

FISHERIES

Moving Climate and Ecosystem Science into Management

Current approaches, challenges, future directions

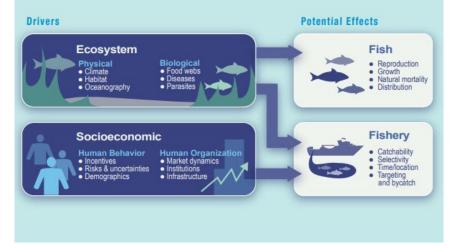
Melissa Karp

NOAA Fisheries

Office of Science and Technology

MAFAC Virtual 16 May 2024

Presentation Outline


- Introduction
- Current pathways/on-ramps
- Challenges
- What's on the Horizon Moving Forward

Why Incorporate Environmental Dynamics?

- Changing systems
 - Population and ecosystem processes: distribution shifts, variable recruitment, circulation and temperature changes
 - Socioeconomic: market dynamics, behavior changes, new ocean uses
- Impact stock assessment process
 - Precision/accuracy of assessment models
 - Biological reference points and harvest controls rules adversely affected
- Need pathways to sustain fisheries in a non-stationary marine environment

Potential Linkages Between Ecosystem/Socioeconomic Drivers and Fish/Fisheries

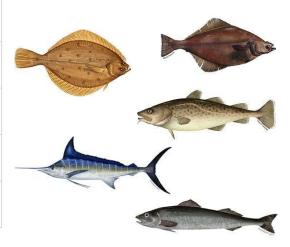
Next Generation Stock Assessment Enterprise (<u>NMFS 2018</u>)

Current Pathways and Tools

- Climate-enhanced Stock Assessments
- Ecosystem Status Reports (ESRs)
- Ecosystem and Socioeconomic Profiles (ESPs)
- Risk Tables
- Risk Assessments
- Scenario Planning
- Distribution Mapping and Analysis Portal (DisMAP)

Tools to inform Annual Harvest Setting Process

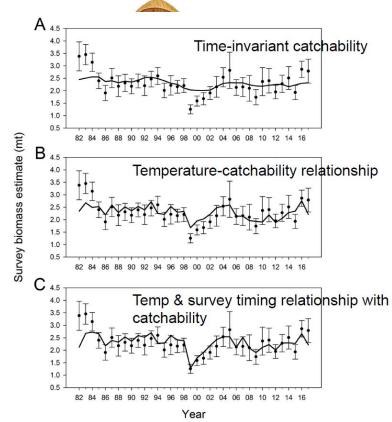
Tools to inform broader management decision making



Climate-informed Stock Assessments

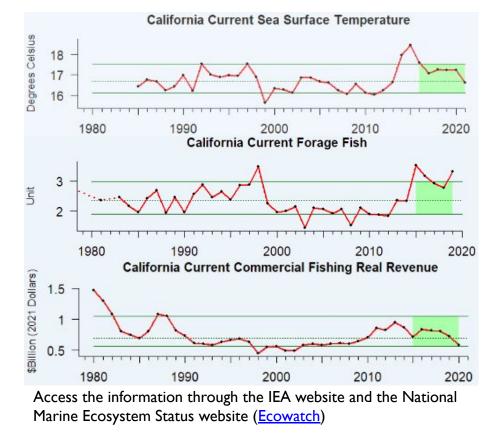
*Accepted in Research track assessment, not yet in management track # presented in exploratory/alternative models but not accepted in operational model

Model Term	Linkage Approach	Environmental Factor(s)	Example Species		
Catchability	Covariate in model	Temperature-dependent, survey/spawn timing; Atlantic Multi-decadal Oscillation	Walleye Pollock (GOA) [#] , Yellowfin Sole (EBS), Arrowtooth Flounder (BSAI), Pacific Cod (GOA); Swordfish (North Atlantic)		
Recruitment	Covariate in model	Sea surface height; Temperature-dependent; Marine heatwave	Sablefish (West Coast) , Petrale Sole [#] ; Black sea bass (Mid-Atlantic)*; Pacific Cod (GOA) [#]		
Growth	Covariate in model	Temperature-dependent	Pacific cod (GOA) [#]		
	Time-blocks	Pacific Decadal Oscillation	Chilipepper Rockfish		
Mortality	Time-blocks	Harmful algal blooms; Marine Heatwave	Gag Grouper, Red Grouper; Pacific cod (GOA), Snow crab (EBS)		
	Covariate in model	Marine Heatwave	Pacific Cod (GOA) [#]		


