any time, the marine mammal(s) die or are euthanized, or if herding/intervention efforts are stopped, the Director of OPR, NMFS (or designee) will advise the LOA-holder that the shutdown around the animals' location is no longer needed.
ii. Otherwise, shutdown procedures will remain in effect until the Director of OPR, NMFS (or designee) determines and advises the LOA-holder that all live animals involved have left the area (either of their own volition or following an intervention).
iii. If further observations of the marine mammals indicate the potential for re-stranding, additional coordination with the LOA-holder will be required to determine what measures are necessary to minimize that likelihood (e.g., extending the shutdown or moving operations farther away) and to implement those measures as appropriate.
(b) If NMFS determines that the circumstances of any marine mammal stranding found in the vicinity of the activity suggest investigation of the association with survey activities is warranted, and an investigation into the stranding is being pursued, NMFS will submit a written request to the LOA-holder indicating that the following initial available information must be provided as soon as possible, but no later than 7 business days after the request for information. In the event that the investigation is still inconclusive, the investigation of the association of the survey activities is still warranted, and the investigation is still being pursued, NMFS may provide additional information requests, in writing, regarding the nature and location of survey operations prior to the time period above.
i. Status of all sound source use in the 48 hours preceding the estimated time of stranding and within 50 km of the discovery/notification of the stranding by NMFS; and
ii. If available, description of the behavior of any marine mammal(s) observed preceding (i.e., within 48 hours and 50 km) and immediately after the discovery of the stranding.
8. This Authorization may be modified, suspended or revoked if the Holder fails to abide by the conditions prescribed herein (including, but not limited to, failure to comply with monitoring or reporting requirements), or if NMFS determines: (1) the authorized taking is likely to have or is having more than a negligible impact on the species or stocks of affected marine mammals, or (2) the prescribed measures are likely not or are not effecting the least practicable adverse impact on the affected species or stocks and their habitat.

[^1]Table 1. Authorized Incidental Take.

Common name	Scientific name	Level A harassment	Level B harassment
Sperm whale	Physeter macrocephalus	0	291
Pygmy/Dwarf sperm whale	Kogia spp.	14	150
Beaked whales	Ziphius cavirostris/ Mesoplodon spp.	0	2,572
Rough-toothed dolphin	Steno bredanensis	0	478
Bottlenose dolphin	Tursiops truncatus	0	21
Clymene dolphin	Stenella clymene	0	1,262
Pantropical spotted dolphin	Stenella attenuata	0	12,526
Spinner dolphin	Stenella longirostris	0	294
Striped dolphin	Stenella coeruleoalba	0	655
Fraser's dolphin	Lagenodelphis hosei	0	206
Risso's dolphin	Grampus griseus	0	203
Melon-headed whale	Peponocephala electra	0	813
Pygmy killer whale	Feresa attenuata	0	396
False killer whale	Pseudorca crassidens	0	448
Killer whale	Orcinus orca	0	7
Short-finned pilot whale	Globicephala macrorhynchus	0	64

Appendix A: Seismic Survey Mitigation and Protected Species Observer Protocols

This Appendix has been revised as of April 26, 2021, and replaces the original Appendix C (dated March 13, 2020). These protocols will be implemented by the Bureau of Ocean Energy Management (BOEM), the Bureau of Safety and Environmental Enforcement (BSEE), and provide guidelines to operators in complying with the Endangered Species Act (ESA; 16 U.S.C. §§ 1531-1544) and Marine Mammal Protection Act (MMPA; 16 U.S.C. §§1361$1423 \mathrm{~h})$. The measures contained herein apply to all seismic surveys approved by BOEM and associated with the federally regulated oil and gas program in the Gulf of Mexico.

Background

Geophysical surveys, including the use of airguns and airgun arrays may have an impact on marine wildlife. Many marine species are protected under the Endangered Species Act (ESA) and all marine mammals (including manatees) are protected under the Marine Mammal Protection Act (MMPA). The following Gulf of Mexico species are listed under the ESA:

ESA-listed Species common to the Gulf of Mexico
Gulf of Mexico Bryde's Whale (Balaenoptera edeni)
Sperm Whale (Physeter macrocephalus)
Green Turtle (Chelonia mydas) - North Atlantic DPS and South Atlantic DPS
Hawksbill Turtle (Eretmochelys imbricata)
Kemp's Ridley Turtle (Lepidochelys kempii)
Leatherback Turtle (Dermochelys coriacea) - Northwest Atlantic DPS
Loggerhead Turtle (Caretta caretta) - Northwest Atlantic Ocean DPS
Gulf Sturgeon (Acipenser oxyrinchus desotoi)
Oceanic Whitetip Shark (Carcharhinus Iongimanus)
Giant Manta Ray (Manta birostris)
West Indian Manatee (Trichechus manatus)*
*Managed by the US Fish and Wildlife Service
Note that this list can change as other species are listed/delisted, and this protocol shall be applied to any ESA-listed protected species (and all marine mammals) that occur in the Gulf of Mexico, including rare and extralimital species.

BSEE and BOEM consult jointly with the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (FWS) under Section 7 of the ESA to ensure that BOEM- or BSEE-authorized activities do not jeopardize the continued existence of ESA-listed species nor result in destruction or adverse modification of designated critical habitat. Incidental take of ESA-listed species is prohibited except as authorized pursuant to an Incidental Take Statement in the attached Biological Opinion. Incidental take of ESA-listed marine mammals cannot be exempted under the ESA unless also authorized under the MMPA. In this case, NMFS is
developing an incidental take regulation (ITR) to facilitate subsequent issuance of MMPA authorization (as applicable) to operators to authorize take incidental to seismic surveys. The proposed regulations would establish a framework for authorization of incidental take by Level A and Level B harassment through MMPA authorization (as applicable). Once an ITR and subsequent LOA is complete, the Biological Opinion and associated Incidental Take Statement may be amended to exempt take for Gulf of Mexico Bryde's whale and sperm whale, which are listed under the ESA. Following development of the ITRs, implementation could occur via issuance of MMPA authorization (as applicable and as Letters of Authorization [LOAs]) upon request from individual industry applicants planning specific seismic survey activities.

These protocols are the result of coordination between BOEM, BSEE, and NMFS and are based on: past and present mitigation measures; terms and conditions and reasonable and prudent measures identified in the attached Biological Opinion issued to the Bureaus; conditions, mitigation, monitoring, and reporting requirements identified in the MMPA ITR (50 CFR part 217 Subpart S); and NMFS’ technical memorandum on standards for a protected species observer and data management program (Baker et al. 2013). BSEE is tasked as the lead agency for compiling lessee or operator reporting data required under current Biological Opinions applicable to both Bureaus. Therefore, while BOEM is issuing these protocols, all observer reports described herein must be submitted to BSEE as well as to NMFS where specified.

In order to protect ESA-listed species and marine mammals during seismic operations, seismic operators will be required to use protected species observers (PSOs) and follow specific seismic survey protocols when operating. These measures contained herein apply to all onlease ancillary activity surveys conducted under 30 CFR Part 550 and all off-lease surveys conducted under 30 CFR Part 551, regardless of water depth. Operators must demonstrate your compliance with these requirements by submitting to BSEE and NMFS reports asdetailed below.

Definitions

Terms used in these protocols have the following meanings:

1. Protected species means any species listed under the ESA and/or protected by the MMPA. The requirements discussed herein focus on marine mammals and sea turtles since these species are the most likely to be observed during seismic surveys. However, other ESA-listed species (e.g., giant manta rays) are also protected and observations of them should be reported as detailed below.
2. Airgun means a device that releases compressed air into the water column, creating an acoustical energy pulse with the purpose of penetrating the seafloor.
3. Deep penetration surveys are defined as surveys using airgun arrays with total volume greater than $1,500 \mathrm{in}^{3}$. These surveys may in some cases collect return signals using sensors incorporated into ocean-bottom cables (OBC) or autonomous
ocean-bottom nodes (OBN) placed on the seafloor. These surveys are also referred to as high energy surveys.
4. Shallow penetration surveys are defined as surveys using airgun arrays with total volume equal to or less than $1,500 \mathrm{in}^{3}$, single airguns, boomers, or equivalent sources. These surveys are also referred to as low energy surveys.
5. Ramp-up (sometimes referred to as "soft start") means the gradual and systematic increase of emitted sound levels from an airgun array. Ramp-up begins by first activating a single airgun of the smallest volume, followed by doubling the number of active elements in stages until the full complement of an array's airguns are active. Each stage should be approximately the same duration, and the total duration should not be less than approximately 20 minutes for deep penetration surveys.
6. Shutdown of an airgun array means the immediate de-activation of all individual airgun elements of the array.
7. Exclusion zone means the area to be monitored for possible shutdown in order to reduce or eliminate the potential for injury of protected species. Two exclusion zonesare defined, depending on the species and context.
8. Buffer zone means an area beyond the exclusion zone to be monitored for the presence of protected species that may enter the exclusion zone. During pre-clearance monitoring (i.e., before ramp-up begins), the buffer zone also acts as an extension of the exclusion zone in that observations of marine mammals and sea turtles within the buffer zone would also prevent airgun operations from beginning (i.e. ramp-up). The buffer zone is not applicable for contexts that require an exclusion zone beyond 500 meters. The buffer zone encompasses the area at and below the sea surface from the edge of the $0-500$ meter exclusion zone, out to a radius of 1000 meters from the edges of the airgun array (500-1,000 meters) The buffer zone is not applicable when the exclusion zone is greater than 500 meters, i.e., the observational focal zone is not increased beyond 1,500 meters.
9. Visual monitoring means the use of trained protected species observers (herein referred to as visual PSOs) to scan the ocean surface visually for the presence of protected species. These observers must have successfully completed a visual observer training program as described below. The area to be scanned visually includes primarily the exclusion zone, but also the buffer zone. Visual monitoring of the exclusion zones and adjacent waters is intended to establish and, when visual conditions allow, maintain zones around the sound source that are clear of marine mammals and sea turtles, thereby reducing or eliminating the potential for injury. Visual monitoring of the buffer zone is intended to (1) provide additional protection to marine mammals and sea turtles and awareness and potential protection of other visual protected species that may be in the area during pre-clearance, and (2) during airgun use, aid in establishing and maintaining the exclusion zone by alerting the visual observer and crew of marine mammals and sea turtles that are outside of, but may approach and enter, the exclusion zone.
10. Acoustic monitoring means the use of trained personnel (sometimes referred to as
passive acoustic monitoring (PAM) operators, herein referred to as acoustic PSOs) to operate PAM equipment to acoustically detect the presence of marine mammals. These observers must have successfully completed a passive acoustic observer training program as described below. Acoustic monitoring is intended to further support visual monitoring in maintaining an exclusion zone around the sound source that is clear of marine mammals, in part for the purpose of reducing or eliminating the potential for injury. In cases where visual monitoring is not effective (e.g., due to weather, nighttime), acoustic monitoring may be used to allow certain activities to occur, as further detailed below.

General Requirements

1. A copy of a MMPA incidental take authorization (as applicable) and BOEMapproved Permit/Plan must be in the possession of the vessel operator, other relevant personnel, the lead PSO (see description below), and any other relevant designees operating under the authority of the MMPA authorization (as applicable) and BOEM Permit/Plan.
2. The MMPA authorization holder (as applicable) and BOEM-approved Permit/Plan holder shall instruct relevant vessel personnel with regard to the authority of the protected species monitoring team (PSO team), and shall ensure that relevant vessel personnel and the PSO team participate in a joint onboard briefing (hereafter PSO briefing) led by the vessel operator and lead PSO to ensure that responsibilities, communication procedures, protected species monitoring protocols, operational procedures, and MMPA authorization (as applicable) and BOEM Permit/Plan requirements are clearly understood. This PSO briefing must be repeated when relevant new personnel join the survey operations before work commences.
3. The acoustic source must be deactivated when not acquiring data or preparing to acquire data, except as necessary for testing. Unnecessary use of the acoustic source must be avoided. For surveys using airgun arrays as the acoustic source notified operational capacity (not including redundant backup airguns) must not be exceeded during the survey, except where unavoidable for source testing and calibration purposes. All occasions where activated source volume exceeds notified operational capacity must be communicated to the PSO(s) on duty and fully documented. The lead PSO must be granted access to relevant instrumentation documenting acoustic source power and/or operational volume.

Protected Species Observers (PSOs, Visual and Acoustic) Qualifications

1. The MMPA authorization (as applicable) and BOEM-approved Permit/Plan holder must use independent, dedicated, trained visual and acoustic PSOs, meaning that the PSOs must be employed by a third-party observer provider, may have no tasks other than to conduct observational effort (visual or acoustic), collect data, and communicate
with and instruct relevant vessel crew with regard to the presence of protected species and mitigation requirements (including brief alerts regarding maritime hazards), and must have successfully completed an approved PSO training course appropriate for their designated task (visual or acoustic). Acoustic PSOs are required to complete specialized training for operating PAM systems and are encouraged to have familiarity with the vessel with which they will be working. PSOs can act as acoustic or visual observers (but not at the same time) as long as they demonstrate to NMFS (nmfs.psoreview@noaa.gov) that their training and experience are sufficient to perform necessary tasks. NMFS must review and approve PSO resumes accompanied by a relevant training course information packet that includes the name and qualifications (i.e., experience, training completed, or educational background) of the instructor(s), the course outline or syllabus, and course reference material as well as a document stating successful completion of the course. NMFS shall have one week to approve PSOs from the time that the necessary information is submitted by the BOEM-approved Permit/Plan holder, after which PSOs meeting the minimum requirements shall automatically be considered approved.
2. At least one visual and two acoustic PSOs (when required) aboard the vessel must have a minimum of 90 days at-sea experience working in those roles, respectively, with no more than 18 months elapsed since the conclusion of the at-sea experience. One visual PSO with such experience shall be designated as the lead for the entire protected species observation team. The lead shall coordinate duty schedules and roles for the PSO team and serve as primary point of contact for the vessel operator (the responsibility of coordinating duty schedules and roles may instead be assigned to a shore-based, third-party monitoring coordinator). To the maximum extent practicable, the lead PSO shall devise the duty schedule such that experienced PSOs are on duty with those PSOs with appropriate training but who have not yet gained relevant experience.
a. PSOs must successfully complete relevant training, including completion of all required coursework and passing (80 percent or greater) a written and/or oral examination developed for the training program. PSOs must have successfully attained a bachelor's degree from an accredited college or university with a major in one of the natural sciences, a minimum of 30 semester hours or
equivalent in the biological sciences, and at least one undergraduate course in math or statistics. The educational requirements may be waived if the PSO has acquired the relevant skills through alternate experience. Requests for such a waiver shall be submitted by the BOEM-approved Permit/Plan holder to NMFS (nmfs.psoreview@noaa.gov) and must include written justification. Requests shall be granted or denied (with justification) by NMFS within one week of receipt of submitted information. Alternate experience that may be considered includes, but is not limited to: (1) secondary education and/or experience comparable to PSO duties; (2) previous work experience conducting academic, commercial, or government-sponsored protected species surveys; or (3) previous work experience as a PSO; the PSO should demonstrate good standing and consistently good performance of PSO duties.

