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EXECUTIVE SUMMARY 1 
 2 

This document provides technical updates and replaces the NMFS 2018 Revised Technical 3 
Guidance and is to be used for assessing the effects of underwater and in-air anthropogenic 4 
(human-made) sound on the hearing of marine mammal species under the jurisdiction of the 5 
National Marine Fisheries Service (NMFS). Specifically, it identifies the received levels and 6 
auditory weighting functions, or criteria, at which individual marine mammals are predicted to 7 
experience changes in their hearing sensitivity (either temporary or permanent) for acute (<24 8 
hours), incidental exposure to underwater or in-air anthropogenic sound sources based on 9 
updated information. This Updated Technical Guidance may be used by NMFS 10 
analysts/managers and other relevant action proponents/stakeholders, including other federal 11 
agencies, when seeking to determine whether and how their activities are expected to result in 12 
potential impacts to marine mammal hearing via acoustic exposure. This document outlines the 13 
development of NMFS’s criteria and describes how they will be updated in the future.  14 
 15 
NMFS has compiled, interpreted, and synthesized the scientific literature, including a Technical 16 
Report by Dr. James J. Finneran (U.S. Navy-Naval Information Warfare Center Pacific (NIWC-17 
PAC)) (Finneran 2024; Appendix A of this Updated Technical Guidance), to produce criteria for 18 
onset of temporary threshold shifts (TTS) and auditory injury (AUD INJ), which includes, but is not 19 
limited to, permanent threshold shifts (PTS)) (Table ES2) based on updated information. This 20 
document includes a protocol for the formation of marine mammal hearing groups (low- (LF), 21 
high- (HF), and very high- (VHF) frequency cetaceans, otariid (OW) and phocid (PW) pinnipeds in 22 
water, and otariid (OA) and phocid (PA) pinnipeds in air (Table ES1)), the derivation of marine 23 
mammal auditory weighting functions (Figures ES1 through ES3), and the estimation of AUD INJ 24 
onset criteria for impulsive (e.g., airguns, impact hammers, explosives) and non-impulsive (e.g., 25 
tactical sonar, vibratory hammers, drills) sound sources. These criteria are presented using dual 26 
metrics of weighted cumulative sound exposure level (SEL24h) and peak sound pressure level (PK 27 
SPL) for impulsive sounds and weighted SEL24h for non-impulsive sounds.  28 
 29 
The Updated Technical Guidance’s criteria reflect the current state of scientific knowledge 30 
regarding the characteristics of sound that have the potential to impact marine mammal hearing 31 
sensitivity. NMFS recognizes that the implementation of marine mammal weighting functions and 32 
the weighted SEL24h criteria may extend beyond the capabilities of some action proponents. 33 
Thus, NMFS has developed an optional, alternative tool for those who cannot fully incorporate 34 
these factors into their own analyses (See Updated Technical Guidance’s companion optional 35 
User Spreadsheet tool1). 36 
 37 
These criteria do not represent the entirety of a comprehensive analysis of the effects of a 38 
proposed action, but rather serve as one tool (along with, e.g., behavioral disturbance criteria, 39 
auditory masking assessments, evaluations to help understand the ultimate effects of any 40 
particular type of impact on an individual’s fitness, population assessments, etc.) to help evaluate 41 
the effects of a proposed action and make the relevant findings required by NOAA’s various 42 
statutes. The Updated Technical Guidance may inform decisions related to mitigation and 43 
monitoring requirements, but it does not mandate any specific mitigation measures. The Updated 44 
Technical Guidance does not address or change NMFS’s application of these criteria in the 45 
regulatory context under applicable statutes and does not create or confer any rights for or on any 46 
person, or operate to bind the public. It only updates NMFS’s criteria based on the most recent 47 
science.  48 
 49 
Independent peer review was required prior to broad public dissemination by the Federal 50 
Government. Details of the peer review, associated with the Updated Technical Guidance, are 51 
within this document (Appendix C). 52 
 53 
                                            
1 https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance. 

http://www.nmfs.noaa.gov/pr/acoustics/guidelines.htm
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SUMMARY OF TECHNICAL ASPECTS 1 
 2 
This document is organized so that the most pertinent information can be found easily in the main 3 
body. Additional details are provided in the appendices. Section I introduces the document. 4 
NMFS’s criteria for onset of AUD INJ for marine mammals exposed to underwater or in-air 5 
sounds are presented in Section II. NMFS’s plan for periodically updating criteria is presented in 6 
Section III. More details on the development of criteria, the peer review and public comment 7 
processes, research recommendations, and a glossary of acoustic terms are found in the 8 
appendices. 9 
 10 
The following Tables and Figures summarize the three main aspects of the Updated Technical 11 
Guidance: 1) Marine mammal hearing groups (Table ES1); 2) Marine mammal auditory weighting 12 
functions (Figures ES1 through ES3; Table ES2); and AUD INJ onset criteria (Table ES3).  13 

Table ES1: Marine mammal hearing groups. 14 
 15 

Hearing Group^ Generalized Hearing 
Range* 

UNDERWATER  
Low-frequency (LF) cetaceans 

(baleen whales) 7 Hz to 36+ kHz 

High-frequency (HF) cetaceans  
(dolphins, toothed whales, beaked whales, bottlenose whales) 150 Hz to 160 kHz 

Very High-frequency (VHF) cetaceans 
(true porpoises, Kogia, river dolphins, cephalorhynchid, 
Lagenorhynchus cruciger & L. australis) 

200 Hz to 165 kHz 

Phocid pinnipeds (PW)  
(true seals) 40 Hz to 90 kHz 

Otariid pinnipeds (OW)  
(sea lions and fur seals) 60 Hz to 68 kHz 

IN-AIR  
Phocid pinnipeds (PA)  
(true seals) 42 Hz to 52 kHz 

Otariid pinnipeds (OA) 
(sea lions and fur seals) 90 Hz to 40 kHz 

 16 
^ Southall et al. 2019 indicates that as more data become available there may be separate hearing group designations for 17 

Very Low-Frequency cetaceans (blue, fin, right, and bowhead whales) and Mid-Frequency cetaceans (sperm, 18 
killer, and beaked whales). However, at this point, all baleen whales are part of the LF cetacean hearing group, 19 
and sperm, killer, and beaked whales are part of the HF cetacean hearing group. Additionally, recent data 20 
indicates that as more data become available for Monachinae seals, separate hearing group designations may 21 
be appropriate for the two phocid subfamilies (Ruscher et al. 2021; Sills et al. 2021). 22 

* Represents the generalized hearing range for the entire group as a composite (i.e., all species within the group), where 23 
individual species’ hearing ranges may not be as broad. Generalized hearing range chosen based on ~65 dB 24 
threshold from composite audiogram, previous analysis in NMFS 2018, and/or data from Southall et al. 2007; 25 
Southall et al. 2019. Additionally, animals are able to detect very loud sounds above and below that 26 
“generalized” hearing range. 27 

+ NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on two 28 
minke whales during their third field season (2023) in Norway. These data have implications for not only the 29 
generalized hearing range for low-frequency cetaceans but also on their weighting function. However, at this 30 
time, no official results have been published. Furthermore, a fourth field season (2024) is proposed, where more 31 
data will likely be collected. Thus, it is premature for us to propose any changes to our current Updated 32 
Technical Guidance. However, mysticete hearing data is identified as a special circumstance that could merit 33 
re-evaluating the acoustic criteria in this document. Therefore, we anticipate that once the data from both field 34 
seasons are published, it will likely necessitate updating this document (i.e., likely after the data gathered in the 35 
summer 2024 field season and associated analysis are published). 36 

 37 
 38 
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 1 
Table ES2: Summary of auditory weighting and exposure function parameters.0 2 
 3 

Hearing Group a b ƒ1  
(kHz) 

ƒ2  
(kHz) 

C  
(dB) 

K 
(dB) 

UNDERWATER       
Low-frequency (LF) cetaceans 0.99 5 0.168 26.6 0.12 177 
High-frequency (HF) cetaceans 1.55 5 1.73 129 0.32 181 
Very High-frequency (VHF) cetaceans 2.23 5 5.93 186 0.91 160 
Phocid pinnipeds (PW)  1.63 5 0.81 68.3 0.29 175 
Otariid pinnipeds (OW)  1.58 5 2.53 43.8 1.37 178 
IN-AIR       
Phocid pinnipeds (PA) 2.05 5 0.74 24.4 0.83 133 
Otariid pinnipeds (OA) 1.35 5 1.75 32.5 1.18 156 

 4 
* Equations associated with Updated Technical Guidance’s auditory weighting (W(f)) and exposure functions (E(f)):  5 

 6 
 7 

 8 

 9 
  10 

 dB 
 
 
 
 dB 
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Table ES3: Summary of Marine Mammal AUD INJ onset criteria. 1 
 2 

 
 

AUD INJ Onset Criteria* 
(Received Level) 