- Only 5 stock assessments include a direct linkage between a climate/environmental driver on a stock assessment parameter operationally
- Several others have explored linkages via exploratory model runs or via Research Track Assessments
- Many others *implicitly* account for environmental variability

Temperature-Catchability Relationships: Accounting for Changing Species Distributions & Phenology

- Example: Yellowfin Sole in the Eastern Bering Sea
- Motivation: 48% increase in 2015-2016 of survey biomass that couldn't be explained by the typical assessment model
- **Hypothesis:** migration to nearshore spawning grounds *earlier* in *warmer* years such that spawning is more complete and thus more fish have migrated back offshore and available to the bottom trawl survey
- **Approach:** included both bottom temperature and survey start date as covariates in catchability model
- **Model impact:** improvement of overall model fit to survey data

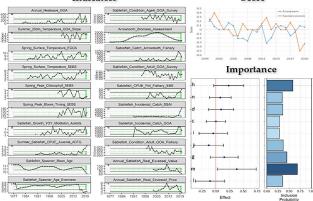

Ecosystem Status Reports (ESRs)

Provide trends in a variety of indicators

- o physical (e.g., temperature)
- o chemical (e.g., oxygen)
- o biological (e.g., forage, predators)
- Socio-economic (e.g., landings, market diversity)

Available for 8 ecosystems

Provided to Councils as contextual ecosystem information

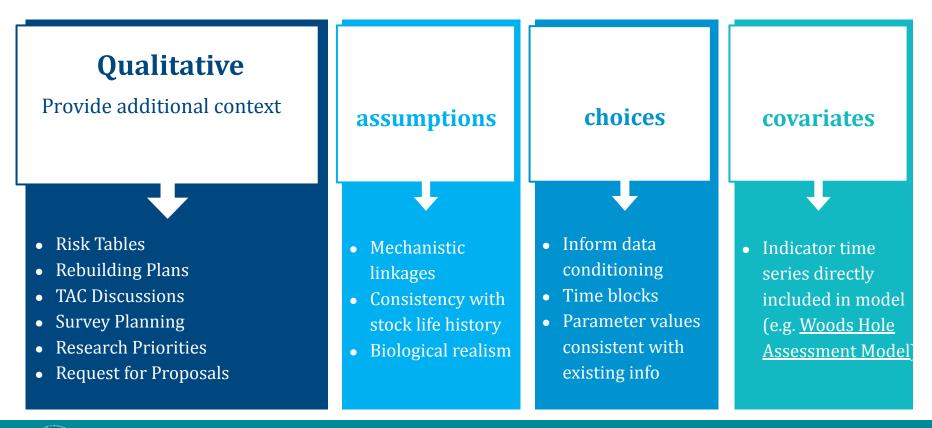

Ecosystem and Socioeconomic Profiles (ESPs)

- Leverage existing information and knowledge pathways
 - Incorporate a broad range of information
 - Identify cumulative and comprehensive patterns
- Facilitate interpretation and use in management
 - Standardized framework & visuals
 - Improve transparency, reproducibility, and efficiency
- Identify on-ramps to fill knowledge gaps and work toward operational Ecosystem Based Fisheries Management
 - Provide relevant ecosystem and socioeconomic information for fisheries management
- Track changes in the system over time

Sablefish (Anoplopoma fimbria)

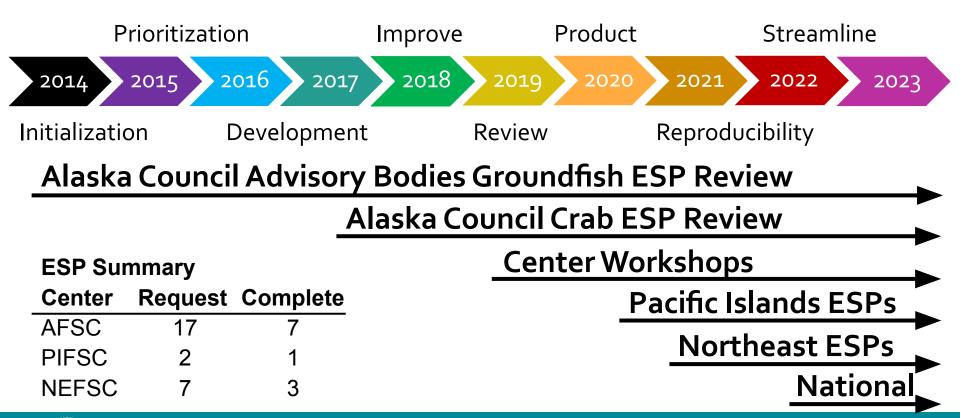
Data rich stock, high recruitment variability, rapid early life growth, shifting distribution, high value
 Indicators
 Score