Equipment

The MMPA incidental take authorization (as applicable) and BOEM-approved Permit/Plan holder is required to:

1. Provide PSOs with bigeye binoculars (e.g., $25 \times 150 ; 2.7$ view angle; individual ocular focus; height control) of appropriate quality solely for PSO use. These shall be pedestal-mounted on the deck at the most appropriate vantage point that provides for optimal sea surface observation, PSO safety, and safe operation of the vessel.
2. Work with the selected third-party observer provider to ensure PSOs have all equipment (including backup equipment) needed to adequately perform necessary tasks, including accurate determination of distance and bearing to observed protected species. Such equipment, at a minimum, shall include:
a. Each vessel requiring PAM will include a passive acoustic monitoring system that has been verified and tested by an experienced acoustic PSO that will be using it during the trip for which monitoring is required.
b. Reticle binoculars (e.g., 7×50) of appropriate quality (at least one per PSO, plus backups)
c. Global Positioning Units (GPS) (plus backup)
d. Digital camera with a telephoto lens (the camera or lens should also have an image stabilization system) that is at least 300 mm or equivalent on a full-frame single lens reflex (SLR) (plus backup)
e. Radios for communication among vessel crewand PSOs (at least one per PSO, plus backups)
f. Any other tools necessary to adequately perform necessary PSO tasks.

Equipment specified in (a) through (g) above may be provided by an individual PSO, the third-party observer provider, or the MMPA authorization (as applicable) and BOEM-approved Permit/Plan holder but the latter is responsible for ensuring PSOs have the proper equipment required to perform the duties specified within these protocols.

Data Collection

PSOs must use standardized data collection forms. PSOsshall record detailed information about any implementation of mitigation requirements, including the distance of animals to the acoustic source and description of specific actions thatensued, the behavior of the animal(s), any observed changes in behavior before and after implementation of mitigation, and if shutdown was implemented, the length of time before any subsequent ramp-up of the acoustic source. If required mitigation was not implemented, PSOs should record a description of the circumstances. At a minimum, the following information must be recorded:

1. BOEM Permit/Plan number;
2. Vessel names (source vessel and other vessels associated with survey), vessel size and type, maximum speed capability of vessel, port of origin, and call signs;
3. PSO names and affiliations;
4. Dates of departures and returns to port with port name;
5. Date and participants of PSO briefings (as discussed in General Requirements. 2);
6. Dates and times (Greenwich Mean Time) of survey effort and times corresponding with PSO effort;
7. Vessel location (latitude/longitude) when survey effort began and ended and vessel location at beginning and end of visual PSO duty shifts;
8. Vessel heading and speed at beginning and end of visual PSO duty shifts and upon any line change;
9. Environmental conditions while on visual survey (at beginning and end of PSO shift and whenever conditions changed significantly), including BSS and any other relevant weather conditions including cloud cover, fog, sun glare, and overall visibility to the horizon;
10. Factors that may have contributed to impaired observations during each PSO shift change or as needed as environmental conditions changed (e.g., vessel traffic, equipment malfunctions);
11. Survey activity information, such as acoustic source power output while in operation, number and volume of airguns operating in the array, tow depth of the array, and any other notes of significance (i.e., pre-clearance, ramp-up, shutdown, testing, shooting, ramp-up completion, end of operations, streamers, etc.); and
12. Upon visual observation of any protected species, the following information:
a. Watch status (sighting made by PSO on/off effort, opportunistic, crew, alternate vessel/platform);
b. PSO who sighted the animal;
c. Time of sighting;
d. Vessel location (coordinates) at time of sighting;
e. Water depth;
f. Direction of vessel's travel (compass direction);
g. Direction of animal's travel relative to the vessel;
h. Pace of the animal;
i. Estimated distance to the animal and its heading relative to vessel at initial sighting;
j. Identification of the animal (e.g., genus/species, lowest possible taxonomic level, or unidentified), PSO confidence in identification, and the composition of the group if there is a mix ofspecies;
k. Estimated number of animals (high/low/best);
13. Estimated number of animals by cohort (adults, juveniles, group composition, etc.);
m. Description (as many distinguishing features as possible of each individual seen, including length, shape, color, pattern, scars or markings, shape and size of dorsal fin, shape of head, and blow characteristics);
n. Detailed behavior observations (e.g., number of blows/breaths, number of surfaces, breaching, spyhopping, diving, feeding, traveling; as explicit and detailed as possible; note any observed changes in behavior), including an assessment of behavioral responses to survey activity;
o. Animal's closest point of approach (CPA) and/or closest distance from any element of the acoustic source;
p. Platform activity at time of sighting (e.g., deploying, recovering, testing, shooting, data acquisition, other); and
q. Description of any actions implemented in response to the sighting (e.g., delays, shutdown, ramp-up) and time and location of the action.
14. If a marine mammal is detected while using the PAM system, the following information should be recorded:
a. An acoustic encounter identification number, and whether the detection was linked with a visual sighting;
b. Date and time when first and last heard;
c. Types and nature of sounds heard (e.g., clicks, whistles, creaks, burst pulses, continuous, sporadic, strength of signal);
d. Any additional information recorded such as water depth of the hydrophone array, bearing of the animal to the vessel (if determinable), species or taxonomic group (if determinable), spectrogram screenshot, and any other notable information.

Deep Penetration Seismic Survey Protocols

Visual Monitoring

1. During survey operations (e.g., any day on which use of the acoustic source is planned to occur, and whenever the acoustic source is in the water, whether activated or not), a minimum of two visual PSOs must be on duty and conducting visual observations at all times during daylight hours (i.e., from 30 minutes prior to sunrise through 30 minutes following sunset).
2. Visual monitoring must begin no less than 30 minutes prior to ramp-up and must
continue until one hour after use of the acousticsource ceases or until 30 minutes past sunset.
3. Visual PSOs shall coordinate to ensure 360° visual coverage around the vessel from the most appropriate observation posts, and shall conduct visual observations using binoculars and the naked eye while free from distractions and in a consistent, systematic, and diligent manner.
4. PSOs shall establish and monitor applicable exclusion and buffer zones. These zones shall be based upon the radial distance from the edges of the airgun array (rather than being based on the center of the array or around the vessel itself). During use of the acoustic source (i.e., anytime the acoustic source is active, including ramp-up), occurrences of protected species within the buffer zone (but outside the exclusion zone) should be communicated to the operator to prepare for the potential shutdown for marine mammals (or voluntary pause for other non-marine mammal protected species [e.g., sea turtles] if being employed) of the acoustic source.
5. Visual PSOs shall immediately communicate all observations to the on duty acoustic PSO(s), including any determination by the PSO regarding species identification, distance, and bearing and the degree of confidence in the determination.
6. Any observations of protected species by crew members aboard any vessel associated with the survey shall be relayed to the PSO team.
7. During good conditions (e.g., daylight hours; Beaufort sea state (BSS) 3 or less), visual PSOs shall conduct observations when the acoustic source is not operating for comparison of sighting rates and behavior with and without use of the acoustic source and between acquisition periods, to the maximum extent practicable.
8. Visual PSOs may be on watch for a maximum of two consecutive hours followed by a break of at least one hour between watches and may conduct a maximum of 12 hours of observation per 24-hour period. Combined observational duties (visual and acoustic but not at same time) may not exceed 12 hours per 24 -hour period for any individual PSO. NMFS may grant an exception for LOA applications that demonstrate such a "two hours on/one hour off" duty cycle is not practicable, in which case visual PSOs will be subject to a maximum of four consecutive hours on watch followed by a break of at least two hours between watches. Combined observational duties (visual and acousticbut not at the same time) must not exceed 12 hours per 24-hour period for any individual PSO

Acoustic Monitoring

1. Applicants must provide a PAM plan to NMFS according to the MMPA authorization including description of the hardware and software proposed for use prior to proceeding with any survey where PAM is required. The source vessel must use a towed PAM system at all times when operating in waters deeper than 100 m , which
must be monitored by at a minimum one on duty acoustic PSO beginning at least 30 minutes prior to ramp-up, at all times during use of the acoustic source, and until one hour after use of the acoustic source ceases. "PAM system" refers to calibrated hydrophone arrays with full system redundancy to detect,identify, and estimate distance and bearing to vocalizing cetaceans, coupled with appropriate software to aid monitoring and listening by a PAM operator skilled in bioacoustics analysis and computer system specifications capable of running appropriate software. The PAM system must have at least one calibrated hydrophone (per each deployed hydrophone type and/or set) sufficient for determining whether background noise levels on the towed PAM system are sufficiently low to meet performance expectations).
2. Acoustic PSOs shall immediately communicate all detections to visual PSOs, when visual PSOs are on duty, including any determination by the PSO regarding species identification, distance, and bearing and the degree of confidence in the determination.
3. Acoustic PSOs may be on watch for a maximum of four consecutive hours followed by a break of at least two hours between watches and may conduct a maximum of 12 hours of observation per 24-hour period. Combined observational duties (acoustic and visual but not at same time) may not exceed 12 hours per 24-hour period for any individual PSO.
4. Survey activity may continue for 30 minutes when the PAM system malfunctions or is damaged, while the PAM operator diagnoses the issue. If the diagnosis indicates that the PAM system must be repaired to solve the problem, operations may continue for an additional two hours without acoustic monitoring during daylight hours only under the following conditions:
a. Sea state is less than or equal to BSS 4;
b. No marine mammals (excluding delphinids) detected solely by PAM in the applicable exclusion zone in the previous two hours;
c. NMFS and BSEE are notified via email (nmfs.psoreview@noaa.gov and protectedspecies@bsee.gov, respectively) as soon as practicable with the time and location in which operations began occurring without an active PAM system; and
d. Operations with an active acoustic source, but without an operating PAM system, do not exceed a cumulative total of four hours in any 24-hour period.

Pre-clearance and Ramp-up
The intent of pre-clearance observation (30 minutes) is to ensure no protected species are observed within the exclusion zones, and buffer zone if applicable (i.e., only when the exclusion zone is equal to 500 meters, see Definitions section for details on when the buffer
zone is not applicable), prior to the beginning of ramp-up. During pre-clearance is the only time observations of protected species in the buffer zone would prevent operations (i.e., the beginning of ramp-up). The intent of ramp-up is to warn protected species of pending seismic operations and to allow sufficient time for those animals to leave the immediate vicinity. A ramp-up procedure, involving a step-wise increase in the number of airguns firing and total array volume until all operational airguns are activated and the full volume is achieved, is required at all times as part of the activation of the acoustic source. All operators must adhere to the following pre-clearance and ramp-up requirements, which are applicable to both marine mammals and sea turtles:

1. The operator must notify a designated PSO of the planned start of ramp-up as agreed upon with the lead PSO; the notification time should not be less than 60 minutes prior to the planned ramp-up.
2. Ramp-ups shall be scheduled so as to minimize the time spent with the source activated prior to reaching the designated run-in.
3. A designated PSO must be notified againimmediately prior to initiating rampup procedures and the operator must receive confirmation from the PSO to proceed.
4. Ramp-up may not be initiated if any marine mammal or sea turtle is within the applicable exclusion or buffer zone. If a marine mammal or sea turtle is observed within the applicable exclusion zone or the buffer zone during the 30 minute preclearance period, ramp-up may not begin until the animal(s) has been observed exiting the zones or until an additional time period has elapsed with no further sightings (15 minutes for small odontocetes and 30 minutes for all other species including sea turtles).
5. Ramp-up shall begin by activating a single airgun of the smallest volume in the array and shall continue in stages by doubling the number of active elements at the commencement of each stage, with each stage of approximately the same duration. Duration shall not be less than 20 minutes. The operator must provide information to the PSO documenting that appropriate procedures were followed.
6. PSOs must monitor the exclusion and buffer zones during ramp-up, and ramp-up must cease and the source must be shut down upon observation of a marine mammal or sea turtle within the applicable exclusion zone. Once ramp-up has begun, observations of marine mammals and sea turtles within the buffer zone do not require shutdown, or voluntarily pause for other non-marine mammal protected species (e.g., sea turtles) if being employed, but such observation shall be communicated to the operator to prepare for the potential shutdown, or voluntarily pause if being employed.
7. Ramp-up may occur at times of poor visibility, including nighttime, if appropriate acoustic monitoring has occurred with no detections in the 30 minutes prior to beginning ramp-up. Acoustic source activation may only occur at times of poor
visibility where operational planning cannot reasonably avoid such circumstances.
8. If the acoustic source is shut down for brief periods (i.e., less than 30 minutes) for reasons other than implementation of prescribed mitigation (e.g., mechanical difficulty), it may be activated again without ramp-up if PSOs have maintained constant visual and/or acoustic observation and no visual detections of marine mammals or sea turtleshave occurred within the applicable exclusion zone and no acoustic detections of marine mammals have occurred. For any longer shutdown, preclearance observation and ramp-up are required. For any shutdown at night or in periods of poor visibility (e.g., BSS 4 or greater), ramp-up is required, but if the shutdown period was brief andconstant observation was maintained, pre-clearance watch of 30 min is not required.
9. Testing of the acoustic source involving all elements requires ramp-up. Testing limited to individual source elements or strings does not require ramp-up but does require preclearance observation period.