PLEASE SEE TABLE NOTES TO FULLY UNDERSTAND 
SYMBOL MEANING 

Hearing Group Impulsive Non-impulsive 
UNDERWATER   

Low-Frequency (LF)  
Cetaceans 

Cell 1 
Lp,0-pk,flat: 222 dB  

LE,p, LF,24h: 183 dB  

Cell 2 
LE,p, LF,24h: 197 dB  

High-Frequency (HF) 
Cetaceans 

Cell 3 
Lp,0-pk,flat: 230 dB  

LE,p, HF,24h: 193 dB  

Cell 4 
LE,p, HF,24h: 201 dB  

Very High-Frequency (VHF) 
Cetaceans 

Cell 5 
Lp,0-pk,flat: 202 dB  

LE,p,VHF,24h: 159 dB  

Cell 6 
LE,p, VHF,24h: 181 dB 

Phocid Pinnipeds (PW) 
 

Cell 7 
Lp,0-pk.flat: 223 dB  

LE,p,PW,24h: 183 dB  

Cell 8 
LE,p,PW,24h: 195 dB  

Otariid Pinnipeds (OW) 
 

Cell 9 
Lp,0-pk,flat: 230 dB  

LE,p,OW,24h: 185 dB  

Cell 10 
LE,p,OW,24h: 199 dB  

IN-AIR   

Phocid Pinnipeds (PA) 
Cell 11 

Lp,0-pk.flat: 162 dB  
LE,p,PA,24h: 140 dB 

Cell 12 
LE,p,PA,24h: 154 dB 

Otariid Pinnipeds (OA) 
Cell 13 

Lp,0-pk,flat: 177 dB  
LE,p,OA,24h: 163 dB 

Cell 14 
LE,p,OA,24h: 177 dB 

 3 
* Dual metric criteria for impulsive sounds: Use whichever criteria results in the larger isopleth for calculating AUD INJ 4 

onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level criteria associated 5 
with impulsive sounds, the PK SPL criteria are recommended for consideration for non-impulsive sources.  6 

 7 
Note: Peak sound pressure level (Lp,0-pk) has a reference value of 1 µPa (underwater) and 20 µPa (in air), and weighted 8 

cumulative sound exposure level (LE,p) has a reference value of 1 µPa2s (underwater) and 20 µPa2s (in air). In 9 
this Table, criteria are abbreviated to be more reflective of International Organization for Standardization 10 
standards (ISO 2017; ISO 2020). The subscript “flat” is being included to indicate peak sound pressure are flat 11 
weighted or unweighted within the generalized hearing range of marine mammals underwater (i.e., 7 Hz to 165 12 
kHz) or in air (i.e., 42 Hz to 52 kHz). The subscript associated with cumulative sound exposure level criteria 13 
indicates the designated marine mammal auditory weighting function (LF, HF, and VHF cetaceans, and PW, 14 
OW, PA, and OA pinnipeds) and that the recommended accumulation period is 24 hours. The weighted 15 
cumulative sound exposure level criteria could be exceeded in a multitude of ways (i.e., varying exposure levels 16 
and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under 17 
which these criteria will be exceeded. 18 

 19 
  20 
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 1 
Figure ES1: Auditory weighting functions for low-frequency (LF; blue dashed line), 2 

high-frequency (HF; red solid line), and very high-frequency (VHF; green 3 
dotted line) cetaceans. 4 

 5 

 6 
Figure ES2:  Underwater auditory weighting functions for otariid (OW; purple dotted 7 

line) and phocid (PW; orange solid line) pinnipeds. 8 
 9 
 10 
 11 
 12 
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 1 
 2 
Figure ES3:  In-air auditory weighting functions for otariid (OA; dashed pink line) and 3 

phocid (PA; solid yellow line) pinnipeds. 4 
  5 
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UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF 1 
ANTHROPOGENIC SOUND ON MARINE MAMMAL HEARING (VERSION 3.0) 2 

 3 
UNDERWATER AND IN-AIR CRITERIA FOR ONSET OF AUDITORY INJURY 4 

AND TEMPORARY THRESHOLD SHIFTS 5 
 6 
I. INTRODUCTION 7 
 8 
This document provides Updated Technical Guidance2 for assessing the effects of anthropogenic 9 
(human-made) sound on the hearing of marine mammal species under the jurisdiction3 of the 10 
National Marine Fisheries Service (NMFS). Specifically, it identifies the received levels and 11 
auditory weighting functions, or criteria, at which individual marine mammals are predicted to 12 
experience changes in their hearing sensitivity for acute (<24 hours), exposure to all underwater 13 
and in-air anthropogenic sound sources based on updated information, specifically onset of 14 
temporary threshold shifts (TTS) and auditory injury (AUD INJ). 15 
 16 
For the purpose of this Updated Technical Guidance, TTS and AUD INJ, which includes, but is 17 
not limited to, PTS, are defined as follows: 18 
 19 

• Temporary threshold shift (TTS): A temporary, reversible increase in the threshold of 20 
audibility at a specified frequency or portion of an individual’s hearing range above a 21 
previously established reference level (ANSI 1995; Yost 2007). Based on data from 22 
cetacean TTS measurements (see Southall et al. 2019 for a review), a TTS of 6 dB is 23 
considered the minimum threshold shift clearly larger than any day-to-day or session-to-24 
session variation in a subject’s normal hearing ability (Schlundt et al. 2000; Finneran et 25 
al. 2000; Finneran et al. 2002). 26 
 27 

• Auditory injury (AUD INJ): Damage to the inner ear that can result in destruction of tissue, 28 
such as the loss of cochlear neuron synapses or auditory neuropathy (Houser 2021; 29 
Finneran 2024). Auditory injury4 may or may not result in a permanent threshold shift 30 
(PTS). 31 
 32 

o Permanent threshold shift (PTS): A permanent, irreversible increase in the 33 
threshold of audibility at a specified frequency or portion of an individual’s 34 

                                            
2 The use of the Updated Technical Guidance is not mandatory; it does not create or confer any rights for or on any 
person, or operate to bind the public. An alternative approach that has undergone independent peer review may be 
proposed (by federal agencies or prospective action proponents) and used if case-specific information/data indicate that 
the alternative approach is likely to produce a more accurate estimate of auditory impact for the project being evaluated; 
and if NMFS determines the approach satisfies the requirements of the applicable statutes and regulations. This 
document replaces the previous iteration of NMFS 2018 Revised Technical Guidance (NMFS 2018). 
 
3 https://www.fisheries.noaa.gov/species-directory. This document does not pertain to marine mammal species under the 
U.S. Fish and Wildlife Service’s (USFWS) jurisdiction (e.g., walrus, polar bears, manatees, dugongs, sea otters). 
However, since marine mammal audiogram data are limited, a decision was made to include all available datasets from 
in-water groups, including sirenian datasets (Gerstein et al. 1999; Mann et al. 2009), to derive composite audiogram 
parameters and threshold of best hearing for LF cetaceans (see Appendix A1). Additionally, audiogram data from a single 
Pacific walrus (Kastelein et al. 2002a) and a single sea otter (Ghoul and Reichmuth 2014) were included in the derivation 
of the composite audiogram for OW pinnipeds and in-air hearing data from sea otters (Ghoul and Reichmuth 2014) and 
polar bears (Nachtigall et al. 2007; Owen and Bowles 2011) were used to derive the composite audiogram for the OA 
pinniped (in air) hearing group. 
 
4 In situations where destruction of auditory tissue has occurred in terrestrial mammals, threshold shifts were 30–50 dB 
measured 24 h after the exposure. There is no evidence that an exposure resulting in < 40 dB TTS measured a few 
minutes after exposure can produce AUD INJ. Therefore, an exposure producing 40 dB of TTS, measured a few minutes 
after exposure is used as an upper limit to prevent AUD INJ (i.e., it is assumed that exposures beyond those capable of 
causing 40 dB of TTS have the potential to result in AUD INJ, which may or may not result in PTS). 

https://www.fisheries.noaa.gov/species-directory
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hearing range above a previously established reference level (ANSI 1995; Yost 1 
2007). Available data from humans and other terrestrial mammals indicate that a 2 
40 dB threshold shift approximates PTS onset (see Ward et al. 1958, 1959; Ward 3 
1960; Kryter et al. 1966; Miller 1974; Ahroon et al. 1996; Henderson et al. 2008). 4 