- Presence of 2016 and 2019 year class in ADF&G survey, age 4 fish generally in poor condition, higher spatial overlap with arrowtooth in fishery, physical + but < from 2019, lower stable, upper slight >
- Incidental catch < in GOA, > in BSAI indicates expanding habitat, ex-vessel value and price/pound on recent decline, community analysis in progress


Research Model Performance (hypothetical)

Model	ABC	OFL	Cross Validation	Retrospective	Recruitment Comparison	SSB Comparison
SAFE	26,250	30,000	28% +/- 6%	+0.19	0.5	0.5
Eco	23,625	27,000	46% +/- 12%	+0.07	0.65	0.3

ESP: https://www.afsc.noaa.gov/REFM/Docs/[YEAR]/GOAsablefish.pdf, Contact: Kalei.Shotwell@noaa.gov



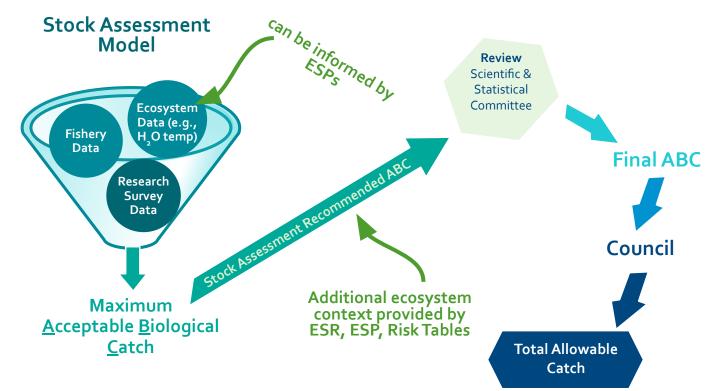
Decisions Supported by ESPs

ESP Progression

Adjusting Catch Limits to Account for Uncertainty (Risk Tables)

- Provide a way to more explicitly consider and document ecosystem concerns within the ABC setting process that are not addressed within the assessment model
- The overall risk level is used to determine if a further reduction from the maximum ABC recommended via the ABC control rule is needed
- Example: Alaska sablefish reduction in 2018 (45%), 2019 (57%), 2020 (57%)
 ESRs inform

Annual harvest specification process LME-based Stock-based Stock Ecosystem Status Assessment Ecosystem and Report (ESR) Socio-economic **Risk table** Profile (ESP) **ESPs** inform


Table. Risk table summary.

Assessment Related Considerations	Population Dynamics Considerations	Environmental and Ecosystem Considerations	Fishery Performance Considerations
Level 3:	Level 3:	Level 2:	Level 3:
Major concern	Major concern	Substantially increased concern	Major concern

Review of On-ramps in the Harvest/Quota Setting Process

Original slide by Stephani Zador

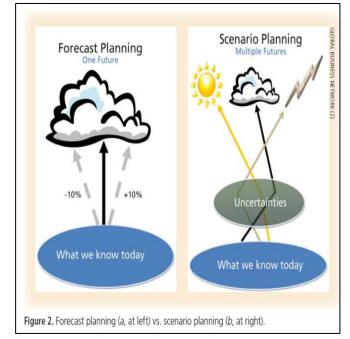
Risk Assessments - MAFMC Example

- Management elements with associated management objectives
 - ecological
 - economic
 - \circ social
- Indicators for each element
- Annual updates on the status and risk of not meeting management objectives.