Shutdown

For non-marine mammal protected species (e.g., sea turtles), shutdowns are not required. However, the BOEM Permit or authorized Plan and MMPA authorization (as applicable) holder may employ a voluntary pause during which the visual PSO would request that the operator voluntarily pause the airgun array for six shots if a non-marine mammal protected species is observed within the exclusion zone (within 500 meters) during active airgun use, to let the animal float past the array while it is inactive. For marine mammals, all operators must adhere to the following shutdown requirements:

1. Any PSO on duty has the authority to delay the start of survey operations or to call for shutdown of the acoustic source if a marine mammal is detected within the applicable exclusion zone.
2. The operator must establish and maintain clear lines of communication directly between PSOs on duty and crew controlling the acoustic source to ensure that shutdown, and voluntary pause commands (optional for other protected species) are conveyed swiftly while allowing PSOs to maintain watch.
3. When both visual and acoustic PSOs are on duty, all detections must be immediately communicated to the remainder of the on-duty PSO team for potential verification of visual observations by the acoustic PSO or of acoustic detections by visual PSOs.
4. Two exclusion zones are defined, depending on the species and context. A standard exclusion zone encompassing the area at and below the sea surface out to a radius of 500 meters from the edges of the airgun array $(0-500 \mathrm{~m})$ is defined. An extended $1,500-\mathrm{m}$ exclusion zone must be applied upon detection (visual or acoustic) of a baleen whale, sperm whale, beaked whale or Kogia spp. within the zone.
5. When the airgun array is active (i.e., any time one or more airguns is active, including during ramp-up) and (1) a marine mammal appears within or enters the applicable exclusion zone and/or (2) a marine mammal (excluding delphinids) is detected acoustically and localized within the applicable exclusion zone, the acoustic source must be shut down. When shutdown is called for by a PSO, the acoustic source must be
immediately deactivated and any dispute resolved only following deactivation.
6. The shutdown requirement is waived for dolphins of the following genera:

Steno, Tursiops, Stenella, and Lagenodelphis.
a. If a small delphinid (individual of the Family Delphinidae, which includes the aforementioned dolphin genera), is acoustically detected and localized within the exclusion zone, no shutdown is required unless the acoustic PSO or a visual PSO confirms the individual to be of a genera other than those listed above, in which case a shutdown is required.
7. If there is uncertainty regarding identification (i.e., whether the observed marine mammal(s) belongs to one of the delphinid genera for which shutdown is waived or one of the species with a larger exclusion zone), visual PSOs may use best professional judgment in making the decision to call for a shutdown.
8. Upon implementation of shutdown, the source may be reactivated after the marine mammal(s) has been observed exiting the applicable exclusion zone (i.e., animal is not required to fully exit the buffer zone where applicable) or following a 30-minute clearance period with no further observation of the marine mammal(s).

Time-area closure

From January 1 through May 31, no use of airguns may occur shoreward of the 20-m isobaths and between 90-84으 W

Shallow penetration protocols

1. The requirements defined for deep penetration surveys shall be followed, with the following exceptions:
a. PAM is not required for shallow penetration surveys.
b. Ramp-up for small airgun arrays must follow the procedure described above for large airgun arrays, but may occur over an abbreviated period of time. Ramp-up is not required for surveys using only a single airgun. For subbottom profilers, power should be increased as feasible to effect a ramp-up.
c. Two exclusion zones are defined, depending on the species and context. A standard exclusion zone encompassing the area at and below the sea surface out to a radius of 100 meters from the edges of the airgun array (if used) or from the acoustic source $(0-100 \mathrm{~m})$ is defined. An extended $500-\mathrm{m}$ exclusion zone must be applied upon detection (visual or acoustic) of a baleen whale, sperm whale, beaked whale or Kogia spp. within the zone.
d. The buffer zone encompasses the area at and below the sea surface from the edge of the $0-100$ meter exclusion zone out to a radius of 200 meters from the edges of the airgun array (if used) or from the acoustic source (100-200 meters). The buffer zone is not applicable when the exclusion zone is greater than 100 meters.

Non-Airgun High-Resolution Geophysical (HRG) Protocol

Non-airgun HRG surveys are conducted in leases and along pipeline routes to evaluate the potential for geohazards, archaeological resources, and certain types of benthic communities. Non-airgun HRG sources include but are not limited to side-scan sonars, boomers, sparkers (in limited situations) and compressed high-intensity radiated pulse (CHIRP) sub bottom profilers (in limited situations), and single-beam or multibeam depth sounders.

Non-Airgun HRG Surveys with Frequencies ≥ 180 kHz
Acoustic sources do not require detailed analyses because the frequency is outside the general hearing range of marine mammals.

Non-Airgun HRG Surveys with Frequencies <180 kHz
For all non-airgun HRG surveys in which one or more active acoustic sound sources are operating at $<180 \mathrm{kHz}$, the requirements defined for shallow penetration surveys shall be followed, with the following exceptions:

1. Pre-clearance watch is required for a period of 30 minutes and over a $200-\mathrm{m}$ radius from the acoustic source.
2. When operating in waters deeper than $100-\mathrm{m}$, during survey operations (e.g., any day on which use of the acoustic source is planned to occur, and whenever the acoustic source is in the water, whether activated or not), a minimum of one trained and experienced independent PSO must be on duty and conducting visual observations at all times during daylight hours (i.e., from 30 minutes prior to sunrise through 30 minutes following sunset).
3. When operating in waters shallower than $100-\mathrm{m}$, a minimum of one trained visual PSO, which may be a crew member, must be employed. PSOs employed during shallow-water HRG surveys are only required during the pre-clearance period.
4. PSOs are not required during survey operations in which the active acousticsource(s) are deployed on an autonomous underwater vehicle.
5. PAM is not required for HRG surveys. Shutdowns are not required for HRG surveys.

Entanglement and Entrainment Risk Reduction

Nodal Survey Requirements
To avoid the risk of entanglement, lessees and operators conducting surveys using ocean-bottom nodes or similar gear must:

1. Use negatively buoyant coated wire-core tether cable;
2. Ensure any cables/lines are designed to be rigid;
3. Retrieve all lines immediately following completion of the survey; and
4. Attach acoustic pingers directly to the coated tether cable; acoustic releases should not be used.

Reporting

1. The BOEM Permit/Plan holder shall submit interim reports (see Data Collection section for details) on the $1^{\text {st }}$ of each month to BSEE (protectedspecies@bsee.gov) detailing all protected species observations with closest approach distance. The MMPA authorization (as applicable) and BOEM Permit/Plan holder shall submit a draft comprehensive report to BOEM/BSEE (protectedspecies@,boem.gov and protectedspecies@,bsee.gov) and NMFS (nmfs.psoreview@noaa.gov) on all activities and monitoring results within 90 days of the completion of the survey or expiration of the MMPA authorization (as applicable) or BOEM Permit/Plan, whichever comes sooner, or if an issued MMPA authorization is valid for greater than one year, the summary report must be submitted on an annual basis. The report must describe all activities conducted and sightings of protected species near the activities, must provide full documentation of methods, results, and interpretation pertaining to all monitoring, and must summarize the dates and locations of survey operations and all protected species sightings (dates, times, locations, activities, associated survey activities, and information regarding locations where the acoustic source was used). For operations requiring the use of PAM, the report must include a validation document concerning the use of PAM, which should include necessary noise validation diagramsand demonstrate whether background noise levels on the PAM deployment limited achievement. The draft report shall also include geo-referenced time-stamped vessel track lines for all time periods during which airguns were operating. Track lines should include points recording any change in airgun status (e.g., when the airguns began operating, when they were turned off, or when they changed from full array to single gun or vice versa). GIS files shall beprovided in ESRI shapefile format and include the UTC date and time, latitude in decimal degrees, and longitude in decimal degrees. All coordinates shall be referenced to the WGS84 geographic coordinate system. In addition to the report, all raw observational data shall be made available to BOEM/BSEE and NMFS. The report must summarize the information submitted in interim monthly reports as well as additional data collected as described above in Data Collection and the MMPA authorization (as applicable). The draft report must be accompanied by a certification from the lead PSO as to the accuracy of the report, and the lead PSO may submit directly to BOEM/BSEE and NMFS a statement concerning implementation and effectiveness of the required mitigation and monitoring. A final report must be submitted within 30 days following resolution of any comments on the draft report.
2. Reporting injured or dead protected species:

The MMPA authorization (as applicable) and BOEM Permit/Plan holder must report
sightings of any injured or dead aquatic protected species immediately, regardless of the cause of injury or death. For reporting dead or injured marine mammals, refer to the reporting requirements specified in the MMPA authorization (as applicable), associated with the activity being conducted, and Appendix C

References

Baker, K., D. Epperson, G. Gitschlag, H. Goldstein, J. Lewandowski, K. Skrupky, B. Smith, and T. Turk. 2013. National standards for a protected species observer and data management program: A model using geological and geophysical surveys. Technical Memorandum NMFS-OPR-49, Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration; Bureau of Ocean Energy Management, U.S. Department of the Interior; Bureau of Safety and Environmental Enforcement, U.S. Department of the Interior, Silver Spring, Maryland.

Appendix C. Vessel Strike Avoidance and Injured/Dead Aquatic Protected Species Reporting Protocols

This Appendix has been revised as of April 26, 2021 and replaces the original Appendix C (dated March 13, 2020). These protocols will be implemented by the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) through non-discretionary conditions of approval (COA) applied programmatically to BOEM/BSEE permitted activities (see Attachment 1 to the amended Incidental Take Statement), and provide guidelines to operators in complying with the Endangered Species Act (ESA; 16 U.S.C. §§ 1531-1544) and Marine Mammal Protection Act (MMPA; 16 U.S.C. §§1361-1423h). The measures contained herein apply to all seismic surveys approved by BOEM and associated with the federally regulated oil and gas program in the Gulf of Mexico.

Aquatic Protected Species Identification

Crew and supply vessel personnel should use a Gulf of Mexico reference guide that includes identifying information on marine mammals, sea turtles, and other marine protected species (i.e., Endangered Species Act listed species such as Gulf sturgeon, giant manta ray, or oceanic whitetip shark; hereafter collectively termed "other aquatic protected species") that may be encountered in the Gulf of Mexico Outer Continental Shelf (OCS). Vessel operators must comply with the below measures except under extraordinary circumstances when the safety of the vessel or crew is in doubt or the safety of life at sea is in question.

Vessel Strike Avoidance

1. Vessel operators and crews must maintain a vigilant watch for all aquatic protected species and slow down, stop their vessel, or alter course, as appropriate and regardless of vessel size, to avoid striking any protected species. A single aquatic protected species at the surface may indicate the presence of submerged animals in the vicinity of the vessel; therefore, precautionary measures should always be exercised. A visual observer aboard the vessel must monitor a vessel strike avoidance zone (speciesspecific distances detailed below) around the vessel according to the parameters stated below, to ensure the potential for strike is minimized. Visual observers monitoring the vessel strike avoidance zone can be either third-party observers or crew members (e.g., captain), but crew members responsible for these duties must be provided sufficient training to distinguish aquatic protected species to broad taxonomic groups, as well as those specific species detailed further below.
2. Vessel speeds must also be reduced to 10 knots or less when mother/calf pairs, pods, or large assemblages (greater than three) of any marine mammal are observed near a vessel.
3. All vessels must maintain a minimum separation distance of 100 meters (m) from sperm whales, and 500 m from any baleen whale to specifically protect the Gulf of Mexico Bryde's whale.
4. All vessels must, to the maximum extent practicable, attempt to maintain a minimum separation distance of 50 meters from all "other aquatic protected species" including sea turtles, with an exception made for those animals that approach the vessel.
5. When aquatic protected species are sighted while a vessel is underway, the vessel should take action as necessary to avoid violating the relevant separation distance (e.g., attempt to remain parallel to the animal's course, avoid excessive speed or abrupt changes in direction until the animal has left the area). If aquatic protected species are sighted within the relevant separation distance, the vessel should reduce speed and shift the engine to neutral, not engaging the engines until animals are clear of the area. This does not apply to any vessel towing gear (e.g., source towed array and site clearance trawling).
6. Any BOEM/BSEE-authorized or -permitted activity occurring within the Eastern Planning Area will be subject to a step-down review with NMFS under the attached 2020 biological opinion on BOEM Oil and Gas Program Activities in the Gulf of Mexico.

The above requirements do not apply in any case where compliance would create an imminent and serious threat to a person or vessel or to the extent that a vessel is restricted in its ability to maneuver and, because of that restriction, is unable to comply.

Injured/Dead Protected Species Reporting

The measures below have been revised from the original measures (contained in the Appendices to the biological opinion dated March 13, 2020) in accordance with the revised proposed action (see Attachments 1 and 2 to the amended ITS).

At all times, vessel operators must report sightings of any injured or dead aquatic protected species immediately, regardless of whether the injury or death was caused by the operator's vessel. If the injury or death was caused by a collision with the operator's vessel, the operator must immediately report the incident to NMFS by email at nmfs.psoreview@noaa.gov and must also immediately report the incident to the appropriate NMFS contact below for 24 hour response. The operator must further notify BOEM and BSEE within 24 hours of the strike by email to protectedspecies@boem.gov and protectedspecies@bsee.gov. The report must include the following information:

1. Time, date, and location (latitude/longitude) of the incident;
2. Species identification (if known) or description of the animal(s) involved;
3. Vessel's speed during and leading up to the incident;
4. Vessel's course/heading and what operations were being conducted (if applicable);
5. Status of all sound sources in use;
6. Description of avoidance measures/requirements that were in place at the time of the strike and what additional measures were taken, if any, to avoid strike;
7. Environmental conditions (e.g., wind speed and direction, Beaufort sea state, cloud cover, visibility) immediately preceding the strike;
8. Estimated size and length of animal that was struck;
9. Description of the behavior of the marine mammal immediately preceding and following the strike;
10. If available, description of the presence and behavior of any other marine mammals immediately preceding the strike;
11. Estimated fate of the animal (e.g., dead, injured but alive, injured and moving, bloodor tissue observed in the water, status unknown, disappeared); and
12. To the extent practicable, photographs or video footage of the animal(s).

In the event that any of the following occur at any time, immediate reporting of the incident is required, after personnel and/or diver safety is ensured:

- Entanglement or entrapment of a protected species (i.e., an animal is entangled in a line or cannot or does not leave a moon pool of its own volition).
- Injury of a protected species (e.g., the animal appears injured or lethargic).
- Interaction or contact with equipment by a protected species.
- Any observation of a leatherback sea turtle within a moon pool (regardless of whether it appears injured, or an interaction with equipment or entanglement/entrapment is observed).

As soon as personnel and/or diver safety is ensured, any of the incidents listed above must be reported to NMFS by contacting the appropriate expert for $24-\mathrm{hr}$ response. If an immediate response is not received, the operator must keep trying until contact is made. Any failed attempts should be documented. Contact information for reporting is as follows:

- Marine mammals: contact Southeast Region's Marine Mammal Stranding Hotline at 1-877-433-8299.
- Sea turtles: contact NMFS Veterinary Medical Officer at 352-283-3370. If no answer, contact (301) 301-3061. This includes the immediate reporting of any observation of a leatherback sea turtle within a moon pool.
- Other protected species (e.g., giant manta ray, oceanic whitetip shark, or Gulf sturgeon): contact the ESA Section 7 biologist at 301-427-8413.