 5 
This Updated Technical Guidance is intended for use by NMFS analysts/managers and other 6 
relevant action proponents/stakeholders, including other federal agencies, when seeking to 7 
determine whether and how their activities are expected to result in impacts to marine mammal 8 
hearing via acoustic exposure. This document outlines NMFS’s criteria, describing in detail 9 
criteria development (via Appendix A), and how they will be revised and updated in the future.  10 
 11 
The criteria presented in this document do not represent the entirety of an effects analysis, but 12 
rather serve as one tool among others (e.g., behavioral impact criteria, auditory masking 13 
assessments, evaluations to help understand the effects of any particular type of impact on an 14 
individual’s fitness, population assessments, etc.) to help evaluate the effects of a proposed 15 
action and make findings required by NOAA’s various statutes. The Updated Technical Guidance 16 
may inform decisions related to mitigation and monitoring requirements, but it does not mandate 17 
any specific mitigation be required5. The Updated Technical Guidance does not address or 18 
change NMFS’s application of these criteria in the regulatory context, under applicable statutes 19 
and does not create or confer any rights for or on any person, or operate to bind the public. It only 20 
updates NMFS’s criteria based on the most recent science.  21 
 22 
1.1 CRITERIA WITHIN THE CONTEXT OF AN EFFECTS ANALYSIS 23 
 24 
The Updated Technical Guidance’s criteria do not represent the entirety of an effects analysis, 25 
but rather serve as one tool to help evaluate the effects of sound produced during a proposed 26 
action on marine mammals and help make findings required by NOAA’s various statutes.  In a 27 
regulatory context, NMFS uses criteria to help assess and quantify “take” and to conduct more 28 
comprehensive effects analyses under several statutes.  29 
 30 
Specifically, the Updated Technical Guidance will be used in conjunction with sound source 31 
characteristics, environmental factors that influence sound propagation, anticipated marine 32 
mammal occurrence and behavior near the activity, as well as other available activity-specific 33 
factors, to estimate the number and types of takes of marine mammals for a specific action. This 34 
document only addresses criteria for auditory impact (i.e., it does not address or make 35 
recommendations associated with sound propagation, marine mammal occurrence or density, or 36 
provide criteria for behavioral disturbance). 37 
 38 
1.2 ADDRESSING UNCERTAINTY AND DATA LIMITATIONS 39 
 40 
Inherent data limitations exist in many instances when assessing acoustic effects on marine 41 
mammal hearing. Data limitations, which make it difficult to account for uncertainty and variability, 42 
are not unique to assessing the effects of anthropogenic sound on marine mammals and are 43 
commonly encountered by resource managers (Ludwig et al. 1993; Francis and Shotton 1997; 44 
Harwood and Stokes 2003; Punt and Donovan 2007). Southall et al. (2019) and Finneran (2023) 45 
acknowledged the inherent data limitations when making recommendations for criteria to assess 46 
the effects of sound on marine mammals, including data available from a limited number of 47 
species, a limited number of individuals within a species, and/or a limited number of sound 48 
sources. Both Southall et al. (2019) and Finneran (2023) applied certain extrapolation procedures 49 
                                            
5 Mitigation and monitoring requirements associated with a Marine Mammal Protection Act (MMPA) authorization or an 
Endangered Species Act (ESA) consultation or permit are independent management decisions made in the context of the 
proposed activity and comprehensive effects analysis, and are beyond the scope of the Updated Technical Guidance. 
NMFS acknowledges exclusion zones and monitoring zones often correspond to criteria but that is not a legal 
requirement. However, the Updated Technical Guidance can be used to inform the development of mitigation or 
monitoring. 
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to estimate effects that had not been directly measured but that could be reasonably 1 
approximated using existing information and reasoned logic. The Updated Technical Guidance 2 
articulates where NMFS has faced such uncertainty and variability in the development of its 3 
criteria. 4 
 5 
1.2.1 Assessment Framework 6 
 7 
NMFS’s approach applies a set of assumptions to address uncertainty in predicting potential 8 
auditory effects of sound on individual marine mammals. One of these assumptions includes the 9 
use of “representative” or surrogate individuals/species for establishing AUD INJ onset criteria for 10 
species where little to no data exists. The use of representative individuals/species is done as a 11 
matter of practicality (i.e., it is unlikely that adequate data will exist for all marine mammal species 12 
found worldwide or that we will be able to account for all sources of variability at an individual 13 
level) but is also scientifically based (i.e., taxonomy, hearing group). NMFS recognizes that 14 
additional applicable data may become available to better address many of these issues (e.g., 15 
uncertainty, surrogate species, etc.). As these new data become available, NMFS has an 16 
approach for updating this document (see Section III). 17 
 18 
1.2.2 Data Standards 19 
 20 
In assessing potential acoustic effects on marine mammals, as with any such issue facing the 21 
agency, standards for determining applicable data need to be articulated. Specifically, NOAA has 22 
Information Quality Guidelines6 (IQG) for “ensuring and maximizing the quality, objectivity, utility, 23 
and integrity of information disseminated by the agency” (with each of these terms defined within 24 
the IQG). Further, the IQG stipulate that “To the degree that the agency action is based on 25 
science, NMFS will use (a) the best available science and supporting studies (including peer-26 
reviewed science and supporting studies when available), conducted in accordance with sound 27 
and objective scientific practices, and (b) data collected by accepted methods or best available 28 
methods.” 29 
 30 
1.3 CHANGES ASSOCIATED WITH UPDATED TECHNICAL GUIDANCE 31 
 32 
The overall methodology of deriving AUD INJ and TTS criteria presented in this Updated 33 
Technical Guidance is similar to the methodology described in the 2018 Revised Technical 34 
Guidance (NMFS 2018). However, there are some notable differences associated with new data 35 
and simplifications meant to align with methods and recommendations from Southall et al. (2019) 36 
(See Table 4 later in this document and Appendix A for more details). 37 
 38 
Some of the main changes7 include the following: 39 

• Inclusion of updated marine mammal audiogram and TTS data made available since the 40 
publication of the 2018 Revised Technical Guidance 41 
 42 

• Adoption of marine mammal hearing group terminology from Southall et al. 2019 43 
 44 

                                            
6 https://www.noaa.gov/organization/information-technology/policy-oversight/information-quality/information-quality-
guidelines 
 
7 NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on two 
minke whales during their third field season (2023) in Norway. These data have implications for not only the generalized 
hearing range for low-frequency cetaceans but also on their weighting function. However, at this time, no official results 
have been published. Furthermore, a fourth field season (2024) is proposed, where more data will likely be collected. 
Thus, it is premature for us to propose any changes to our current Updated Technical Guidance. However, mysticete 
hearing data is identified as a special circumstance that could merit re-evaluating the acoustic criteria in this document. 
Therefore, we anticipate that once the data from both field seasons are published, it will likely necessitate updating this 
document (i.e., likely after the data gathered in the summer 2024 field season and associated analysis are published). 

https://www.noaa.gov/organization/information-technology/policy-oversight/information-quality/information-quality-guidelines
https://www.noaa.gov/organization/information-technology/policy-oversight/information-quality/information-quality-guidelines
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• Addition of in-air criteria for pinnipeds8 1 
 2 

• Inclusion of the term “auditory injury (AUD INJ)” to replace “PTS” 3 
o Various studies with terrestrial mammals have reported recoverable noise-4 

induced threshold shifts that result in neuropathy (e.g., Kujawa and Liberman 5 
2009; Lin et al. 2011). Therefore, there are circumstances where auditory injury 6 
(AUD INJ) can occur, which may or may not result in PTS. Thus, the Updated 7 
Technical Guidance acknowledges that AUD INJ can occur, which includes but is 8 
not limited to PTS.  9 
 10 
The long-term consequences of this degeneration (i.e., synaptopathy or hidden 11 
hearing loss) remain unclear, since it cannot be measured directly in a living 12 
animal/human (Barbee et al. 2018; Le Prell et al. 2019). However, this 13 
degeneration is believed to contribute to the inability to detect sounds in noise, 14 
tinnitus, or hyperacusis (Barbee et al. 2018; Hickman et al. 2018). This topic is 15 
identified for future research not only for humans and terrestrial mammals but 16 
also in Appendix B of this document for marine mammals. 17 

 18 
• Lower TTS and AUD INJ thresholds (SEL24h metric) for HF9 cetaceans, below 10 kHz, 19 

based on new data (Finneran et al. 2023a) 20 
 21 

• Significantly lower TTS and AUD INJ thresholds (SEL24h metric) for OW pinnipeds based 22 
on new data (Kastelein et al., 2021b; Kastelein et al., 2022a,b,c) 23 

 24 
• New PW pinniped impulsive TTS onset data (Sills et al., 2020b), which affected the 25 

extrapolation (SEL24h metric) for species without impulsive data 26 
 27 
 28 
II. NMFS’S THRESHOLDS FOR ONSET OF PERMANENT THRESHOLD 29 

SHIFTS IN MARINE MAMMALS 30 
 31 
The Updated Technical Guidance advances NMFS’s assessment ability based upon the 32 
compilation, interpretation, and synthesis of the scientific literature. This document provides 33 
thresholds for the onset of AUD INJ based on characteristics defined at the acoustic source. 34 
Since only one study has reported measurements of PTS in a marine mammal (harbor seal; 35 
Reichmuth et al. 2019); AUD INJ onset thresholds have been extrapolated from marine mammal 36 
TTS measurements (i.e., using growth rates from terrestrial and marine mammal data). AUD INJ 37 
onset thresholds for all sound sources are divided into two broad categories: 1) impulsive and 2) 38 
non-impulsive. Thresholds are also presented as dual metric thresholds using weighted 39 
cumulative sound exposure level (SEL24h,) and peak sound pressure level (PK SPL) metrics for 40 
impulsive sounds. As dual metrics, NMFS considers onset of AUD INJ to have occurred when 41 
either one of the two metrics is exceeded. For non-impulsive sounds, thresholds are provided 42 
using the weighted SEL24h metric. Additionally, to account for the fact that different species 43 
groups use and hear sound differently (Table 1), marine mammals are sub-divided into seven 44 
broad hearing groups (i.e., LF, HF, and VHF cetaceans; PW, OW, PA, and OA pinnipeds; See 45 
Table 1 in next Section) and thresholds in the weighted SEL24h metric incorporate auditory 46 
weighting functions. 47 
 48 

                                            
8 The Navy previously adopted in-air pinniped criteria in their previous document (DoN 2017). However, this is the first 
time NMFS has adopted in-air pinniped criteria in our Technical Guidance.  
 