Species	Assess	Fstatus	Bstatus	FW1Pred	FW1Prey	FW2Prey
Ocean Quahog	4	1.	1	1	- 1	1
Surfclam	1	1	. 1	1	1	1
Summer flounder	1	1	lm	i	1	1
Scup	1	1	4	1	1	1
Black sea bass	-1	1	1	1	1	1
Atl. mackerel	1	AB	de la	1	4	1
Chub mackerel	10.0	lm	lm	1	1	1
Butterfish	1	1	lm	1	1	1
Longfin squid	lm	lm	Im	1	1	lm
Shortfin squid	lm	lm	lm	1	1	lm
Golden tilefish	1	1	lm	1	1	1
Blueline tilefish	ili i	16	mh	1	1	1
Bluefish	1	1	a statistica de la companya de la co	1	1	1
Spiny dogfish	lm	1	lm	1	1	1
Monkfish	No. 1	lm	lm	1	1	1
Unmanaged forage	na	na	na	1	lm	lm
Deepsea corals	na	na	na	1	1	1

Risk to achieving Optimum Yield. Low, Medium, High

Example from MAFMC Risk Assessment: https://www.mafmc.org/s/d_MAB_RiskAssess_2022update.pdf


Scenario Planning

Provides a framework to support decisions under conditions that are <u>uncertain</u> and <u>uncontrollable</u>

Explores plausible alternative conditions under different assumptions

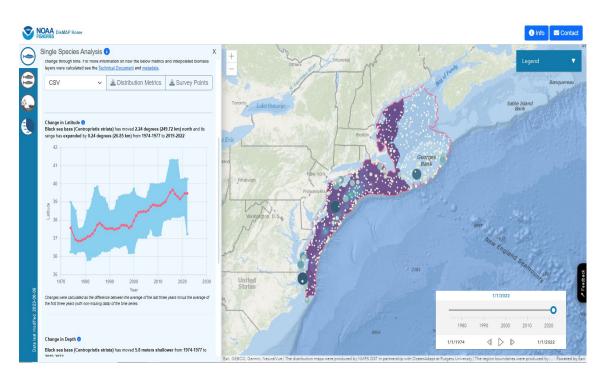
Benefits:

- Involves strong stakeholder participation which helps with buy-in
- Enables flexibility to react quickly to a changing world
- Facilitates identification of innovative ideas
- Helps create alignment towards a common vision
- Leads to more robust decisions and plans

Weeks et al. 2011, Park Science

Scenario Planning - Progress to date

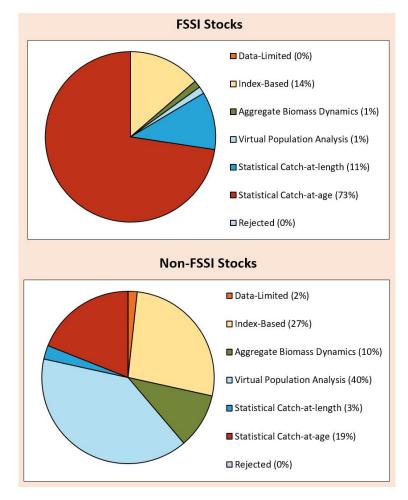
- <u>East Coast</u> (2021-2023)
 - Explored jurisdictional and governance issues related to climate change and shifting fishery stocks
 - Concluded with release of East Coast Scenario Planning Summit Report, Potential Action Menu, Toolkit
 - Actions being implemented through two new groups, East Coast Climate Coordination Group and East Coast Climate Core Team
- <u>PFMC</u> (2019-2022)
 - Explored issue of shifting stock availability across species, FMPs, and communities
 - Helped identify and prioritize work to improve climate resilience of federal fisheries
- <u>NPFMC</u> (ongoing this June)
 - Explore ideas for improving climate resilience and readiness



Understanding Distribution Shifts: DisMAP

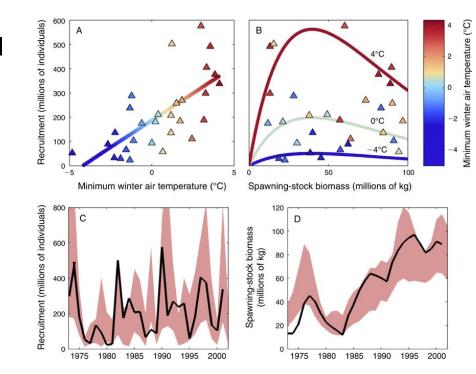
- Launched April 2022!
- Nationwide portal
- Distributions and analysis tools for 400+ species of marine fish and invertebrate species in U.S. marine waters.
- User-friendly tool to help in climate-ready decision making.