The report must include the following information:

1. Time, date, water depth and location (latitude/longitude) of the first discovery (and updated location information if known and applicable);
2. Name, type, and call sign of the vessel in which the event occurred;
3. Equipment being utilized at time of observation;
4. Species identification (if known) or description of the animal(s) involved;
5. Approximate size of animal;
6. Condition of the animal(s) during the event and any observed injury / behavior;
7. photographs or video footage of the animal(s), if able; and
8. General narrative and timeline describing events that took place.

After the appropriate contact(s) have been made for guidance/assistance as described above, the operator may call BSEE at 985-722-7902 (24 hours/day) for questions or additional guidance on recovery assistance needs (if still required) and continued monitoring requirements. The operator may also contact this number if a timely response from the appropriate contact(s) listed above were not received.

Appendix B: Environmental Management Plan

RPS PXGEO SHELL STONES - 3D OBN SURVEY PERMIT L22-001

Environmental Management Plan: Marine Mammal and Sea Turtle Monitoring, Mitigation, and Reporting

RPS PXGEO SHELL STONES - 3D OBN SURVEY- PERMIT L22001

Environmental Management Plan: Marine Mammal and Sea Turtle Monitoring, Mitigation, and Reporting

With reference to the Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico issued by the National Marine Fisheries Service on 13 March 2020 \& the Bureau of Ocean Energy Management Permit L22-001.

Revision		Version
Rate	Revision made	
07 September 2023	1	Update to survey name, client, contractor, permit number and date (Section 1.1), Section 8.1: updated Table 1 for survey equipment used, Page iv: updated acronym list, Section 7.4: updated to included Rice's Whale Expanded Area
18 September 2023	2	Updated Section 7.4, removed Rice's Whale Expanded Area

Approval for issue
Name Stephanie Milne \quad Signature $\quad\left[\begin{array}{c}\text { DocuSigned by: } \\ \text { Stephanie Milue }\end{array}\right]$

Contents

LIST OF ACRONYMS IV
1 INTRODUCTION 1
1.1 Applicable Regulatory Documents and Permits 1
2 MARINE PROTECTED SPECIES 1
3 PROTECTED SPECIES OBSERVERS AND PASSIVE ACOUSTIC MONITORING OPERATORS 1
3.1 Staffing Plan 1
3.2 Roles and Responsibilities 2
3.3 PSO and PAM Operator Requirements 2
4 MONITORING EQUIPMENT 3
4.1 Visual Monitoring Equipment 3
4.2 Acoustic Monitoring Equipment 3
4.2.1 Passive Acoustic Monitoring (PAM) System 3
4.2.2 PAM JSA and PAM Deployment and Retrieval Procedure 3
4.2.3 Distance Estimation of Acoustic Detections 3
5 VISUAL AND ACOUSTIC MONITORING PROCEDURES 4
5.1 Visual Monitoring Watches 4
5.2 Passive Acoustic Monitoring Watches 4
5.2.1 Procedures for PAM System Malfunction 4
6 PROJECT BRIEFING 5
7 MITIGATION PROCEDURES: STRIKE AVOIDANCE 5
7.1 Strike Avoidance Monitoring and Vessel Maneuvering 5
7.2 Vessel Speed Restrictions 5
7.3 Separation Distances 5
7.4 Rice's Whale Area 6
8 MITIGATION PROCEDURES: SOUND SOURCES 7
8.1 Survey Equipment Subject to Monitoring and Mitigation Procedures 7
8.2 Sound Source Exclusion Zones and Buffer Zones 7
8.3 Delays to Initiation of the Seismic Source 7
8.4 Ramp-up and Testing of Sound Source. 8
8.5 Protected Species Shutdown Procedures 8
8.5.1 Shutdown During Ramp-up 8
8.5.2 Shutdown During Full-Volume Operations 9
8.6 Short Breaks in Source Operations 9
8.6.1 Daylight 9
8.6.2 Nighttime and Daytime Poor Visibility 9
8.7 Non-acquisition and Non-Testing Source Activity 10
9 REPORTING 10
9.1 Incident Reporting 10
9.1.1 Potential Non-Compliance Incidents 10
9.1.2 Reporting A Non-functioning PAM System During Seismic Operations 10
9.1.3 Injured or Dead Protected Species Reporting 11
9.2 Daily Progress, Interim and Final Reporting 11
9.2.1 Daily Progress Reports 11
9.2.2 Interim Reports 11
9.2.3 Final Reports 11

Tables

Table 1: Equipment used for this survey.

Figures

Figure 1: Rice's Whale Area as described in the BOEM permit.6

Appendices

Appendix A : Passive Acoustic Monitoring (PAM) System.12
List of Acronyms

```
3-D - 3-Dimensional
BOEM - Bureau of Ocean Energy Management
BO - Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico
BOSIET - Basic Offshore Safety Induction Emergency Training
BSEE - Bureau of Safety and Environmental Enforcement
BSS - Beaufort Sea State
BZ - Buffer Zone
CV - Curriculum Vitae
EMP - Environmental Management Plan
EZ - Exclusion zone
ESA - Endangered Species Act
FOET - Further Offshore Emergency Training
GIS - Geographic Information System
GOM - Gulf of Mexico
Hz - Hertz
HUET - Helicopter Underwater Egress Training
JSA - Job Safety Analysis
kHz- Kilohertz
km - Kilometer
LOA - Letter of Authorization
MMPA - Marine Mammal Protection Act
m - Meter
NMFS - National Marine Fisheries Service
NTL - Notice to Lessee
OBN - Ocean Bottom Node
OCS - Outer Continental Shelf
PAM - Passive Acoustic Monitoring
PIES - Pressure Inverted Echo-Sounder
PPE - Personal Protective Equipment
PSO - Protected Species Observer
RPS - RPS Group Company Name
Shell - Shell Offshore Inc.
USBL - Ultra-short Baseline
VSA - Vessel Strike Avoidance
```


1 INTRODUCTION

Shell Offshore Inc. (Shell) has contracted PXGeo to conduct a 3-Dimensional (3D) ocean bottom node (OBN) survey within the Gulf of Mexico (GOM). The details of the survey activities are provided in the survey plan application.
In an effort to minimize the potential impacts of seismic operations on protected species of the GOM, including marine mammals and sea turtles, the Bureau of Ocean Energy Management (BOEM), the National Marine Fisheries Service (NMFS), and the Bureau of Safety and Environmental Enforcement (BSEE), have outlined monitoring, mitigation, and reporting procedures that survey operators and permit holders are expected to implement during their seismic survey operations.

1.1 Applicable Regulatory Documents and Permits

Protected species monitoring, mitigation and reporting procedures that are applicable to this survey are contained in the following regulatory documents:

1. The Biological Opinion on the Federally Regulated Oil and Gas Program Activities in the Gulf of Mexico (BO) issued by the NMFS on 13 March 2020, where Protected Species Observer (PSO) procedures are outlined in detail in Appendix A and the amendment issued on 26 April 2021
2. The survey permits issued to Shell by BOEM, permit L22-001 issued on 07 March 2023.
3. A Letter of Authorization (LOA) issued by NMFS on 07 March 2023, effective from 07 March 2023 to 31 March 2024.

This document, the Environmental Management Plan (EMP), prepared by RPS on behalf of PXGeo, describes how monitoring, mitigation and reporting measures for protected species will be executed during the 4D seismic survey to maintain compliance with the regulatory requirements in the BO and its appendices, the BOEM survey permit L22-001, and the NMFS LOA.

2 MARINE PROTECTED SPECIES

Marine protected species or protected species refers to any marine species for which dedicated monitoring and mitigation procedures will be implemented, including:

- All marine mammals
- All sea turtles
- Gulf sturgeon*
- Oceanic whitetip shark*
- Giant manta ray*
*Note that strike avoidance procedures apply to these ESA-listed species, but monitoring and sound source mitigation procedures do not need to be implemented.

3 PROTECTED SPECIES OBSERVERS AND PASSIVE ACOUSTIC MONITORING OPERATORS

3.1 Staffing Plan

A team of three (3) PSOs, supplied by RPS, will be onboard each source vessel to undertake day-time visual watches, implement mitigations, conduct data collection and reporting in accordance with the BO and the survey permit.

A team of four (4) Passive Acoustic Monitoring (PAM) Operators will conduct 24 -hour PAM monitoring, implement mitigations, and conduct data collection and reporting in accordance with the BO and the survey permit.

3.2 Roles and Responsibilities

Lead PAM Operator

- Maintain copies of the regulatory documents including the Letter of Authorization (LOA) and the BOEM survey permit as well as the most up-to-date version of the EMP
- Install and operate PAM as required, including permit to work and task-based risk assessment
- Communicate with seismic operator to delay or shutdown operations
- Acoustically detect and identify protected species in accordance with regulatory requirements
- Organize and maintain appropriate monitoring schedules
- Monitor seismic operations for compliance to the regulatory requirements
- Prepare required reports (with lead PSO)
- Support visual watches when possible
- Participate in daily operation meetings and drills with crew when appropriate

Lead PSO

- Coordinate and oversee PAM and PSO Operations and ensure compliance with monitoring requirements
- Visually monitor, detect, and identify protected species, as well as determine distance from source.
- Record and report protected species sightings, survey activities, and environmental conditions, per regulations
- Monitor and advise on sound source and vessel operations for compliance with the environmental requirements for the survey
- Communicate with the crew to implement mitigation actions as required by environmental protocols
- Participate in daily operation meetings with crew when appropriate

PSO

- Visually monitor, detect, and identify protected species
- Record and report according to survey plan
- Monitor and advise on sound source and vessel operations for compliance with the environmental requirements for the survey plan
- Communicate with the crew to implement mitigation actions as required by environmental protocols
- Participate in daily operation meetings with crew when appropriate

PAM Operators

- Acoustically monitor, detect, and identify marine mammals and determine distance to source
- Record and report marine mammal sightings, survey activities and environmental conditions, per regulations
- Monitor and advise on sound source and vessel operations for compliance with the environmental requirements for the survey
- Assist in maintaining and troubleshooting the PAM system hardware and software
- Communicate with the crew to implement mitigation actions as required by environmental protocols, including delays to initiation of survey equipment
- Participate in daily operation meetings and drills with crew when appropriate

3.3 PSO and PAM Operator Requirements

- All PSOs and PAM Operators will have completed a protected species observer training program as described in the BO.
- PAM Operators will have completed a PAM training course as described in the BO.
- PSOs' and PAM Operators' CVs will be submitted to NMFS for approval prior to deployment on the survey.
- All PSOs and PAM Operators will have completed Offshore Petroleum Industry Training Organization (OPITO) approved Basic Offshore Safety Induction Emergency Training (BOSIET)/ Further Offshore Emergency Training (FOET)/ Helicopter Underwater Egress Training (HUET).
- All PSOs and PAM Operators will be responsible for being equipped with Personal Protective Equipment (PPE), including steel-toe boots, fire-retardant coveralls, work gloves, and safety glasses.
- All PSOs and PAM Operators must have offshore medical to OEUK, ENG1 or NMD standard

4 MONITORING EQUIPMENT

4.1 Visual Monitoring Equipment

The PSOs on duty will monitor for marine protected species using the naked eye, hand-held reticle binoculars, and big-eye binoculars as described in the Biological Opinion, its appendices, and the LOA.

Digital single-lens reflex camera equipment, including a zoom lens equivalent to 300 mm on a 35 mm sensor, will be used to record sightings and verify species identification.

4.2 Acoustic Monitoring Equipment

4.2.1 Passive Acoustic Monitoring (PAM) System

The PAM system is designed to provide a flexible approach to the monitoring for marine mammals using a towed hydrophone system. The system uses PAMGuard software modules such that the optimum system can be configured for the application, vessel, and deployment method. PAM software modules will be configured for the application, vessel, and deployment method.

The source vessel will have two acoustic monitoring systems installed, a primary system and a secondary system available as back-up should any issues be encountered with the main system.
The PAM system has been designed to monitor for most cetacean species found in the Gulf of Mexico, covering a broad range of frequencies up to 200 kilohertz (kHz). Some propeller and engine noise will dominate the lowest frequencies, but the species of concern should all be detectable and vocalize above the range that engine noise dominates.
Mid and high frequency marine mammal vocalizations are processed by the laptop internal sound card. Mid frequency vocalizations include sperm whale click trains and codas and delphinid whistles in the frequency range of approximately 2 kHz to 24 kHz . Kogia species, beaked whales, and delphinid echolocation clicks that are emitted at very high frequencies in excess of 80 kHz are processed by a specialized sound card in the buffer unit, an external National Instruments sound card, capable of sampling audio at 500 kHz . PAM equipment specifications are provided in Appendix A.

4.2.2 PAM JSA and PAM Deployment and Retrieval Procedure

A Job Safety Analysis (JSA) will be completed prior to hydrophone deployment. The Lead PSO/PAM Operator will develop, in cooperation with the vessel crew, a vessel-specific deployment and retrieval procedure that considers both the minimization of entanglement risks with other towed equipment while maximizing the acoustic range of the system.

4.2.3 Distance Estimation of Acoustic Detections

There are a variety of methods that can be used to estimate the distance to vocalizing marine mammals using the acoustic detection software, PAMGuard. When the distance to a vocalizing animal cannot be determined by PAMGuard, the experienced PAM Operator can make a distance estimation assisted by the noise or detection score system developed by Gannier et al. (2002). Gannier et al. monitored sperm whales in the Mediterranean both visually and acoustically. A scale was developed based upon the strength or intensity of the sperm whale clicks at various distances that were then measured when the sperm whales surfaced and were visually observed. Although the scale is subjective and sounds produced in marine environments will vary according to local conditions, the scale provides a measure for approximating distances when using a single, linear hydrophone array.

5 VISUAL AND ACOUSTIC MONITORING PROCEDURES

5.1 Visual Monitoring Watches

There will be at least two PSOs on visual watch during:

- All seismic source activity in daylight hours, including testing
- During search periods prior to activating the seismic source
- For the duration of any day when there is planned acoustic source activity, regardless of whether the source is deployed

While the Biological Opinion allows for one person watches, only under the listed conditions below, no one person watches can occur without this project's RPS PM approval.

- Acoustic source is not operating and no plans of operating during the day AND
- Monitoring condition is "poor" (poor conditions are defined in the BO as Beaufort Sea State (BSS) of 4 or more)

Visual monitoring will begin 30 minutes before sunrise and continue until 30 minutes after sunset.

The following guidelines will apply to these watch periods:

- No additional duties may be assigned to the PSO during his/her visual observation watch
- No PSO will be allowed more than two consecutive hours on watch before being allocated a one-hour break from visual monitoring
- No PSO will be assigned a combined watch schedule of more than 12 hours in a 24 -hour period

The PSOs will stand watch in a suitable, outdoor location that will not interfere with the navigation or operation of the vessel and affords an optimal view of the sea surface. PSOs will maintain 360° coverage surrounding the vessel and the seismic source.