9 In the Updated Technical Guidance, HF cetaceans refers to those species formerly referenced as MF cetaceans in the 
2018 NMFS Revised Technical Guidance (NMFS 2018). 
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2.1 MARINE MAMMAL HEARING GROUPS 1 
 2 
Current data (via direct behavioral and electrophysiological measurements) and predictions 3 
(based on inner ear morphology, modeling, behavior, vocalizations, or taxonomy) indicate that not 4 
all marine mammal species have equal hearing capabilities, in terms of absolute hearing 5 
sensitivity and the frequency band of hearing (Richardson et al. 1995; Wartzok and Ketten 1999; 6 
Southall et al. 2007; Au and Hastings 2008). Hearing has been directly measured in some 7 
odontocete and pinniped species (see reviews in Southall et al. 2007; Erbe et al. 2016; Southall 8 
et al. 2019). Direct measurements of mysticete hearing are lacking.10 Thus, hearing predictions 9 
for mysticetes are based on other methods including: anatomical studies and modeling (Houser 10 
et al. 2001; Parks et al. 2007; Tubelli et al. 2012; Cranford and Krysl 201511; Tubelli et al. 2018; 11 
Morris et al. 2023); vocalizations12 (see reviews in Richardson et al. 1995; Wartzok and Ketten 12 
1999; Au and Hastings 2008); taxonomy; and behavioral responses to sound (Dahlheim and 13 
Ljungblad 1990; see review in Reichmuth 2007; Frankel and Stein 2020). For the Updated 14 
Technical Guidance, NMFS has adopted the marine mammal hearing group designations from 15 
Southall et al. 2019.  16 
 17 
Table 1 defines the updated generalized hearing ranges for each hearing group. This generalized 18 
hearing range was determined based on the ~65 dB13 threshold from the composite audiograms. 19 
The generalized hearing ranges included in the Updated Technical Guidance are very similar to 20 
those in the previous version of the Technical Guidance (NMFS 2018) but with some 21 
modifications based on updated composite audiograms and individual species hearing ranges 22 
provided in Southall et al. 2019. Furthermore, there is the addition of in-air hearing ranges for PA 23 
and OA pinnipeds. 24 
 25 
2.1.1  Application of Marine Mammal Hearing Groups 26 
 27 
The application of marine mammal hearing groups occurs throughout the Updated Technical 28 
Guidance in two ways. First, thresholds are divided by hearing group to acknowledge that not all 29 
marine mammal species have identical hearing or susceptibility to noise-induced hearing loss14 30 
(NIHL). Outside the generalized hearing range, the risk of auditory impacts from sounds is 31 
considered highly unlikely or very low15 (the exception would be if a sound above/below this 32 
                                            
10 There was an unsuccessful attempt to directly measure hearing in a stranded gray whale calf by Ridgway and Carder 
2001. Furthermore, NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary 
hearing data on two minke whales during their third field season (2023) in Norway. These data have implications for not 
only the generalized hearing range for low-frequency cetaceans but also on their weighting function. However, at this 
time, no official results have been published. Furthermore, a fourth field season (2024) is proposed, where more data will 
likely be collected. Thus, it is premature for us to propose any changes to our current Updated Technical Guidance. 
However, mysticete hearing data is identified as a special circumstance that could merit re-evaluating the acoustic criteria 
in this document. Therefore, we anticipate that once the data from both field seasons are published, it will likely 
necessitate updating this document (i.e., likely after the data gathered in the summer 2024 field season and associated 
analysis are published). 
 
11 Note: The modeling of Cranford and Krsyl (2015) predicts that the primary mechanism for hearing in LF cetaceans is 
bone conduction. Additionally, this predictive model was based on the skull geometry of a newborn fin whale.  
 
12 Studies in other species indicate that perception of frequencies may be broader than frequencies produced (e.g., Luther 
and Wiley 2009). 
 
13 In humans, hearing range is typically defined as 60 dB above the hearing threshold at greatest hearing sensitivity, and 
Southall et al. 2019 used 60 dB to indicate audiometry data by species. To account for uncertainty associated with marine 
mammal hearing, NMFS based the Updated Technical Guidance’s generalized hearing range on 65 dB (which is broader 
than the hearing range definition for humans).  
 
14 NIHL is defined as a changes in normal auditory function that occur as a consequence of noise exposure, which can be 
temporary or permanent (Yost 2007; NIH 2022). NMFS intends this definition of NIHL to encompass both TTS and AUD 
INJ.  
 
15 Animals are able to detect sounds beyond their generalized hearing range (e.g., non-auditory mechanisms). However, 
typically, these sounds have to be extremely loud and would be considered uncomfortable (Wartzok and Ketten 1999). If a 
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range has the potential to cause physical injury, i.e., lung or gastrointestinal tract injury from 1 
underwater explosives). 2 
 3 
Second, marine mammal hearing groups are used in the establishment of marine mammal 4 
auditory weighting functions discussed next. 5 
 6 
Table 1: Marine mammal hearing groups. 7 
 8 

Hearing Group^ Generalized Hearing 
Range* 

UNDERWATER  
Low-frequency (LF) cetaceans 

(baleen whales) 7 Hz to 36+ kHz 

High-frequency (HF) cetaceans  
(dolphins, toothed whales, beaked whales, bottlenose whales) 150 Hz to 160 kHz 

Very High-frequency (VHF) cetaceans 
(true porpoises, Kogia, river dolphins, cephalorhynchid, 
Lagenorhynchus cruciger & L. australis) 

200 Hz to 165 kHz 

Phocid pinnipeds (PW)  
(true seals) 40 Hz to 90 kHz 

Otariid pinnipeds (OW)  
(sea lions and fur seals) 60 Hz to 68 kHz 

IN-AIR  
Phocid pinnipeds (PA)  
(true seals) 42 Hz to 52 kHz 

Otariid pinnipeds (OA) 
(sea lions and fur seals) 90 Hz to 40 kHz 

 9 
^ Southall et al. 2019 indicates that as more data become available there may be separate hearing group designations for 10 

Very Low-Frequency cetaceans (blue, fin, right, and bowhead whales) and Mid-Frequency cetaceans (sperm, 11 
killer, and beaked whales). However, at this point, all baleen whales are part of the LF cetacean hearing group, 12 
and sperm, killer, and beaked whales are part of the HF cetacean hearing group. Additionally, recent data 13 
indicates that as more data become available for Monachinae seals, separate hearing group designations may 14 
be appropriate for the two phocid subfamilies (Ruscher et al. 2021; Sills et al. 2021). 15 

* Represents the generalized hearing range for the entire group as a composite (i.e., all species within the group), where 16 
individual species’ hearing ranges are may not be as broad. Generalized hearing range chosen based on ~65 17 
dB threshold from composite audiogram, previous analysis in NMFS 2018, and/or data from Southall et al. 18 
2007; Southall et al. 2019. Additionally, animals are able to detect very loud sounds above and below that 19 
“generalized” hearing range. 20 

+ NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on two 21 
minke whales during their third field season (2023) in Norway. These data have implications for not only the 22 
generalized hearing range for low-frequency cetaceans but also on their weighting function. However, at this 23 
time, no official results have been published. Furthermore, a fourth field season (2024) is proposed, where more 24 
data will likely be collected. Thus, it is premature for us to propose any changes to our current Updated 25 
Technical Guidance. However, mysticete hearing data is identified as a special circumstance that could merit 26 
re-evaluating the acoustic criteria in this document. Therefore, we anticipate that once the data from both field 27 
seasons are published, it will likely necessitate updating this document (i.e., likely after the data gathered in the 28 
summer 2024 field season and associated analysis are published). 29 

 30 
 31 
 32 
 33 
 34 

                                            
sound is on the edge of a hearing group’s generalized hearing range and there is the potential for exposure to high sound 
pressure levels, then consider the potential for detection beyond normal auditory pathways. Thus, generalized hearing 
ranges do not provide an absolute cutoff, beyond which noise impacts are irrelevant or even unlikely. This depends on 
many factors, including the target species and characteristics of the noise (spectrum, amplitude, etc.) in question. 
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2.2 MARINE MAMMAL AUDITORY WEIGHTING FUNCTIONS 1 
 2 
The ability to hear sounds varies across a species’ hearing range. Most mammal audiograms 3 
have a typical “U-shape,” with frequencies at the bottom of the “U” being those to which the 4 
animal is more sensitive, in terms of hearing (i.e. the animal’s best hearing range; for an example 5 
audiogram, see Glossary, Figure F1). Auditory weighting functions best reflect an animal’s ability 6 
to hear a sound (and do not necessarily reflect how an animal will perceive and behaviorally react 7 
to that sound). To reflect higher hearing sensitivity at particular frequencies, sounds are often 8 
weighted. For example, A-weighting (developed for human hearing) deemphasizes frequencies 9 
below 1 kHz and above 6 kHz based on the inverse of the idealized (smoothed) 40-phon equal 10 
loudness hearing function across frequencies, standardized to 0 dB at 1 kHz (e.g., Harris 1998). 11 
Other types of weighting functions (e.g., B, C, D) deemphasize different frequencies to different 12 
extremes (e.g., flattens equal-loudness perception across wider frequencies with increasing 13 
received level; for example, C-weighting is uniform from 50 Hz to 5 kHz; ANSI 2011).  14 
 15 
Auditory weighting functions have been proposed for marine mammals, specifically associated 16 
with AUD INJ onset thresholds expressed in the weighted SEL24h 16 metric, which take into 17 
account what is known about marine mammal hearing (Southall et al. 2007; Erbe et al. 2016; 18 
Southall et al. 2019).  19 
 20 
Upon evaluation, NMFS determined that the proposed methodology in Finneran 2024 reflects the 21 
scientific literature and therefore NMFS incorporated it directly into this Updated Technical 22 
Guidance (Appendix A) following an independent peer review (see Appendix C for details on peer 23 
review and link to Peer Review Report). 24 
 25 
2.2.1  Use of Auditory Weighting Functions in Assessing Susceptibility to Noise-Induced 26 