Challenges


- Data & model limitations
- Mechanistic understanding
- Scale and information content of hindcasts/reanalysis products
- Technical challenges (e.g., computing power, transparency of code and tools)
- Staff capacity and prioritization
- High bar for change

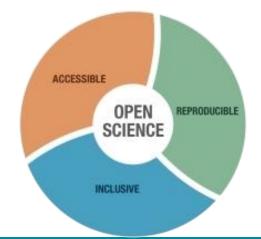
NOAA FISHERIES

Data and Model limitations


- Not all assessment model approaches are amenable to integration of environmental considerations
- Data limited and index-based methods vs.
 Statistical catch-at-length/age
- Ability to estimate time-varying parameters

Mechanistic Understanding

- Limited understanding of the functional relationships between an environmental indicator and stock dynamics
- Mechanism can breakdown over time
- Highlights the need for more process-based laboratory and field studies



Technical Challenges

- Need more high-performance computing resources
- Increase transparency of code and tools

Staff Capacity and Prioritization

- Identifying mechanisms and integrating into stock assessment process is time and resource intensive
- Not feasible to do this level of exploration and analysis for all stocks
- Need to triage and prioritize situations where there is a clear gain from including environmental/climate information

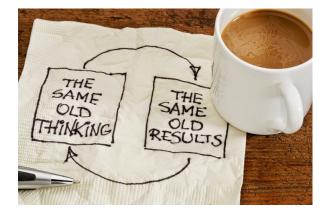
Thoroughness

Expectation

Assessments should be comprehensive investigations with fully-independent peer reviews.

Reality

Current data availability and assessment capacity do not facilitate comprehensive assessments for all stocks.

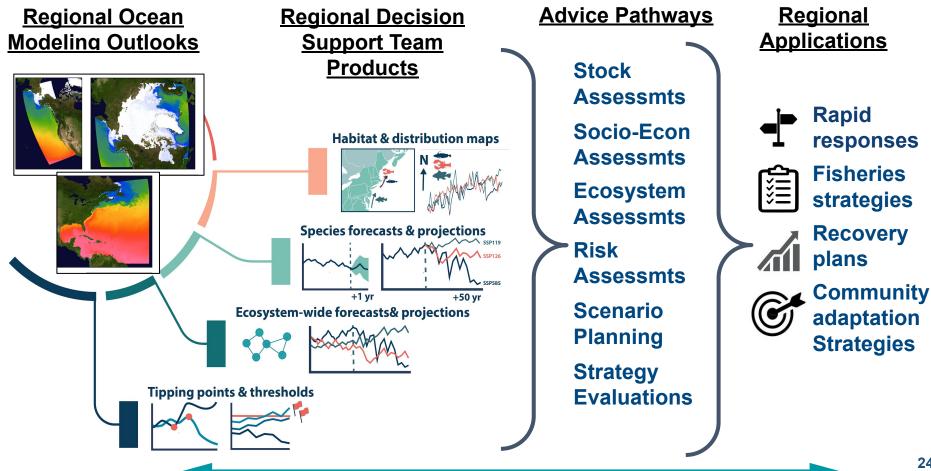

Solution

Apply consistent prioritization to determine the stocks in need of comprehensive investigations.

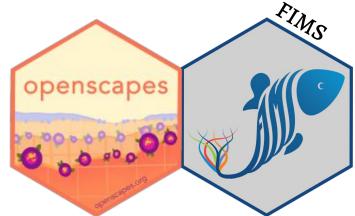
High Bar For Change

 Changes to what we consider conventional stock assessment models and their inputs will be met with lots of questioning

- Desire to keep models *simple*
- High bar to demonstrate improvements of including the environmental relationship in the model -- still developing best practices for determining what environmental data needs to be used
- Evolving understanding of how to use climate-informed advice to reduce risks and increase resilience within the current science-to-management system


What's on the Horizon?

A Path Forward


U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 23

Climate, Ecosystem, and Fisheries Initiative (CEFI)

Advancements in Analytical Methods

- Woods Hole Assessment Model (WHAM)
- Fisheries Integrated Modeling System (FIMS)
- Dynamic Structural Equation Modeling (DSEM)
- Open Science Frameworks

Conclusions

- Changing climate and ocean conditions are impacting fisheries, fisheries management & fishing communities.
- There are a number of tools available to help track change, assess risks and identify effective management strategies.
- Challenges remain that need to be addressed
- NOAA is working to increase the production, delivery and use of climate information in fisheries management.

Thank you!

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 27