If a protected species is observed, the PSO should first take care of any necessary mitigation actions, or if no mitigation actions are required, they will note and monitor the position (including latitude/longitude of the vessel and relative bearing and estimated range to the animal) until the animal dives or moves out of visual range of the observer.
Visual monitoring must be consistent, diligent, and free of distractions for the duration of the watch.

5.2 Passive Acoustic Monitoring Watches

Passive acoustic monitoring will be conducted, day and night, during all uses of the seismic sources AND during the search periods prior to activation of the seismic sources.

During acoustic monitoring watches, the following guidelines shall be followed:

- No additional duties may be assigned to the PAM Operator during their acoustic monitoring watch
- No PAM Operator will be allowed more than four consecutive hours of acoustic monitoring before they will be allocated a break of two hours
- No person on watch as a PSO or PAM Operator will be assigned a combined watch schedule of more than 12 hours in a 24 -hour period

Acoustic monitoring must be consistent, diligent, and free of distractions for the duration of the watch.

5.2.1 Procedures for PAM System Malfunction

In the event that a PAM system is not functional for the purposes of mitigation monitoring, whether because of malfunction with the cables, electronics, monitoring software or another issue, the PAM Operator is permitted $\mathbf{3 0}$ minutes to diagnose the issue without the need to shut down the source array.
During daylight when PSOs are also on watch, an additional two (2) hours is permitted to conduct repairs, where seismic operations can continue during that time if all the following conditions are met:

1. The sea state at the time of the malfunction is BSS 4 or less.

AND

2. There were no acoustic-ONLY detections of marine mammals other than delphinids inside the applicable EZ in the 2 hours preceding the malfunction.

Operations conducted without ongoing acoustic monitoring may not exceed a total of 4 hours in a 24-hour period.

NMFS and BSEE must be notified as soon as is practicable of any PAM system malfunctions exceeding 30 minutes in duration that occur while acoustic source operations are ongoing. Reporting procedures are outlined in the Reporting section of this EMP.

$6 \quad$ PROJECT BRIEFING

The vessel crew and PSO team should participate in a project briefing that includes communication procedures, monitoring requirements and operating protocols.

The briefing should be repeated every time relevant new personnel join the vessel before operations begins.

7 MITIGATION PROCEDURES: STRIKE AVOIDANCE

7.1 Strike Avoidance Monitoring and Vessel Maneuvering

Vessel operators must maintain a vigilant watch for all marine protected species.
Vessels must slow down, stop their vessel, or alter course, as appropriate and regardless of vessel size, to avoid striking any protected species:

- All marine mammals
- All sea turtles
- Gulf sturgeon
- Oceanic whitetip shark
- Giant manta ray

These procedures apply to physical interactions involving both vessels and towed equipment.

7.2 Vessel Speed Restrictions

Vessel speeds must be reduced to 10 knots or less when mother/calf pairs, pods, or large assemblages (greater than three) of any marine mammal are observed near a vessel.

7.3 Separation Distances

When protected species are sighted while a vessel is underway, the vessel should take action as necessary to avoid violating the relevant separation distance (e.g., attempt to remain parallel to the animal's course, avoid excessive speed or abrupt changes in direction until the animal has left the area).

If marine protected species are sighted within the relevant separation distance, the vessel should reduce speed and shift the engine to neutral, not engaging the engines until animals are clear of the area.
While Appendix C of the BO states that this does not apply to any vessel that is towing gear, regulators have clarified that an effort should still be made by the vessel, as is operationally feasible to maintain a separation distance.

PSOs should always provide the suggestion for Vessel Strike Avoidance (VSA) and allow the vessel crew to make determination on whether that procedure can be executed without risk to the safety of the vessel and crew.

NOTE: Vessels are not required to shift into neutral for animals that approach the vessel voluntarily.

- $\mathbf{5 0 0}$ meters (\mathbf{m}): All baleen whales, including the Rice's whale (formerly known as the Bryde's whale)
- 100 m : Sperm whales
- 50 m : All other marine mammals (including manatees), and sea turtles, and the ESA-listed fish species referenced in Section 7.1.

NOTE: Any large whale for which species can't be identified should be mitigated for as a baleen whale.

7.4 Rice's Whale Area

In accordance with the new language in the BOEM permit, operators or their recognized representatives must notify BOEM or BSEE as appropriate of their intention to transit through the Rice's Whale Area (from $100-$ to $400-\mathrm{m}$ isobaths from $87.5^{\circ} \mathrm{W}$ to $27.5^{\circ} \mathrm{N}$ as described in the species' status review plus an additional 10 kilometers (km) around that area) Figure 1 below.

For this survey the Rice's Whale Area should not be a consideration as the survey area and transit path in and out of the survey area does not approach the Rice's Whale Area.

Figure 1: Rice's Whale Area as described in the BOEM permit.

8 MITIGATION PROCEDURES: SOUND SOURCES

8.1 Survey Equipment Subject to Monitoring and Mitigation Procedures

All of the survey equipment that produces sound below 200 kHz is subject to the following monitoring and mitigation protocols with the exception of the Ultra-short Baseline (USBL) and Pressure Inverted EchoSounder (PIES), which are considered to be navigational equipment.

Table 1: Equipment used for this survey.

	Array or Airgun Size (cu. In.)	Frequency	Operating Pressure (psi)	Subject to Monitoring and Mitigation Requirements
Bolt LLX Airgun Array	5110	$0-200 \mathrm{~Hz}$	2000	Yes
Sonardyne Pressure Inverted Echo-Sounder (PIES)	--	$14-19 \mathrm{kHz}$	--	No
Ocean Bottom Node (OBN)	--	--	--	No

8.2 Sound Source Exclusion Zones and Buffer Zones

Two types of zones will be established around the seismic sources, both radii that extend from the outer edge of the source array.

Buffer Zones (BZ): Applicable during the pre-clearance search periods conducted prior to initiating the sound source from silence, where detections of a protected species inside it's applicable BZ during the search will result in a delay to activating the source.

- $\mathbf{1 5 0 0} \mathbf{~ m}$: All true whale species (Rice's whale, sperm whales, Kogia species and all beaked whales)
- 1000 m : All other marine mammals (dolphins) and sea turtles

Exclusion Zones (EZ): Applicable once the source has been activated, where detections of a protected species inside it's applicable EZ will result in a shutdown of the sound source.

- 1500 m: All true whale species (sperm whales, Kogia species and all beaked whales)
- 500 m : All other marine mammals (dolphins) and sea turtles

To activate the sound source, a minimum of a 30 -minute search period must be conducted.
During the daytime, the search will be conducted visually by the PSOs and acoustically by the PAM Operator

During nighttime, the search will be conducted acoustically by the PAM Operator.
PSO and PAM on watch should be notified of the intent to turn on the source from silence, either to conduct a ramp-up or for testing, at least 60 minutes prior to the planned start.

8.3 Delays to Initiation of the Seismic Source

If any marine mammal or sea turtle was detected inside its respective BZ during the 30-minute search period, initiation of the seismic source must be delayed until:

- All marine protected species that were observed inside the relevant BZ have been confirmed by the visual observer to have exited the relevant BZ.
- 15 minutes from last detection for small odontocetes if not observed exiting the BZ
- 30 minutes from last detection for all other protected species, including sea turtles, if not observed exiting the BZ
- 30 minutes from last detection for acoustic-only detections

NOTE: Both the 30-minute pre-clearance search period and the mandatory delay for animals not seen exiting the buffer zone must be completed before source initiation, but the pre-clearance search and delays can be implemented concurrently (they overlap). For a delay period that ends BEFORE the clearance search period is completed, the BZ will be cleared when the clearance search is completed. For a delay period that ends AFTER the standard clearance search period is completed, the source can be turned on when the delay period is completed.

8.4 Ramp-up and Testing of Sound Source

The intent of a ramp-up is to warn marine mammals and sea turtles of pending seismic operations and to allow sufficient time for those animals to leave the immediate vicinity.

For all acoustic source activity, including source testing involving more than one source element, ramp-up procedures must be conducted to allow marine mammals and sea turtles to depart the exclusion zone before surveying begins.

- The vessels can test a single source element without ramp-up regardless of volume. If going beyond a single source element, ramp-up is required from smallest volume needed for testing.
- Ramp-up should be planned in an effort to minimize time that the source is active on the run in to the start of the survey line.
- Acoustic source activation may only occur at times of poor visibility (including night) where operational planning cannot reasonably avoid such circumstances.

Ramp-up procedures are as follows:

- Visually and acoustically (day) or acoustically (night) monitor the buffer zone and adjacent waters for the absence of marine mammals and sea turtles for at least 30 minutes before initiating ramp-up procedures.
- If no protected species are visually or acoustically detected inside their respective BZs, ramp-up procedures may begin. If animals are detected, refer to Procedures to clear the BZs prior to start of source operations.
- Seismic personnel confirm with PSOs on watch (daytime) and/or PAM Operator (day and night) that the BZs are clear of protected species.
- Ramp-up begins by activating a single airgun of the smallest volume in the array.
- Continue ramp-up in stages by doubling the sound of active elements at the commencement of each stage, with each stage of approximately the same duration.
- Total duration of the ramp-up should not be less than 20 minutes.

NOTE: Please review Section 8.5 .1 below for shutdown requirements for protected species detected inside the EZ during a ramp-up.

8.5 Protected Species Shutdown Procedures

8.5.1 Shutdown During Ramp-up

If any marine mammal or sea turtle is visually or acoustically detected within its EZ, an immediate shutdown of the seismic source in ramp-up is required. This shutdown also applies for the four "nonshutdown" species listed in Section 8.5.2 below.

1. No shutdown of the ramp-up is required for marine mammals or sea turtles detected inside the BZ during ramp-up, however, notification should be made that a shutdown could be called for if those animals move into the EZ.
2. No shutdown of the ramp-up is required for acoustic only detections (day or night) unless those acoustic only detections can be localized inside the appropriate EZ. Notification should still be made that a shutdown could be called for if animals are able to be localized.

If there is uncertainty regarding localization, PSO or PAM operator should use best professional judgment in making the decision to call for a shutdown.

8.5.2 Shutdown During Full-Volume Operations

If any marine mammal is detected visually or acoustically within its EZ, an immediate shutdown of the seismic source is required.

The shutdown requirement is waived under the following circumstances:

1. Shutdown is not required for dolphins of the following genera: Steno, Tursiops, Stenella, and Lagenodelphis (this does not apply during ramp-up).
2. Shutdown is not required for acoustic detections of delphinids inside the EZ unless the PSO or PAM Operator can confirm that the dolphin(s) present are from a different genus than those listed above.

If there is uncertainty regarding identification (i.e., whether the observed marine mammal(s) belongs to one of the delphinid genera for which shutdown is waived or one of the species with a larger EZ) or localization, PSO or PAM Operator should use best professional judgment in making the decision to call for a shutdown.
The vessel operator must comply immediately with any shutdown request made by a PSO or PAM Operator. Any discussion can occur only after the shutdown has been implemented.

Subsequent restart of seismic source may only occur following clearance of the EZ of all marine protected species under the following conditions:

- When all other marine mammals have been confirmed by the visual observer to have been seen exiting the relevant EZ (not BZ), OR
- When a marine mammal was not observed exiting the EZ, an additional 30 minutes has elapsed following the last detection inside the EZ.

NOTE: All resumptions of source activity following a protected species shutdown must begin with a ramp-up.

8.6 Short Breaks in Source Operations

8.6.1 Daylight

In recognition of occasional short periods of silence for a variety of reasons other than for mitigation, during daylight operations, the seismic source may be silenced for periods of time not exceeding 30 minutes in duration and may be restarted at the same volume for operations without a ramp-up if:

1. Visual and acoustic monitoring (daytime) is continued diligently through the silent period.

AND

2. No marine protected species are visually observed in their respective EZ during the silent period, and no acoustic detections made at any distance.

NOTE: Procedures for returning to full volume without ramp-up after silent periods also apply to returning to full volume from reduced volume.

8.6.2 Nighttime and Daytime Poor Visibility

In recognition of occasional short periods of silence for a variety of reasons other than for mitigation, the seismic source may be silenced for periods of time not exceeding 10 minutes in duration and may be restarted at the same volume for operations without a ramp-up if:

1. Acoustic monitoring (nighttime and daytime periods of poor visibility (i.e., rain, fog, BSS 4 or greater)) is continued diligently through the silent period

AND

2. No acoustic detections have been made at any distance

NOTE: Procedures for returning to full volume without ramp-up after silent periods also apply to returning to full volume from reduced volume.

NOTE: If the 10 minutes of allowable brief silence during night or reduced visibility is exceeded, the rules for clearance revert from the EZ to the BZ, and the BZ shall have been clear of protected species for 30 minutes before the source may be cleared for activation.

8.7 Non-acquisition and Non-Testing Source Activity

The acoustic source should be deactivated when not acquiring data or preparing to acquire data, except as necessary for testing. Unnecessary use of the acoustic source shall be avoided.

9 REPORTING

9.1 Incident Reporting

9.1.1 Potential Non-Compliance Incidents

The Lead PSO or Lead PAM Operator verbally informs Party Manager and on-board Shell representative of any potential compliance related issues immediately. The Lead PSO/PAM Operator also informs the RPS Project Manager immediately of all potential non-compliance events.

If the issue can be resolved between the Lead PSO/PAM Operator, Shell Representative and Party Manager, the lead PSO/PAM Operator will document in writing the compliance issue and the agreed-upon practices for minimizing future non-compliance incidents of the same nature. The party manager and Shell Representative review and approve, and the statement is submitted to the following distribution list:

Vessel Party Chief
Onboard Shell Representative
PXGeo Gabriel Pommier gaby.pommier@pxgeo.com
Shell Dalila Cherief dalila.cherief@shell.com
RPS Anna Williams anna.williams@RPSgroup.com

The representatives listed above will distribute any pertinent information resulting from the incident to their respective crews as deemed necessary and appropriate.

If the issue cannot be resolved at the vessel level, Shell, PXGeo, and RPS will discuss and determine the appropriate future actions to be taken. When a common position is reached, notification of the agreed procedures will be distributed by PXGeo to vessel crew and by RPS to the PSOs and PAM Operators.

If an agreement cannot be reached at the office level, a Shell representative will contact BOEM/NMFS/BSEE for clarification. Results from the clarification will be distributed by PXGeo.