Hearing Loss 27 
 28 
Auditory weighting functions are used for human noise standards to assess the overall hazard of 29 
noise on hearing. Specifically, human auditory weighting functions provide a “rating that indicates 30 
the injurious effects of noise on human hearing” (OSHA 2013). Thus, while these functions are 31 
based on regions of equal loudness and best hearing, in the context of human risk assessments, 32 
as well as their use in the Updated Technical Guidance, they are meant to reflect the 33 
susceptibility of the ear to noise-induced threshold shifts (TS). Regions of enhanced susceptibility 34 
to noise may not perfectly mirror a species’ region of best hearing (e.g., TTS measurements from 35 
harbor seals; bottlenose dolphin, belugas, harbor porpoise, and Yangtze finless porpoise support 36 
this; Popov et al. 2011a; Finneran and Schlundt 2013; Popov et al. 2015; Gransier and Kastelein 37 
2024). Thus, within the Updated Technical Guidance, auditory weighting functions are meant to 38 
assess risk of NIHL and do not necessarily encompass the entire range of best hearing for every 39 
species within the hearing group. 40 
 41 
2.2.2  Marine Mammal Auditory Weighting Functions  42 
 43 
Frequency-dependent marine mammal auditory weighting functions were derived using data on 44 
hearing ability (composite audiograms), effects of noise on hearing, and data on equal latency 45 
(Finneran 2024). Separate functions were derived for each marine mammal hearing group 46 
(Figures 1-3). 47 
 48 

                                            
16 Auditory weighting functions are not to be applied to AUD INJ or TTS onset criteria expressed as the PK SPL metric 
(i.e., PK SPL criteria are flat or unweighted within the generalized hearing range of marine mammals, 7 Hz to 165 kHz). 
Furthermore, the weighting functions in this document are only appropriate to examine noise-induced hearing loss (i.e., 
they are not appropriate for examining behavioral disturbance).  
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 1 
Figure 1:  Auditory weighting functions for low-frequency (LF; blue dashed line), 2 

high-frequency (HF; red solid line), and very high-frequency (VHF; green 3 
dotted line) cetaceans. 4 

 5 
 6 

 7 
Figure 2:   Underwater auditory weighting functions for otariid (OW; purple dotted 8 

line) and phocid (PW; orange solid line) pinnipeds. 9 
 10 
 11 
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 1 
 2 
Figure 3:   In-air auditory weighting functions for otariid (OA; dashed pink line) and 3 

phocid (PA; solid yellow line) pinnipeds. 4 
 5 
 6 
The overall shape of the auditory weighting functions is based on a generic band-pass filter 7 
described by Equation 1: 8 

 9 
 10 
dB Equation 1 11 

where W(ƒ) is the auditory weighting function amplitude in decibels (dB) at a particular frequency 12 
(ƒ) in kilohertz (kHz)17. The function shape is determined by the following auditory weighting 13 
function parameters: 14 
 15 

• Low-frequency exponent (a) (dimensionless): This parameter determines the rate at 16 
which the weighting function amplitude declines with frequency at the lower frequencies. 17 
As the frequency decreases, the change in amplitude becomes linear with the logarithm 18 
of frequency with a slope of 20a dB/decade. Larger values of a result in lower weighting 19 
function amplitudes at ƒ1 and steeper roll-offs at frequencies below ƒ1.  20 

 21 
• High-frequency exponent (b) (dimensionless): This is the rate at which the weighting 22 

function amplitude declines with frequency at the upper frequencies. As the frequency 23 
increases, the change in amplitude becomes linear with the logarithm of frequency with a 24 
slope of 20b dB/decade. Larger values of b result in lower weighting function amplitudes 25 
at ƒ2 and steeper roll-offs at frequencies above ƒ2. 26 

 27 
• Low-frequency cutoff (ƒ1) (kHz): This parameter defines the lower limit of the band-pass 28 

filter (i.e., the lower frequency where weighting function amplitude begins to roll off or 29 

                                            
17 Where 0 dB indicates maximum susceptibility to NIHL. 
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decline from the flat, central portion of the function). This parameter is directly dependent 1 
on the value of the low-frequency exponent (a). Decreasing ƒ1 will enlarge the pass-band 2 
of the function (the flat, central portion of the curve). 3 

 4 
• High-frequency cutoff (ƒ2) (kHz): This parameter defines the upper limit of the band-pass 5 

filter (i.e., the upper frequency where weighting function amplitude begins to roll off or 6 
decline from the flat, central portion of the function). This parameter is directly dependent 7 
on the value of the high-frequency exponent (b). Increasing ƒ2 will enlarge the pass-band 8 
of the function. 9 

 10 
• Weighting function gain (C) (dB): This parameter determines the vertical position of the 11 

function and is adjusted to set the maximum amplitude of the auditory weighting function 12 
to 0 dB. Changing the value of C shifts the function up/down.  13 
 14 

Finneran (2023) illustrates the influence of each parameter value on the shape of the auditory 15 
weighting function (Appendix A).  16 
 17 
In association with auditory weighting functions are exposure functions that illustrate how auditory 18 
weighting functions relate to auditory thresholds. Auditory exposure functions (Equation 2) are the 19 
inversion of Equation 1: 20 
 21 

   Equation 2 22 

 23 
 24 
where E(ƒ) is the acoustic exposure as a function of frequency (ƒ) and the gain parameter 25 
constant (K), which is adjusted to set the minimum value of the curve to the weighted AUD 26 
INJ/TTS onset auditory threshold. All other parameters are the same as those in Equation 1. 27 
Figure 4 illustrates how the various weighting parameters relate to one another in both the 28 
auditory weighting and exposure functions. 29 
 30 
 31 

 32 
 33 
Figure 4:  Illustration of function parameter in both auditory weighting functions and 34 

exposure functions (from Finneran 2024). Reference to Equations 1 and 2 35 
match those in the Updated Technical Guidance. 36 

 37 

dB 
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2.2.3 Derivation of Function Parameters 1 
 2 
Numeric values associated with auditory weighting function parameters were derived from 3 
available data from audiograms (measured and predicted), equal latency contours, and marine 4 
mammal TTS data using the following steps from Finneran (2023): 5 
 6 

1. Marine mammals are divided into their appropriate hearing groups (See Table 1). 7 
 8 

2. Marine mammal composite audiograms were derived for each hearing group. 9 
 10 

In deriving marine mammal composite audiograms, an informal data hierarchy was 11 
established in terms of assessing these types of data. Specifically, audiograms obtained 12 
via behavioral methodologies were determined to provide the most representative 13 
(sensitive) presentation of hearing ability (Finneran et al. 2007a; Finneran 2024), followed 14 
by auditory evoked potential (AEP) data,18 and lastly by mathematical/anatomical models 15 
for species where no data are available (i.e., LF cetaceans). Thus, the highest quality 16 
data available for a specific hearing group were used (Table 2).19 17 
 18 
For LF cetaceans, only two studies were available for consideration (i.e., predicted 19 
audiograms for a humpback whale from Houser et al. 2001 and a fin whale from Cranford 20 
and Krysl 2015), which alone was not enough to derive a predicted audiogram for this 21 
entire hearing group. Thus, an alternative approach was used to derive a composite 22 
audiogram and associated auditory weighting function for LF cetaceans (i.e., composite 23 
audiogram parameters had to be predicted; for specifics on this process, see Appendix 24 
A.1).  25 
 26 
An animal’s individual data were included only once at a particular frequency. If data from 27 
the same individual were available from multiple studies, typically the earlier published 28 
data were used (e.g., individual was younger and less likely to exhibit age-related hearing 29 
loss). Furthermore, data from individuals with obvious high-frequency hearing loss for 30 
their species or aberrant audiograms were excluded. 31 
 32 
To combine individual datasets, a common set of frequency values was required. Thus, 33 
frequency values for each individual were replaced with frequencies spaced at 1/12-34 
octave intervals, encompassing the range of frequencies present in the original data. 35 
Threshold values at the 1/12-octave frequencies were obtained by linear-log interpolation 36 
(linear thresholds, logarithmic frequencies) between sequential data points, as shown in 37 
Figure 5. 38 

 39 
 40 
 41 
 42 
 43 
                                            
18 Despite not directly including AEP audiograms in the development of a hearing groups’ composite audiogram, these 
data were evaluated to ensure species were placed within the appropriate hearing group and to ensure a species where 
only AEP data are available were within the bounds of the composite audiogram for that hearing group. Furthermore, AEP 
TTS data are presented within the Updated Technical Guidance for comparative purposes alongside TTS data collected 
by behavioral methods illustrating that the AEP TTS data are within the bounds (the majority of the time above) of those 
collected by behavioral methods. 
 
19 Behavioral techniques for obtaining audiograms measure perception of sound by a receiver, while AEP methods 
measure only neural activity (Jewett and Williston 1971) (i.e., the two methodologies are not necessarily equivalent). As a 
result, behavioral techniques consistently produce lower thresholds than those obtained by AEPs (e.g., Szymanski et al. 
1999; Yuen et al. 2005; Houser and Finneran 2006). Currently, there are no means established for “correcting” AEP data 
so that it may be more comparable to those obtained via behavioral methods (Heffner and Heffner 2003; Finneran 2015; 
Sisneros et al. 2016; Erbe et al. 2016). 
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Table 2:  Summary of data available for deriving composite audiograms.† 1 

Hearing Group Species  
(number of individuals) 

References  
(new references added for Updated Technical 
Guidance are in italics) 

UNDERWATER   
 Beluga (9) White et al. 1978; Awbrey et al. 1988; Johnson et al. 

1989; Ridgway et al. 2001; Finneran et al. 2005b 
 Bottlenose dolphin (3) Johnson 1967; Lemonds et al. 2011; Finneran et al. 

2010a 
High-Frequency (HF) 
Cetaceans 

False killer whale (1) Thomas et al. 1988 

 Killer whale (8) Szymanski et al. 1999; Branstetter et al. 2017 
 
 Pacific white-sided 

dolphin (1) Tremel et al. 1996 

 Striped dolphin (1) Kastelein et al. 2003 
 Tucuxi (1) Sauerland and Dehnhardt 1998 

Very High-Frequency 
(VHF) Cetaceans 

Amazon River dolphin 
(1) Jacobs and Hall 1972 

Harbor porpoise (5) Kastelein et al. 2002b; Kastelein et al. 2010; Kastelein 
et al. 2015c; Kastelein et al. 2017a 

 Harbor seal (5) Terhune 1988; Kastelein et al. 2009b; Reichmuth et 
al. 2013; Cunningham and Reichmuth 2016 

 Bearded sealed (2) Sills et al. 2020a 
Phocid Pinnipeds 
(PW)  

Hawaiian monk seal 
(1)  Sills et al. 2021 

Harp seal (1) Terhune et al. 1972 
Northern elephant seal 
(1) Kastak and Schusterman 1999 

 Ringed seal (1) Sills et al. 2015 
 Spotted seal (3) Sills et al. 2014; Cunningham and Reichmuth 2016 

Otariid Pinnipeds* 
(OW)  

California sea lion (6) Kastak and Schusterman 1998; Mulsow et al. 2012; 
Reichmuth and Southall 2012; Reichmuth et al. 2013; 
Cunningham and Reichmuth 2016; Kastelein et al. 
2023a 

Northern fur seal (3) Moore and Schusterman 1987; Babushina et al. 1991 
Steller sea lion (2) Kastelein et al. 2005a 

IN-AIR   

Phocid Pinnipeds 
(PA) 

Harbor seal (1) Reichmuth et al. 2013 
Spotted seal (2) Sills et al. 2014 
Ringed seal (1) Sills et al. 2015 

Otariid Pinnipeds* 
(OA)  

California sea lion (4) Moore and Schusterman 1987; Mulsow et al. 2011a; 
Reichmuth et al. 2013; Reichmuth et al. 2017 

Steller sea lion (1) Mulsow et al. 2010 

Northern fur seal (3) Moore and Schusterman 1987; Babushina et al. 1991 

† More details on individual subjects are available in Appendix A.1. Some datasets were excluded due to subjects having 2 
high-frequency hearing loss or aberrant audiograms. The most common reasons for excluding an individual’s 3 
data were abnormal audiograms featuring high-frequency hearing loss (typically seen in older animals) or 4 
“notches” in the audiogram, or data collected in the presence of relatively high ambient noise that resulted in 5 
elevated thresholds. Excluding these data ensured that the composite audiograms were not artificially elevated, 6 
which could result in unrealistically high thresholds. See Appendix A.1 for details on excluded datasets. 7 

 8 
NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on 9 
two minke whales during their third field season (2023) in Norway. These data have implications for not only the 10 
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generalized hearing range for low-frequency cetaceans but also on their weighting function. However, at this 1 
time, no official results have been published. Furthermore, a fourth field season (2024) is proposed, where more 2 
data will likely be collected. Thus, it is premature for us to propose any changes to our current Updated 3 
Technical Guidance. However, mysticete hearing data is identified as a special circumstance that could merit 4 
re-evaluating the acoustic criteria in this document. Therefore, we anticipate that once the data from both field 5 
seasons are published, it will likely necessitate updating this document (i.e., likely after the data gathered in the 6 
summer 2024 field season and associated analysis are published). 7 

* The otariid pinniped (underwater) hearing group’s composite audiogram also contains data from a single Pacific walrus 8 
(Odobenus rosmarus) from Kastelein et al. 2002a and a single sea otter (Enhydra lutris nereis) from Ghoul and 9 
Reichmuth 2014. The otariid pinniped (in air) hearing group’s composite audiogram contains data from a single 10 
sea otter (Enhydra lutris nereis) from Ghoul and Reichmuth 2014 and five polar bears from Owen and Bowles 11 
2011. These species are under the jurisdiction of the USFWS. However, since marine mammal audiogram data 12 
are limited, a decision was made to include all available datasets from in-water and in-air groups to derive 13 
composite audiograms for these hearing groups.  14 
 15 
From these data, the median threshold value was calculated at each frequency and fit by 16 
the function:  17 
 18 

  Equation 3 19 

 20 

 21 
Figure 5.   Illustration of interpolation used to ensure common frequencies across 22 

studies. Threshold data for each study were interpolated onto a grid of 23 
frequencies, logarithmically spaced at 1/12-octave intervals (Finneran 24 
2024).  25 

 26 
  27 

where T( f ) is the threshold at frequency f, and T0, F1, F2, A, and B are fitting parameters. 28 
The median value was used to reduce the influence of outliers. The particular form of 29 
Equation 3 was chosen to provide linear-log roll-off with variable slope at low frequencies 30 
and a steep rise at high frequencies. Equation 3 was fit to the median threshold data 31 
using the curve_fit function in the optimize module of the python package SciPy (Virtanen 32 
et al., 2020).  33 
 34 
The composite audiogram fitting parameters are presented in Table 3, with the resulting 35 
composite audiograms presented in Figure 6. 36 

 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
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Table 3: Composite audiogram fitting parameters by hearing group. 1 
 2 

Group T0 
(dB) 

F1 
(kHz) 

F2 
(kHz) A B 

Minimum 
threshold 

(RMS SPL dB) 
UNDERWATER 

LF cetacean 54.2 0.412 3.73 20.0 1.79 56 
HF cetacean -38.9 9910 10.5 33.5 1.66 51 

VHF cetacean 48.2 4.95 132 46.8 24.5 49 
Phocid pinniped 55.1 0.391 8.56 48.4 1.79 57 
Otariid pinniped 9.90 74.0 0.17 33.3 0.786 64 
IN-AIR 
Phocid pinniped -36.2 2.38 0.0188 52.6 0.581 -3.8 
Otariid pinniped 6.9 1.04 8.86 63.7 2.78 11 

 3 
 4 

 5 
 6 
Figure 6:   Resulting composite audiograms for low-frequency (LF), high-frequency 7 

(HF), and very high-frequency cetaceans (VHF), phocid (PW) and otariid 8 
(OW) pinnipeds underwater, and phocid (PA) and otariid (OA) pinnipeds in 9 
air (from Finneran 2024).  Thin lines represent the threshold data from 10 
individual animals, while thick lines represent the composite audiograms. 11 
Thresholds are expressed in RMS SPL dB re: 1 μPa for underwater data 12 
and RMS SPL dB re: 20 μPa for in-air data (Finneran 2024). 13 

 14 
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3. Derivation of the weighting functions low-frequency exponent (a). 1 
 2 

This exponent was defined using the smaller of the low-frequency slope from either the 3 
composite audiogram or the lower-frequency slope of the equal latency contours (if 4 
available) and then divided by twenty (s0/20 ). This results in the slope matching the 5 
shallower slope of the audiogram. 6 

 7 
4. Derivation of the weighting functions high-frequency exponent (b). 8 

 9 
This exponent was set equal to five, which is higher than what was used in the previous 10 
Technical Guidance (NMFS 2018) (b=2). The value was increased to fit better the OW 11 
pinniped function without substantially affecting the other group fits.  12 

 13 
5. Derivation of low- (ƒ1) and high-frequency cutoffs (ƒ2). 14 

 15 
For groups with TTS onset data (HF cetaceans, VHF cetaceans, OW pinnipeds, and PW 16 
pinnipeds), nonlinear regression was used to find values of K, f1, and f2 to best-fit 17 
Equation 2. Nonlinear regression was performed using the curve_fit function in the 18 
optimize module of the python package SciPy (Virtanen et al., 2020).  19 