9.1.2 Reporting A Non-functioning PAM System During Seismic Operations

The PAM Operator on duty will notify the RPS Project Manager as soon as possible. The RPS Project Manager (PM) will email NMFS (nmfs.psoreview@noaa.gov) and BSEE (protectedspecies@bsee.gov) as soon as is practicable of any PAM system malfunctions exceeding 30 minutes in duration that occur while acoustic source operations are ongoing.

The notification will include the vessel name, the time and location (geographic information system (GIS) position) in which the PAM system ceased function where seismic operations continued. The template for this email will be provided by the RPS PM.

The PAM Operator will also notify by email:

- The Vessel Party Chief
- The PXGeo Representative
- The RPS PM
- The Onboard Shell Representative

9.1.3 Injured or Dead Protected Species Reporting

1. The PSO on watch will report the sightings of a dead and/or injured marine species to the Lead PSO, the RPS project manager, on board PXGeo representative and vessel Party Chief as soon as possible after the sighting.
2. A Shell representative will report the sighting to the NMFS stranding hotline. This will occur as soon as practicably possible but no more than 24 hours of the detection.
3. A written report will be prepared including any photos taken of the animal and sent to RPS as soon as possible.
4. The RPS office will submit the written report to the following distribution list within 12 hours of the detection for review:

On-board:

- Vessel Party Chief
- Shell Representative

On-shore:

- PXGeo Project Manager

RPS will provide the written report, once the draft has been reviewed and approved per above, to BSEE, NMFS and BOEM with Shell and PXGeo included in copy.

NOTE: Unless otherwise directed by BSEE, NMFS or BOEM, the dead or injured marine mammal or sea turtle SHOULD NOT be touched! Dead and injured marine mammals and sea turtles are still protected by the ESA and the MMPA and touching the animals in any manner is considered harassment and is punishable by law.

9.2 Daily Progress, Interim and Final Reporting

9.2.1 Daily Progress Reports

A daily report will be completed and submitted to the Party chief, onboard Shell representative and RPS project manager.

The template will be provided by RPS and PXGeo will be provided opportunity to review and provide comments.

9.2.2 Interim Reports

RPS will submit interim reports in the format of an excel spreadsheet for each vessel containing the required information listed in the BO.

RPS will submit interim reports (a dataset in a format approved by NMFS and BSEE) on the 1st of each month to BSEE (protectedspecies@bsee.gov).

9.2.3 Final Reports

RPS will develop a final report summarizing the survey activities and all PAM / PSO observations. The report will contain all the data required to meet the requirements of the BO.

The RPS Project Manager will provide the draft final report to the PXGeo Project Manager within 45 days of project completion and then the final submission of the report will be submitted to BOEM, BSEE and NMFS within 90 days of project completion.

Appendix A: Passive Acoustic Monitoring (PAM) System

1 Passive Acoustic Monitoring (PAM) Equipment

The PAM equipment comprises the following items:

- 250 m Hydrophone Array Cable containing 2 Low Frequency hydrophones (10 Hz to 24 kHz), 2 Ultra Broadband hydrophones (200 Hz to 200 kHz), and 2 Broadband hydrophones (2 kHz to 200 kHz)
- 100 m deck cable
- Electronic data capture and processing unit including:
- Headphones RF transmitter
- Fireface audio interface
- Rackmount PC
- Buffer interface unit
- Integral screen and keyboard
- Backup System

Figure 1 Seiche PAM System

26 Hydrophone Array

The array includes six hydrophones arranged in three pairs of identical specification with appropriate physical separation to provide direction-finding (bearings) to marine mammals and localization using Target Motion Analysis (TMA).

- The front pair (H1 and H2, 8m separation) consists of two "Low Frequency" hydrophones with a response of 10 Hz to 24 kHz ;
- The middle pair (H3 and H4, 2.0m separation) consists of two "Broadband" hydrophones with a response of 200 Hz to 200 kHz ;
- The rear pair (H5 and H6, 0.25 m separation) consists of two "Standard" hydrophones with a response of 2 kHz to 200 kHz .

The "Low Frequency" hydrophones are configured to detect very low frequency vocalizations while the "Broadband" and "Standard" hydrophones are configured to detect low-mid frequency and mid-high vocalizations respectively. These three pairs of hydrophones provide the capability to detect the full range of marine mammal vocalizations anticipated to be encountered.

Simulation exercises have been completed using the PAMGuard software to verify that the within-pair separation provides consistently accurate bearings to a range of marine mammal vocalizations. Test signals used in these exercises simulated right whale up-calls, broadband sperm whale clicks, delphinid whistles, and narrow band high frequency harbor porpoise clicks. Anecdotal reports from surveys utilizing Seiche PAM systems with simultaneous visual and acoustic monitoring indicate that the acoustic range estimates have been sufficiently accurate for decision-making on whether vocal animals are within or beyond a 500 m mitigation zone.

Figure 26 Hydrophone Array Configuration

2.1 Frequency Response Curves

Frequency response curves provide a standard for demonstrating hydrophone sensitivity over a range of frequencies. A flat response between the frequencies of interest is desirable, indicating consistent sensitivity across the band of interest. The frequency response curves provided were generated from 10 Hz to $24 \mathrm{kHz}, 200 \mathrm{~Hz}$ to 200 kHz , and 2 kHz to 200 kHz hydrophone elements (including pre-amps) of a Seiche towed array and are representative of the response curves for the 6 Hydrophone Array. The frequency response curves for each element within the arrays (main system and spare) used on the survey will be generated as part of the calibration process prior to their dispatch.

[^2]
Appendix C: Map of Survey Area

WR013	WR014	WR015	WR016	WR017	WR018	WR019	WP020	WR021	WR022	WR023	WR024	WR025	WR028	WR027	WR028	WR029	WR090	WR031	WR032	WP033	WR034	WR035	WRO35
WR057	Wr0s8	WP059	WP650	WR051	WR052	WP063	WP064	WR065	WR056	WP667	WP068	WR069	WR070	WR071	WP072	WP073	WR074	WR075	WP076	WP077	WR078	WR079	WR000
WR101	WR102	WR103	WR104	WR105	WR106	WR107	WR108	WR109	WR110	WR111	WR11	WR113	WR114	WR115	WR116	WR117	WR118	WR119	WR120	WR121	WR122	WR123	WR 124
WR145	WR 146	WR147	WR148	WR149	WR150	WR151	WR152	WR153	WR154	155	WR156		WR158	WR159	WR160	WR161	WR162	WR163	WR164	WR165	WR166	WR167	WR168
WR189	WR190	WR191	WR192	WR193	WR194	WR195	WR196	WR197	WR198	WR199	WR200	WR201	WR2k	WR203	Wr204	WR205	WR206	WR207	WR208	Wr209	WR210	WR211	WR212
WR233	WR234	WR235	WR235	WR237	WR238	WR239	Wr240	WR24	WR242	WR243	224	HR 245	WR246	WR24	WR248	WR249	WR250	WR251	WR252	WR253	WR254	WR255	WR256
WR277	WR278	WR279	WR280	WR281	WR282	WR283	224	WR285	WR205	2287	WR288	WR289	Wr 290	WR291	WR292	WR293	WR294	WR295	WR296	WR297	WR298	WR299	WR300
WR321	WR322	WR323	WR324	WR325	WR328	wray	WR328	WR329	NR330	WR331	WE	NR333	WR334	NR335	WR336		WR338	WR399	WR340	WR341	WR342	WR343	WR344
WR365	WR365	WR387	WR3s3	WR369	wR30	WR371	WR372	WR373	WR374	Weftision	Whyts	\％\％	WR378	WR379	Wr380	WR381		WR383	WR384	WR385	WR39\％	WR387	WR3s8
WR409	WR410	WR411	WR412	WR415	WR414	WP15	N816	WR417	wrets		告部		人场等	WR423	WR424	Wpat	WR426	，	Wpat 2	WP429	WR430	WR431	WR432
WR453	Wrast	WP455	Wress	WR457	WR458	P459	WP460	we\％tio	\％\％	4\％	Stap：	K4－4	\％第紬	\％	WR468	WP469	WR470	WR471		W8473	WR474	WR475	WR476
WR497	WR498	WR49s	2500	WR501	2502	WR503	WFisis	（10）	T886	伿然	Mespor	＋ipy	Wers	（4）19	\％ 812	WR513	WR514	WR515	WR516	NR517	WR518	WR519	WR520
									\cdots		－	\％	＋r．										
WR541	WR542	WP543	WR54		WR546		WR548		梅特		5	－60858		人soms	WR556		WR558	WR559	Messo	WR561	WR562	WR563	WR564
WR595	WR5\％	WR587	WR5\％			WR591		WR593			K	慗牫	－	WR599	Wrsood	WP801	WR602	R603	WP804	WP805	WR606	WR607	WR608
WR629	WR630	Wp331	WP632	WR633					WR638	sex^{2}	$\%$		WR642	WR643	WPst4	WPS45	646	WR647	WPs48	WPst9	WR650	WR651	WR652
WR673	WR674	WP875	WP676	WR677	WR678		WP680			Wp683	W	WR685	WR6\％	WR687	WF588	\％s89	WR690	WR691	W\％892	WP893	WR694	WR695	WR696
WR717	WR718	WR719	Wr720	WR721	WR722	WR723	272	WR725	WR726	WR727	WR728	WR729	WR730	WR731	16732	WR733	WR73	WR735	WR736	WR737	WR738	WR739	WR740
WR761	WR762	WR763	WR764	WR765	WR76\％	WR767	WR768	2789	WR770	WRT11	WRTI2	WR773	WR774	18775	WRT76	WRTIT	WR778	WR779	WR780	WR781	WR782	WR783	WR784
WR805	WR806	WR907	Wrab	WR809	WR810	WR811	WR812	WR813	wR8t	W2815	WP816	WR817	NR8	WR819	WR820	WR821	WR822	WR823	Wr824	WR825	WR82\％	WR827	WR828
WR849		WR351	WR252	WR853	WR854	WP855	WR856	WR857	WR858	25s	WRes0	Nob	WR862	WR883	WRO54	WR255	WRoss	WR887	WR958	WR969	WR870	WR871	WR872
WR893		WR895	WR996	WR897	WR898	Wr899	Wre00	WR901	WR902	Wr903	We904	WR955	WR906	WR907	Wreos	Wr999	WR910	WR911	Wr912	WR913	WR914	WR915	WR916
												Sources	：Esri	HERE，	Garmi	，Inter	map．in	creme			BCO，	JSGS．	
WR937		WR939	WR940	WR941	WR942	WR943	We944	WR945	WR946	WR947	We948	$\begin{aligned} & \text { FAO } \mathrm{N} \\ & \text { METH: } \end{aligned}$	$\begin{aligned} & \text { PS, NR } \\ & \text { stich } \end{aligned}$	CAN nậ（	$\begin{aligned} & \text { GeoBas } \\ & \text { ng }{ }^{\prime} \mathrm{F} \text { Rón } \end{aligned}$		$\begin{aligned} & \text { Kada } \\ & \text { onpen's } \end{aligned}$	$\begin{aligned} & \text { ster NL } \\ & \text { trěet̄VZ } \end{aligned}$	$\begin{aligned} & \text { Ordne } \\ & \text { ardeant } \\ & \text { pheontr } \end{aligned}$	$\begin{aligned} & \text { ance } \\ & \text { ibuct } \end{aligned}$	urvey， and ${ }^{2}$ t	$\begin{aligned} & \text { Sri Jap } \\ & \text { Sop } \end{aligned}$	$\begin{array}{l\|} \hline \text { oan } \\ \text { WR9 } 90 \end{array}$
Wस्क 1	WR932	W1\％83	साखक्ष	WRY5s	WRK\％	Wख®\％ 7	Wस्क8	WRY大9	WR9\％	Wस्ष्ब 1	Wस्ष 2	Serse	－	it／KR9s5	सस्ख़ 6	Wस्का	WR983	Wरg\％9	WR00	WRण00	WR1002	WRTous	

Figure 1．Map of survey area

Appendix D: Survey Vessel Photos

Figure 1. Source vessel - Artemis Arctic

Figure 2. Node Vessel - Siddis Mariner

Appendix E: PSOs and PAM Operators

RPS PSOs and PAM Operators -
Artemis Arctic
Chelsea Twohy
Courtney Jones
Joshua Madsen
Daniela Cuevas Miranda
Claudia Portocarrero
Islam Ibrahim
Shelby Yahn
Jermel Levons
Avinash Maharajh
Laura Danos
Andrea Aguilar Andrede
Shalby Steck
Ana Betsabe Salomon Hernandez
Paola Diaz

Appendix F: Reticle Binocular Calibration Table

Reticle Binocular Calibration Table

 v $v \rightarrow$ a v v <2 V V v $\underset{\sim}{\sim} \stackrel{1}{\sim}$ Sea State
(Beaufort)

 \begin{tabular}{c}
True

$\begin{array}{c}\text { Distance } \\
\text { from } \\
\text { Radar } \\
(\mathbf{m})\end{array}$

\hline 1800

\hline 1800

\hline 1800

\hline 2932

\hline 2033

\hline 3148

\hline

 3519

2778

2963

1296

2137

1796

1796

3333

2500

\hline 2407
\end{tabular} 2407 4759 3759 3759 3926 4074

3900 39092
4481

 2878
2382
3598 4190

3111 $\stackrel{\circ}{7} \frac{\circ}{7}$ 4193 4193
Chelsea Twohy
 Courtney Jones Chelsea Twohy Jermel Levons Jermel Levons Courtney Jones Courtney Jones Chelsea Twohy Jermel Levons Jermel Levons Josh Madsen Jermel Levons Chelsea Twohy
 Chelsea Twohy Jermel Levons

Chelsea Twohy
Josh Madsen $\stackrel{n}{0}$

03 October 2023

 03 October 2023 16 October 2023 16 October 2023 25 October 2023 25 October 2023 28 October 2023 31 October 2023 31 October 2023 02 November 2023 02 November 2023 09 November 2023 10 November 2023 16 November 2023
 20 November 2023 21 November 2023 27 November 2023

әұед

8b	01 December 2023	Chelsea Twohy	4800	4259	6	25	2.5	Turritella, FPSO
9	04 December 2023	Chelsea Twohy	3116	3148	4	14	1.5	Tow Boat
9	04 December 2023	Josh Madsen	2516	2685	4	14	1.5	Tow Boat
9	06 December 2023	Jermel Levons	2514	2203	4	18	<2	Turritella, FPSO
10	13 December 2023	Andrea Aguilar	N/A	N/A	2	12	<2	Not possible to calibrate due to lack of horizon reference while being in port
10	13 December 2023	Shelby Steck	N/A	N/A	2	12	<2	Not possible to calibrate due to lack of horizon reference while being in port
10	13 December 2023	Courtney Jones	N/A	N/A	2	12	<2	Not possible to calibrate due to lack of horizon reference while being in port
11	22 December 2023	Andrea Aguilar	577	629	2	11	2	Weather buoy
11	20 December 2023	Courtney Jones	3005	2593	3	21	2	Coast Guard Cutter
11	22 December 2023	Shelby Steck	380	350	2	13	2	Weather buoy
12a	29 December 2023	Andrea Aguilar	1845	1760	4	20	2	Turritella
12a	28 December 2023	Courtney Jones	1875	2222	3	13	2	Turritella
12a	29 December 2023	Shelby Steck	1400	1352	4	22	2	Turritella
12b	31 December 2023	Andrea Aguilar	748	850	2	9	<2	Turritella
12b	31 December 2023	Courtney Jones	1875	1481	2	7	<2	Turritella
12b	31 December 2023	Shelby Steck	650	722	2	9	<2	Turritella
13	03 January 2024	Andrea Aguilar	2400	2350	3	17	<2	Warisoul X
13	06 January 2024	Shelby Steck	1850	2722	3	14	<2	Alegria 1
13	04 January 2024	Courtney Jones	1875	2222	6	35	<2	Support Vessel
14	10 January 2024	Andrea Aguilar	2400	2200	2	7	<2	Hammilton
14	10 January 2024	Courtney Jones	1875	2200	2	7	<2	Hammilton
14	14 January 2024	Shelby Steck	3500	3400	3	18	2	Carnival Dream
15	16 January 2024	Shelby Steck	2200	2900	3	12	<2	Herolds Bay
15	16 January 2024	Andrea Aguilar	2745	2960	3	12	<2	Herolds Bay
15	16 January 2024	Courtney Jones	N/A	N/A	3	12	<2	Not possible due to no boat reference

Appendix G: PAM Calibration Certificates

SM. 7328 System Frequency Response

This PAM system has been calibrated so that realistic sound level and signal amplitudes values may be displayed in PAM software. The system frequency response of the system when using this hydrophone array is shown below, and calibration settings are provided for use in Pamguard.