 20 
For some datasets, Equation 2 can exhibit high dependency among the parameters, 21 
resulting in small changes in the function despite large changes in parameter values. This 22 
can cause problems in extrapolating to the other groups. Therefore, the optimization 23 
process was constrained so that fL ≤ f1 ≤ F0 and F0 ≤ f2 ≤ fH, where fL and fH are the 24 
frequencies below and above F0 (the composite audiogram frequency of best hearing), 25 
respectively, where the composite audiogram thresholds were 40 dB above the minimum 26 
audiogram threshold at F0.  27 
 28 
Following each curve-fit, the frequencies at which the resulting exposure function 29 
amplitude exceeded the minimum value by 10 dB were compared to the corresponding 30 
frequencies for the composite audiogram (Figure 7). If the lower exposure function 31 
frequency was above the audiogram frequency, the parameter f1 was adjusted downward 32 
until the exposure function and audiogram frequencies matched. Similarly, if the upper 33 
exposure function frequency was below the audiogram frequency, the parameter f2 was 34 
adjusted upward until the exposure function and audiogram frequencies matched. This 35 
procedure ensured that the exposure function 10-dB bandwidth was at least as wide as 36 
the audiogram, since it is expected that the high sound levels capable of causing TTS 37 
would cause the exposure function to “flatten” relative to the audiogram. The practical 38 
effect of this step was to decrease f1 for the PW and OW pinnipeds and increase f2 for 39 
the VHF group.  40 
 41 
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 1 
Figure 7:  (a) After fitting Equation 2 to the onset TTS data, the frequencies at which 2 

the exposure function amplitude was 10 dB above the minimum (LE and UE) 3 
were compared to the corresponding frequencies in the composite 4 
audiogram (LA and UA, respectively). (b) If LE > LA, then f1 in Equation 2 was 5 
iteratively decreased until LE = LA. Similarly, if UE < UA, f2 in Equation 2 was 6 
iteratively increased until UE = UA (Finneran 2024). 7 

 8 
To determine f1 and f2 for the remaining groups (without TTS data), the parameters ΔT1 9 
and ΔT2 were defined, such that ΔT1 was the amount that the composite audiogram 10 
threshold at f1 exceeded the minimum threshold value, and ΔT2 was the amount that the 11 
composite audiogram threshold at f2 exceeded the minimum threshold value (Figure 8).  12 

 13 

Figure 8:  The parameter ΔT1 was defined as the amount that the composite 14 
audiogram threshold at f1 exceeded the minimum threshold value. 15 
Similarly, ΔT2 was defined as the amount that the composite audiogram 16 
threshold at f2 exceeded the minimum threshold value (Finneran 2024).  17 

 18 
After determining the best-fit values of f1, f2, and K for groups HF cetaceans, VHF 19 
cetaceans, OW pinnipeds, and PW pinnipeds, ΔT1 and ΔT2 were determined for each 20 
group (i.e., ΔT1 = 36.8, 11.5, 3.9, 6.5 dB and ΔT2 = 38.6, 22.7, 38.9, 39.4 dB, for HF 21 
cetaceans, VHF cetaceans, OW pinnipeds, and PW pinnipeds, respectively). For ΔT1, the 22 
value at 36.8 appears to be an outlier. Thus, the median value of ΔT1 (9.0 dB) and the 23 
mean of ΔT2 (34.9 dB) were used in conjunction with the composite audiograms for the 24 
LF cetaceans, PA pinnipeds, and OA pinniped to determine f1 and f2.  25 
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6. Incorporation of TTS data. 1 
 2 
As with previous Technical Guidance, only TTS data from psychophysical (behavioral) 3 
hearing tests were used. TTS data are available from HF and VHF cetaceans, PW and 4 
OW pinnipeds, and PA and OA pinnipeds to determine TTS onset. For LF cetaceans, 5 
where data were not available, TTS onset was estimated by assuming the numeric 6 
difference between auditory threshold and TTS onset at the frequency of best hearing 7 
(ƒ0) would be similar across hearing groups. For LF cetaceans auditory threshold had to 8 
be predicted, since no data exist (For specifics on methodology, see Appendix A.2). 9 
 10 
More information on the incorporation of TTS data is included in Section 2.3.3 later in this 11 
document. 12 

 13 
7. Derivation of the weighting function parameter (C). 14 

 15 
This exponent was determined by substituting parameters a, b, ƒ1, and ƒ2 in Equation 1 16 
and setting the peak amplitude of the function to zero. 17 

 18 
Table 4 summarizes the basic steps in process, with a comparison of what changed between our 19 
2018 Revised Technical Guidance (NMFS 2018) and this Updated Technical Guidance 20 
document.  21 
 22 
For each hearing group, the resulting numeric values associated with these parameters and 23 
resulting weighted TTS onset threshold for non-impulsive sources (weighted SEL24h metric) are 24 
listed in Table 5 and resulting auditory weighting functions are depicted in Figures 1 through 3. 25 
 26 
 27 
Table 4: Steps used to define weighting function and exposure function parameters 28 

in Equations 1 and 2 for between the previous version of the Technical 29 
Guidance (NMFS 2018) and Updated Technical Guidance (NMFS 2024) 30 

 31 
Step NMFS 2018 NMFS 2024 

(changes from NMFS 2018 are in italics) 
1 Marine mammals divided into hearing 

groups 
Same as previous 2018 Revised Technical 
Guidance, with addition of in-air pinniped 
groups and naming convention following 
Southall et al. 2019. 

2 Composite audiogram derived for each 
hearing group 

Same as previous 2018 Revised Technical 
Guidance, with addition of in-air pinniped 
groups and naming convention following 
Southall et al. 2019. 

3 The exponent a was defined as the smaller 
of the low frequency slope from the 
audiogram and equal latency contour. 

Same as previous 2018 Revised Technical 
Guidance 

4 The exponent b was set equal to two. The exponent b was set equal to five. 
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Step NMFS 2018 NMFS 2024 
(changes from NMFS 2018 are in italics) 

5 f1 and f2 were defined as the frequencies 
where composite audiogram thresholds 
were ΔT-dB above the lowest threshold.  
For groups with sufficient onset TTS data, 
the optimum value of ΔT was found by 
adjusting ΔT to best-fit Equation 2 to the 
non-impulsive TTS onset data. This value 
of ΔT was used for the remaining groups. 
The parameter K was then adjusted to fit 
Equating 2 to available or estimated TTS 
onset data. 

For the groups with sufficient onset TTS 
data (HF cetaceans, VHF cetaceans, PW 
pinnipeds and OW pinnipeds), the 
parameters f1, f2, and K were adjusted to fit 
Equation 2 to the non-impulsive TTS onset 
data. If the resulting exposure function 
bandwidth, defined as 10 dB above the 
minimum TTS onset value, did not meet or 
exceed that of the composite audiogram, f1 

was decreased and/or f2 increased as 
necessary to ensure that the 10-dB 
bandwidth criterion was met.  
 
For the remaining groups, f1 and f2 were 
defined so the differences between the 
audiogram thresholds at f1 and f2 and the 
minimum threshold (ΔT1 and ΔT2, 
respectively) matched the median value of 
ΔT1 and mean value of ΔT2 for the HF 
cetaceans, VHF cetaceans, PW pinnipeds, 
and OW pinnipeds). The parameter K was 
then adjusted to fit Equation 2 to available 
or estimated TTS onset data. 

6 The non-impulsive, weighted TTS threshold 
was defined as the minimum of the TTS 
exposure function. 

Same as previous 2018 Revised Technical 
Guidance 

7 The parameter C was defined to set the 
peak amplitude of the weighting function to 
zero. 

Same as previous 2018 Revised Technical 
Guidance 

 1 
 2 
Table 5: Summary of auditory weighting and exposure function parameters. 3 
 4 

Hearing Group a b ƒ1  
(kHz) 

ƒ2  
(kHz) 

C  
(dB) 

K 
(dB) 

Weighted TTS onset 
threshold* (SEL24h) 

UNDERWATER        
Low-frequency (LF) 
cetaceans 0.99 5 0.168 26.6 0.12 177 177 dB 

High-frequency (HF) 
cetaceans 1.55 5 1.73 129 0.32 181 181 dB 

Very High-frequency 
(VHF) cetaceans 2.23 5 5.93 186 0.91 160 161 dB 

Phocid pinnipeds (PW)  1.63 5 0.81 68.3 0.29 175 175 dB 
Otariid pinnipeds (OW)  1.58 5 2.53 48.3 1.37 178 179 dB 
IN-AIR        
Phocid pinnipeds (PA) 2.05 5 0.74 24.4 0.83 133 134 dB 
Otariid pinnipeds (OA) 1.35 5 1.75 32.5 1.18 156 157 dB 

* Determined from minimum value of auditory exposure function and the weighting function at its peak (i.e., 5 
mathematically equivalent to K + C). 6 
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2.2.4 Application of Marine Mammal Auditory Weighting Functions for AUD INJ Onset 1 
Thresholds 2 

 3 
The application of marine mammal auditory weighting functions emphasizes the importance of 4 
making measurements and characterizing sound sources in terms of their overlap with 5 
biologically-important frequencies (e.g., frequencies used for environmental awareness, 6 
communication or the detection of predators or prey), and not only the frequencies of interest or 7 
concern for the completion of the sound-producing activity (i.e., context of sound source). 8 