Table 2 provides -3 dB and -6 dB points of the system response curves for hydrophones in each group. These points delimit the 'flat' portion of the response curve. Groups $\mathrm{H} 1-\mathrm{H} 2$ and $\mathrm{H} 3-\mathrm{H} 4$ are acquired by the Fireface 800/802 sound card. Group H5-H6 is acquired by the NI USB-6251 DAQ. The frequency response curves are shown in Fig. 14.

Table 2 Frequency points for $-3 d B$ and $-6 d B$ sensitivity, for representative hydrophones of each group.

Hydrophone	Fireface 800, -3 dB	Fireface 800, -6 dB	USB-6251, -3 dB	USB-6251, -6 dB
H 1	16 to $25,000 \mathrm{~Hz}$	10 to $40,000 \mathrm{~Hz}$	-	-
H 3	400 to $80,000 \mathrm{~Hz}$	250 to $80,000 \mathrm{~Hz}$	-	-
H5	-	-	2.5 to 160 kHz	1.6 to 250 kHz

Fig. 14 SM. 7328 System frequency response curves showing channel sensitivity for representative hydrophones of the H1-H2, H3-H4 and H5-H6 groups.

Calibration Values for PAM Software

$$
\begin{array}{ll}
\text { Pamguard Array Manager } \\
\text { H1 (Ch0, 0.01-24 kHz) } & \text { Sensitivity }=-196.2 \mathrm{~dB} \text { re: } 1 \mathrm{~V} / \mathrm{uPa}, \text { Preamplifier Gain }=+21.0 \mathrm{~dB} \\
\text { H2 (Ch1, 0.01-24 kHz) } & \text { Sensitivity }=-196.4 \mathrm{~dB} \text { re: } 1 \mathrm{~V} / \mathrm{uPa}, \text { Preamplifier Gain }=+21.0 \mathrm{~dB} \\
\text { H3 (Ch2, 0.2-200 kHz) } & \text { Sensitivity }=-196.7 \mathrm{~dB} \text { re: } 1 \mathrm{~V} / \mathrm{uPa}, \text { Preamplifier Gain }=+39.8 \mathrm{~dB} \\
\text { H4 (Ch3, 0.2-200 kHz) } & \text { Sensitivity }=-196.5 \mathrm{~dB} \text { re: } 1 \mathrm{~V} / \mathrm{uPa}, \text { Preamplifier Gain }=+39.9 \mathrm{~dB} \\
\text { H5 (Ch4, 2-200 kHz) } & \text { Sensitivity }=-196.5 \mathrm{~dB} \text { re: } 1 \mathrm{~V} / \mathrm{uPa}, \text { Preamplifier Gain }=+39.8 \mathrm{~dB} \\
\text { H6 (Ch5, 2-200 kHz) } & \text { Sensitivity }=-196.7 \mathrm{~dB} \text { re: } 1 \mathrm{~V} / \mathrm{uPa}, \text { Preamplifier Gain }=+39.7 \mathrm{~dB}
\end{array}
$$

Pamguard Sound Acquisition

NI USB-6251
Terminal Configuration Differential

Input Voltage Range 4 V (set as +/- 2 V per channel)

Additional System Gain .0 dB

Channels \qquad SW Ch0 / HW Ch4, SW Ch1 / HW Ch5

Sample Rate \qquad up to 500 kHz

Sample Size
16 bit

RME Fireface 800
Line Level Input -10 dBV (set in the Fireface Settings utility)

Input Voltage Range (p-p) . 2 V (i.e., +/- 1 V)

Additional System Gain \qquad $-11.3 \mathrm{~dB}$

Channels \qquad .SW Ch0 / HW Ch0, SW Ch1 / HW Ch1
\qquad SW Ch2 / HW Ch2, SW Ch3 / HW Ch3

Sample Rate $.48-192 \mathrm{kHz}$

Sample Size .24 bit

Depth Sensor

The array section is terminated with a piezoresistive pressure sensor.
Pressure Sensor Rating................... 10 bar
Working Depth Range $0-100 \mathrm{~m}$ (overpressure limit = 200 m)
ADC.. Measurement Computing USB-1208 LS
Range.. 2.5 to +2.5 V
Hardware Channel.......................... 0

SM. 8432 System Frequency Response

This PAM system has been calibrated so that realistic sound level and signal amplitudes values may be displayed in PAM software. The system frequency response of the system when using this hydrophone array is shown below, and calibration settings are provided for use in Pamguard.

Table 2 provides -3 dB and -6 dB points of the system response curves for hydrophones in each group. These points delimit the 'flat' portion of the response curve. Groups $\mathrm{H} 1-\mathrm{H} 2$ and $\mathrm{H} 3-\mathrm{H} 4$ are acquired by the Fireface 800/802 sound card. Group H5-H6 is acquired by the NI USB-6251 DAQ. The frequency response curves are shown in Fig. 14.

Table 2 Frequency points for $-3 d B$ and $-6 d B$ sensitivity, for representative hydrophones of each group.

Hydrophone	Fireface 800, -3 dB	Fireface 800, -6 dB	USB-6251, -3 dB	USB-6251, -6 dB
H 1	16 to $25,000 \mathrm{~Hz}$	10 to $40,000 \mathrm{~Hz}$	-	-
H 3	400 to $80,000 \mathrm{~Hz}$	250 to $80,000 \mathrm{~Hz}$	-	-
H 5	-	-	2.5 to 160 kHz	1.6 to 250 kHz

Fig. 14
SM. 8432 System frequency response curves showing channel sensitivity for representative hydrophones of the H1-H2, H3-H4 and H5-H6 groups.

Calibration Values for PAM Software

Pamguard Array Manager	
H1 (Ch0, 0.01-24 kHz)	Sensitivity $=-195.9 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+21.0 \mathrm{~dB}$
H2 (Ch1, 0.01-24 kHz)	Sensitivity $=-196.1 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+21.0 \mathrm{~dB}$
H3 (Ch2, 0.2-200 kHz)	Sensitivity $=-196.2 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.8 \mathrm{~dB}$
H4 (Ch3, 0.2-200 kHz)	Sensitivity $=-196.5 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.8 \mathrm{~dB}$
H5 (Ch4, 2-200 kHz)	Sensitivity $=-196.8 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.7 \mathrm{~dB}$
H6 (Ch5, 2-200 kHz)	Sensitivity $=-196.4 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.7 \mathrm{~dB}$

Pamguard Sound Acquisition

NI USB-6251
Terminal Configuration Differential

Input Voltage Range 4 V (set as +/- 2 V per channel)

Additional System Gain .0 dB

Channels \qquad SW Ch0 / HW Ch4, SW Ch1 / HW Ch5

Sample Rate \qquad up to 500 kHz

Sample Size 16 bit

RME Fireface 800
Line Level Input -10 dBV (set in the Fireface Settings utility)

Input Voltage Range (p-p) 2 V (i.e., +/-1 V)

Additional System Gain \qquad $-11.3 \mathrm{~dB}$

Channels \qquad .SW Ch0 / HW Ch0, SW Ch1 / HW Ch1
\qquad SW Ch2 / HW Ch2, SW Ch3 / HW Ch3

Sample Rate $.48-192 \mathrm{kHz}$

Sample Size .24 bit

Depth Sensor

The array section is terminated with a piezoresistive pressure sensor.
Pressure Sensor Rating................... 10 bar
Working Depth Range $0-100 \mathrm{~m}$ (overpressure limit = 200 m)
ADC.. Measurement Computing USB-1208 LS
Range.. 2.5 to +2.5 V
Hardware Channel.......................... 0

SM. 8608 System Frequency Response

This PAM system has been calibrated so that realistic sound level and signal amplitudes values may be displayed in PAM software. The system frequency response of the system when using this hydrophone array is shown below, and calibration settings are provided for use in Pamguard.

Table 2 provides -3 dB and -6 dB points of the system response curves for hydrophones in each group. These points delimit the 'flat' portion of the response curve. Groups $\mathrm{H} 1-\mathrm{H} 2$ and $\mathrm{H} 3-\mathrm{H} 4$ are acquired by the Fireface 800/802 sound card. Group H5-H6 is acquired by the NI USB-6251 DAQ. The frequency response curves are shown in Fig. 14.

Table 2 Frequency points for $-3 d B$ and $-6 d B$ sensitivity, for representative hydrophones of each group.

Hydrophone	Fireface 800, -3 dB	Fireface 800, -6 dB	USB-6251, -3 dB	USB-6251, -6 dB
H 1	16 to $25,000 \mathrm{~Hz}$	10 to $40,000 \mathrm{~Hz}$	-	-
H 3	400 to $80,000 \mathrm{~Hz}$	250 to $80,000 \mathrm{~Hz}$	-	-
H5	-	-	2.5 to 160 Hz	1.6 to 250 Hz

Fig. 14
SM. 8608 System frequency response curves showing channel sensitivity for representative hydrophones of the H1-H2, H3-H4 and H5-H6 groups.

Calibration Values for PAM Software

Pamguard Array ManagerH1 (Ch0, 0.01-24 kHz) Sensitivity $=-196.6 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+21.0 \mathrm{~dB}$H2 (Ch1, 0.01-24 kHz) Sensitivity $=-196.4 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+21.0 \mathrm{~dB}$H3 (Ch2, 0.2-200 kHz) Sensitivity $=-196.4 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.8 \mathrm{~dB}$H4 (Ch3, 0.2-200 kHz) Sensitivity $=-196.4 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.8 \mathrm{~dB}$H5 (Ch4, 2-200 kHz) Sensitivity $=-196.4 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.7 \mathrm{~dB}$H6 (Ch5, 2-200 kHz) Sensitivity $=-196.8 \mathrm{~dB}$ re: $1 \mathrm{~V} / \mathrm{uPa}$, Preamplifier Gain $=+39.7 \mathrm{~dB}$
Pamguard Sound Acquisition
NI USB-6251
Terminal Configuration Differential
Input Voltage Range 4 V (set as +/- 2 V per channel)
Additional System Gain 0 dB
Channels SW Ch0 / HW Ch4, SW Ch1 / HW Ch5
Sample Rate
\qquadup to 500 kHz
Sample Size16 bit
RME Fireface 800
Line Level Input -10 dBV (set in the Fireface Settings utility)
Input Voltage Range (p-p) 2 V (i.e., +/- 1 V)
Additional System Gain $-11.3 \mathrm{~dB}$
\qquad.SW Ch0 / HW Ch0, SW Ch1 / HW Ch1

\qquad
SW Ch2 / HW Ch2, SW Ch3 / HW Ch3Sample Rate$.48-192 \mathrm{kHz}$
Sample Size.24 bit

Depth Sensor

The array section is terminated with a piezoresistive pressure sensor.
Pressure Sensor Rating................... 10 bar
Working Depth Range $0-100 \mathrm{~m}$ (overpressure limit = 200 m)
ADC.. Measurement Computing USB-1208 LS
Range.. 2.5 to +2.5 V
Hardware Channel.......................... 0

Appendix H: Vessel Specific PAM Deployment Procedures

R/V Artemis Arctic PAM Hydrophone Deployment Procedures

The hydrophone deployment procedure is a draft document and may be altered at any time to reflect changes in the deployment over time. The deployment requires the PAM operator and one additional person to operate the winch.

Overview

A 230-meter heavy tow cable; a 25-meter hydrophone array cable containing six hydrophone elements with a depth gauge, and a 100-meter deck cable were supplied for the survey. Also, an electronic data capture and processing until (DPU) was provided and included a rack mounted PC; two integral screens; keyboard and mouse; one fireface audio interface; a buffer interface unit, and headphones RF transmitter. A backup system is also onboard in case of any failures in the main system.

The six hydrophones on the array cable are arranged in three pairs of identical specification with appropriate physical separation to provide direction-finding (bearings) and localization. The front pair consists of two low frequency hydrophones (with a response of 10 Hz to 24 kHz); the middle pair consists of two broadband hydrophones $(200 \mathrm{~Hz}$ to 200 kHz response), and the rear pair consists of two standard hydrophones (2 kHz to 200 kHz response) (Figure 1).

Figure 1: Schematic diagram of the hydrophone array cable indicating the position and separation of individual hydrophone elements and hydrophone pairs.

The "Low Frequency" hydrophones are configured to detect very low frequency vocalizations while the "Broadband" and "Standard" hydrophones are configured to detect low-mid frequency and mid-high vocalizations respectively. These three pairs of hydrophones provide the capability to detect the full range of marine mammal vocalizations anticipated to be encountered.

The PAM DPU and monitors were set up in the instrument room (Figure 2). A GPS feed (GNGGA string) was provided from a GlobalSat GPS antenna.

The 100-meter deck cable is connected to the PAM DPU located in the instrument room and is also connected to the hydrophone tow cable via a SD-16 connector. The deck cable was run from the instrument room where the PAM station was set up, along the cable trays in the ceiling of the streamer deck and the connecter end was dropped down near the starboard stern winch where the hydrophone cable is installed. Both sets of tow and hydrophone array cables were spooled onto the winch for the deployment/retrieval process into the water (Figure $3)$.

Figure 2: Passive acoustic monitoring station located in the instrument room.

Figure 3. Hydrophone and tow cables mounted on the starboard stern winch.

For this survey, the acoustic source array, which consisted of two source arrays with three gun strings each one, is deployed 170 meters astern of the vessel with a separation of 50 meters between the strings. Acoustic monitoring must be conducted for one hour after acoustic source operations cease. Due to the wide separation, the PAM cable is deployed between the source strings off the center stern of the vessel. To allow the strings to be retrieved while acoustic monitoring continues after source operations cease or during source maintenance, the PAM cable is pulled to one side out of the way of the string being retrieved. To facilitate these variables, the PAM cable is deployed through a fairlead block at the stern of the vessel to pull the PAM cable out of the way of whichever source string is being retrieved (Figure 4).

Two Chinese fingers were positioned on the tow cable at 80 meters and 70 meters from the connector between the tow cable and the hydrophone array cable. When the cable is deployed, the $80-m e t e r$ Chinese finger is attached to a rope on the center of streamer deck that acts as a tow point to help secure the cable on and to lower the cable further into the water. The other Chinese finger is used as a secondary tow point when the PAM cable is pulled out of the way for a source string to be retrieved/deployed. Additionally, there are three lengths of chains of approximately 12 kilograms of total weight. These help to stabilize and deepen the tow of the PAM cable and to decrease the likelihood of entanglement. Each one is secured to the tow cable; the first one is just ahead of the connector at approximately 2.7 meters from the end, the second is at 6.8 meters, and the third at 9.8 meters (Figure 5).

Figure 4: Cable guided through a fairlead block to the starboard stern of the vessel.

Figure 5: Chains added to the tow cable to increase depth.

For all deployment and retrieval operations, two people are required - a PAM operator and a gun mechanic. The gun mechanic operates the winch while the PAM operator monitors the PAM cable going into and out of the water watching for any possible entanglement issues. The PAM operators are not allowed to operate the winches.

Prior to deployment or retrieval of the PAM cable, the PAM operator ensures that the electronics in the instrument room are turned off and the deck cable is disconnected from the tow cable on the winch. The PAM operator then gives the gun mechanic the ok and the winch can be turned on.

During deployment, the PAM cable is run through the fairlead block at the stern of the vessel and into the water (Figure 6). The tow rope from the streamer deck is hooked onto the Chinese finger when is at 80 meters and then a few additional loops of PAM cable are removed from the winch. This allows for extra loose cable if more is needed while the PAM cable is pulled to the side for source string retrieval so that the PAM operator can continue monitoring. The PAM operator ensures that the tow cable connector is in the correct position to connect the deck cable and then gives the operator the ok to turn off the winch. After the winch is disabled, the PAM operator can connect the deck cable to the tow cable, and then turn on the electronics in the instrument room.

Figure 6: PAM cable fully deployed off the stern on the streamer deck.

Figure 7: Sketch of the hydrophone deployment on the R/V Artemis Arctic.
When the PAM cable is fully deployed, approximately 105 meters of the cable is towed freely astern of the vessel (Figure 7). The end of the cable tows at an average depth of 16 meters, depending on the sea current and vessel's speed. The center of the acoustic source is located approximately 45 meters from the hydrophone array cable.

When the PAM cable is pulled to the side, it is extremely close to the umbilical of the string that will remain in the water. The Chinese finger at 70 meters will be used to secure the cable on the opposite side of where the recovery/deployment of the string is taking place. Depending on the direction of the seas, it is common for the PAM cable to move over, or loop over the umbilical. Just watch for any additional tension that could indicate that the cable has fully wrapped and not just gone over or looped. If they are retrieving both source strings, the PAM cable needs to remain in the water for the one hour after source operations have ceased for acoustic monitoring, due to permit requirements. Once one string is on-board the PAM cable will be pulled to the opposite side of the vessel to allow the other string to be retrieved. The PAM cable is then moved back to the center position for retrieval of the PAM cable after the hour of monitoring has been completed.

During retrieval, tension is placed back on the cable on the winch, the Chinese finger is disconnected from the anchor hook and the cable is slowly retrieved back onto the winch. Care should be taken when the Chinese finger and chain are moving through the fairlead block as they can become stuck and may need extra open palm handling to be guided through the block.

REMINDERS!!!!

- Always make sure that the electronics are disabled and that the deck cable is disconnected prior to turning on the winch.
- Always make sure that the connectors (tow and deck cables) are taped over when they are disconnected to prevent moisture and dirt/dust from getting into the connector pins/holes. Extra tape can be gotten from the gun mechanics as needed.
- Be mindful of the position of the tow cable connector after deployment - ensure that it is positioned in a good location so that when the deck cable is connected, the cables are mostly straight and there are no large bends in either cable to get the connected.
- Full PPE, including a life jacket, is required for all deployments and retrievals of the PAM cable along with the PAM operator monitoring the PAM cable being moved to the side as they will be working/monitoring at the stern of the vessel.
- Secure any loose cable on deck to prevent trips and/or damage to cable.

Pre-Deployment and Retrieval Tasks

- Ensure the system has been tested and calibrated.
- Source mechanic assesses environmental conditions.
- Toolbox meeting in the instrument room involving anyone who will be involved in the task.
- No one who was not involved in the toolbox meeting can assist in the operation. If a new person that was not at the meeting needs to participate in the task, the new person needs to be briefed by the toolbox leader or a new toolbox meeting and paperwork needs to be done.
- Ensure that the PAM electronics in the instrument room are turned off and that the deck and tow cables are disconnected prior to turning on the winch.

Deployment

- Chief mechanic / SL mechanic assesses environmental conditions (consulting MOPO).
- A toolbox meeting is conducted by the task leader to assign tasks and discuss risks prior to deployment of the PAM cable. During the toolbox meeting, it will be agreed upon when to deploy the PAM cable. A minimum of two personnel are required - one gun mechanic and a PAM operator (see example for toolbox). Reminder - a new toolbox meeting needs to be conducted if any of the personnel involved with the task change.
- PAM operator will power off the sound cards.
- Task leader to open a permit to work for deployment/recovery of the PAM cable.
- Task leader asks navigation for clearance to start deploying PAM cable.
- PAM operator to verify that the deck cable is disconnected from the PAM cable.
- Gun mechanic will open the local hydraulic valve for winches located to the port side of the winch control levers (the same valve operates both winches) and begin operating the winch. PAM operators are prohibited from performing winch operations.
- Gun mechanic will operate the winch and unspool the hydrophone cable slowly. A second person will manually feed the end of the cable through the fairlead block suspended in front of the winch using an open hand technique to guide the PAM cable.
- When the cable has been deployed to the Chinese finger on the PAM cable the securing rope will be attached.
- The PAM cable can then be deployed until the Chinese finger takes the tension and positions itself on the center of the streamer deck.
- Gun mechanic to then close the local hydraulic valve.
- PAM operator will oversee the entire operation, making sure there is no risk for the cable while unspooling the winch or any possibility of entanglement while deploying.
- PAM operator will then connect the deck cable to the hydrophone cable.
- Task leader then notifies Navigation that PAM cable is fully deployed.
- Task leader then closes the permit on the bridge.

Retrieval

- Chief mechanic / SL mechanic assesses environmental conditions (consulting MOPO).
- PAM operator to power off sound card.

BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT | Final |
rpsgroup.com

- Conduct Toolbox meeting to assign tasks and discuss risks prior to recover PAM cable, at least one gun mechanic and a PAM operator are required (See example for Toolbox). Reminder - a new toolbox meeting must be conducted if any of the personnel involved with the task change.
- Task leader will open a permit to work for the deployment/recovery of PAM cable.
- Task leader to ask navigation clearance to start recovering PAM cable.
- PAM operator to verify the disconnection of the deck cable and hydrophone cable and cover the connectors to prevent corrosion and water intrusion.
- Gun mechanic will open the local hydraulic valve for winches located to the port side of the winch control levers (the same valve operates both winches) and begin operating the winch. PAM operators are prohibited from performing winch operations.
- Tension can be taken onto the PAM cable and it will come across the deck until all tension is off the Chinese finger. At this stage the connection on the Chinese finger can be released.
- Gun mechanic will spool the cable all the way onto the winch, ensuring that the cable winding on the winch does not catch on the connector attached to the inside of the drum, with assistance from the PAM operator.
- Mechanic and PAM operator are to use open hand technique to guide the PAM cable chains and hydrophones through the fairlead block if needed, in order to avoid damage to the equipment.
- The mechanic must turn off hydraulics.
- PAM operator will be overseeing the entire operation, making sure there is no risk for the cable while spooling the cable on the winch or any possibility of entanglement while recovering.
- Task leader to then notify Navigation that the PAM cable is on deck.
- Task leader then closes the permit on the bridge.

HSE

Normal working deck PPE is required (hard hat, boots, gloves, eye protection, and coveralls). The procedure takes place on the streamer deck, so a life vest is also required. This operation carries a relatively low risk. Hazards include working close to the side of the vessel, trip hazards, and pinch points at the winch, shackles, and collar.

A Job Safety Analysis (JSA) has been completed for this task. The JSA will also require further review for any additional modifications.

Appendix I: Excel Data Sheet of Monitoring Effort, Source Operations and Detections of Protected Species During the Survey

Appendix J: Letter of Data Certification

Report Certification Statement

I, Daniela Cuevas Miranda, am familiar with the protocols outlined in Appendix A: Seismic Survey Mitigation and Protected Species Observer Protocols, implemented by the Bureau of Ocean Energy Management (BOEM) and Bureau of Safety and Environmental Enforcement (BSEE), which provide guidelines to operators in complying with the Endangered Species Act (ESA; 16 U.S.C. §§ 1531-1544) and Marine Mammal Protection Act (MMPA; 16 U.S.C. §§1361-1423h).
I hereby certify that, to the best of my knowledge, the data collected by the Protected Species Observer (PSOs) offshore and the information that was provided to RPS by the PSO team for our vessel to compile this report is accurate.

Name: Daniela Cuevas Miranda
Position: Lead PAM Operator
Date: Mar 20, 2024

I, Anna Williams, am familiar with the protocols outlined in Appendix A: Seismic Survey Mitigation and Protected Species Observer Protocols, implemented by the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE), which provide guidelines to operators in complying with the Endangered Species Act (ESA; 16 U.S.C. §§ 1531-1544) and Marine Mammal Protection Act (MMPA; 16 U.S.C. §§1361-1423h).

I hereby certify that, to the best of my knowledge, the information provided in this report that was compiled by the RPS Project Support Manager is accurate.

Name: Anna Williams
Position: Environmental Project Manager
Date:Mar 21, 2024

Signed

Appendix K: Photographs of Protected Species Visually Detected During the Survey

PHOTOGRAPHS OF PROTECTED SPECIES - R/V ARTEMIS ARCTIC

Figure 1. Visual detection \#03 - Bottlenose dolphin, 10 October 2023

Figure 2. Visual detection \#07 - Bottlenose dolphin, 21 October 2023

Figure 3. Visual detection \#08 - Pantropical spotted dolphin, 22 October 2023

Figure 4. Visual detection \#09 - Bottlenose dolphin, 01 November 2023

Figure 5. Visual detection \#11 - Unidentified shelled sea turtle, 03 November 2023

Figure 6. Visual detection \#13 - Green sea turtle, 06 November 2023

Figure 7. Visual detection \#17 - Pantropical spotted dolphin, 01 December 2023

Figure 8. Visual detection \#19 - Loggerhead sea turtle, 07 December 2023

Figure 9: Visual detection \#23 - Bottlenose dolphin, 20 December 2023

Figure 10. Visual detection \#28 - Pantropical spotted dolphin, 15 January 2024

Appendix L: Protected Species Distribution Maps

Figure 1. Detection distribution map for all protected species
DocuSign Envelope ID: E51C7D67-3366-43F6-B1A5-44F6E3B902CC

Figure 2. Detection distribution map for dolphins

[^3]DocuSign Envelope ID: E51C7D67-3366-43F6-B1A5-44F6E3B902CC

Figure 3. Detection distribution map for sea turtles
BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT | Final
DocuSign Envelope ID: E51C7D67-3366-43F6-B1A5-44F6E3B902CC

Figure 4. Detection distribution map for whales

Appendix M: Screenshots of Protected Species Acoustically Detected During the Survey

SCREENSHOTS OF ACOUSTIC DETECTIONS - R/V ARTEMIS ARCTIC

Figure 1. Acoustic detection \#01 - Unidentified dolphin, 29 October 2023

Figure 2. Acoustic detection \#02 - Unidentified dolphin, 08 November 2023

Figure 3. Acoustic detection \#05 - Unidentified dolphin, 16 November 2023

Figure 4. Acoustic detection \#06 - Unidentified dolphin, 20 November 2023

Figure 5. Acoustic detection \#07 - Unidentified dolphin, 02 December 2023

Figure 6. Acoustic detection \#08 - Unidentified dolphin, 22 December 2023

Figure 7. Acoustic detection \#09 - Unidentified dolphin, 22 December 2023

Figure 8. Acoustic detection \#10 - Unidentified dolphin, 25 December 2023

Figure 9. Acoustic detection \#11 - Unidentified dolphin, 25 December 2023

Figure 10. Acoustic detection \#12 - Unidentified dolphin, 26 December 2023

Figure 11. Acoustic detection \#14 - Unidentified dolphin, 27 December 2023

Figure 12. Acoustic detection \#16 - Unidentified dolphin, 30 December 2023

Figure 13. Acoustic detection \#18 - Unidentified dolphin, 30 December 2023

Figure 14. Acoustic detection \#19 - Sperm whale, 30 December 2023

Figure 15. Acoustic detection \#20 - Unidentified dolphin, 30 December 2023

Figure 16. Acoustic detection \#21 - Unidentified dolphin, 05 January 2024

[^0]: BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT | Final | 03 April 2024

[^1]: Kimberly Damon-Randall
 Director,
 Office of Protected Resources, National Marine Fisheries Service.

[^2]: Figure 3 Frequency Response Curve of the Three Types of Hydrophones

[^3]: BOEM OCS PERMIT L22-001 SHELL STONES 3D OBN SURVEY PROTECTED SPECIES OBSERVER REPORT | Final