  9 
If the frequencies produced by a sound source are outside a hearing group’s most susceptible 10 
hearing range (where the auditory weighting function amplitude is < 0 dB), sounds at those 11 
frequencies need to have a higher sound pressure level to produce a similar threshold shift (i.e., 12 
AUD INJ onset) as sounds with frequencies in the hearing group’s most susceptible hearing 13 
range. Because auditory weighting functions take into account a hearing group’s differing 14 
susceptibility to frequencies, the implementation of these functions typically results in smaller 15 
isopleths20 for frequencies where the group is less susceptible. Additionally, if the sound source 16 
produces frequencies completely outside the generalized hearing range of a given hearing group 17 
(i.e., has no harmonics/subharmonics that are capable of producing sound within the hearing 18 
range of a hearing group), then the likelihood of the sound causing hearing loss is considered 19 
low.21 20 
 21 
Marine mammal auditory weighting functions are used in conjunction with corresponding 22 
weighted SEL24h AUD INJ onset criteria. If the use of the full auditory weighting function is not 23 
possible by an action proponent (i.e., consider auditory weighting function over multiple 24 
frequencies for broadband source), NMFS has provided an alternative tool based on a simpler 25 
auditory weighting function (See NMFS Optional User Spreadsheet Tool). 26 
 27 
Tougaard et al. (2015) reviewed the impacts of using auditory weighting functions and various 28 
considerations when applying them during the data evaluation and implementation stages (e.g., 29 
consequences of using too broad or too narrow of a filter) and suggested some modifications 30 
(correction factors) to account for these considerations. However, there are no data to support 31 
doing so (i.e., selection would be arbitrary). Moreover, various conservative factors have been 32 
accounted for in the development of auditory weighting functions and thresholds: a 6 dB threshold 33 
shift was used to represent TTS onset; the methodology does not incorporate exposures where 34 
TTS did not occur; and the potential for recovery is not accounted for. Additionally, the means by 35 
which NMFS is applying auditory weighting functions is supported and consistent with what has 36 
been done for humans (i.e., A-weighted thresholds used in conjunction with A-weighting during 37 
implementation). 38 
 39 
2.2.4.1 Measuring and Maintaining Full Spectrum for Future Analysis 40 
 41 
It is recommended that marine mammal auditory weighting functions be applied after sound field 42 
measurements22 have been obtained (i.e., post-processing), with the total spectrum of sound 43 
                                            
20 Note: Criteria associated with a hearing group do not change depending on how much a sound may overlap a group’s 
most susceptible frequency range. Instead, weighting functions affect exposure modeling/analysis via the resulting size of 
the isopleth (area) associated with the criteria based on how susceptible that particular hearing group is to the sound 
being modeled. For example, a hearing group could have different size isopleths associated with the same criteria, if one 
sound was within its most susceptible frequency range and the other was not (i.e., sound in most susceptible hearing 
range will result in larger isopleth compared to sound outside the most susceptible hearing range).  
 
21 The potential for sound to damage beyond the level the ear can perceive exists (Akay 1978), which is why the criteria 
also include the PK SPL metric, which is flat or unweighted within the generalized hearing range of a hearing group.  
 
22 Note: Sound field measurements refers to actual field measurements, which are not a requirement of this Updated 
Technical Guidance, and not to exposure modeling analyses, where it may be impractical due to data storage and 
cataloging restraints.  
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preserved for later analysis (i.e., if auditory weighting functions are updated or if there is interest 1 
in additional species, then data can still be used). Additionally, it is important to consider 2 
measurements that encompass the entire frequency band that a sound source may be capable of 3 
producing (i.e., sources often produce sounds, like harmonics/subharmonics, beyond the 4 
frequency/band of interest; e.g., Deng et al. 2014; Hastie et al. 2014). 5 
 6 
2.3 AUD INJ ONSET CRITERIA 7 
 8 
Available data from humans and other terrestrial mammals indicate that a 40 dB threshold shift 9 
approximates AUD INJ onset (see Ward et al. 1958; Ward et al. 1959; Ward 1960; Kryter et al. 10 
1966; Miller 1974; Ahroon et al. 1996; Henderson et al. 2008). Southall et al. (2007) also 11 
recommended this definition of PTS onset.  12 
 13 
Studies to induce and measure AUD INJ onset criteria for marine mammals are not pursued.23 14 
Instead, these criteria are extrapolated from available TTS onset measurements. Thus, based on 15 
cetacean measurements from TTS studies (see Southall et al. 2007; Finneran 2015; Southall et 16 
al. 2019; and Finneran 2024 found in Appendix A of this Updated Technical Guidance) a 17 
threshold shift of 6 dB is considered the minimum threshold shift clearly larger than any day-to-18 
day or session-to-session variation24 in a subject’s normal hearing ability and is typically the 19 
minimum amount of threshold shift that can be differentiated in most experimental conditions 20 
(Finneran et al. 2000; Schlundt et al. 2000; Finneran et al. 2002). Thus, NMFS has set the onset 21 
of TTS at the lowest level that exceeds recorded variation (i.e., 6 dB).  22 
 23 
There are different mechanisms (e.g., anatomical, neurophysiological) associated with TTS 24 
versus AUD INJ onset, making the relationship between these types of TS not completely direct. 25 
Nevertheless, the only data available for marine mammals, currently and likely in the future, will 26 
be from TTS studies (i.e., unlike for terrestrial mammals where direct measurements of AUD INJ 27 
exist). Thus, TTS represents the best information available from which AUD INJ onset can be 28 
estimated. 29 
 30 
The criteria presented in Table 6 consist of both an acoustic threshold and auditory weighting 31 
function for the SEL24h metric (auditory weighting functions are considered not appropriate for PK 32 
SPL metric). 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
                                            
23 There has been one documented unexpected occurrence of PTS in a harbor seal that participated in multiple TTS 
studies (Reichmuth et al. 2019). Although these data are not suitable for directly deriving AUD INJ criteria, they provide a 
comparison to the resulting AUD INJ criteria value to actual PTS data.  
 
24 Similarly, for humans, NIOSH (1998) regards the range of audiometric testing variability to be approximately 5 dB. 
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Table 6: Summary of AUD INJ onset criteria. 1 
 2 

 
 

AUD INJ Onset Criteria* 
(Received Level) 

PLEASE SEE TABLE NOTES TO FULLY UNDERSTAND 
SYMBOLS MEANING 

Hearing Group Impulsive Non-impulsive 
UNDERWATER   

Low-Frequency (LF)  
Cetaceans 

Cell 1 
Lp,0-pk,flat: 222 dB  

LE,p, LF,24h: 183 dB  

Cell 2 
LE,p, LF,24h: 197 dB  

High-Frequency (HF) 
Cetaceans 

Cell 3 
Lp,0-pk,flat: 230 dB  

LE,p, HF,24h: 193 dB  

Cell 4 
LE,p, HF,24h: 201 dB  

Very High-Frequency (VHF) 
Cetaceans 

Cell 5 
Lp,0-pk,flat: 202 dB  

LE,p,VHF,24h: 159 dB  

Cell 6 
LE,p, VHF,24h: 181 dB 

Phocid Pinnipeds (PW) 
 

Cell 7 
Lp,0-pk.flat: 223 dB  

LE,p,PW,24h: 183 dB  

Cell 8 
LE,p,PW,24h: 195 dB  

Otariid Pinnipeds (OW) 
 

Cell 9 
Lp,0-pk,flat: 230 dB  

LE,p,OW,24h: 185 dB  

Cell 10 
LE,p,OW,24h: 199 dB  

IN-AIR   

Phocid Pinnipeds (PA) 
Cell 11 

Lp,0-pk.flat: 162 dB  
LE,p,PA,24h: 140 dB 

Cell 12 
LE,p,PA,24h: 154 dB 

Otariid Pinnipeds (OA) 
Cell 13 

Lp,0-pk,flat: 177 dB  
LE,p,OA,24h: 163 dB 

Cell 14 
LE,p,OA,24h: 177 dB 

 3 
* Dual metric criteria for impulsive sounds: Use whichever criteria results in the larger isopleth for calculating AUD INJ 4 

onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level criteria associated 5 
with impulsive sounds, the PK SPL criteria are recommended for consideration for non-impulsive sources.  6 

 7 
Note: Peak sound pressure level (Lp,0-pk) has a reference value of 1 µPa (underwater) and 20 µPa (in air), and weighted 8 

cumulative sound exposure level (LE,p) has a reference value of 1 µPa2s (underwater) and 20 µPa2s (in air). In 9 
this Table, criteria are abbreviated to be more reflective of International Organization for Standardization 10 
standards (ISO 2017; ISO 2020). The subscript “flat” is being included to indicate peak sound pressure are flat 11 
weighted or unweighted within the generalized hearing range of marine mammals underwater (i.e., 7 Hz to 165 12 
kHz) or in air (i.e., 42 Hz to 52 kHz). The subscript associated with cumulative sound exposure level criteria 13 
indicates the designated marine mammal auditory weighting function (LF, HF, and VHF cetaceans, and PW, 14 
OW, PA, and OA pinnipeds) and that the recommended accumulation period is 24 hours. The weighted 15 
cumulative sound exposure level criteria could be exceeded in a multitude of ways (i.e., varying exposure levels 16 
and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under 17 
which these criteria will be exceeded. 18 

 19 
2.3.1 Impulsive and Non-Impulsive Source Criteria 20 
 21 
As with the previous Technical Guidance, this Updated Technical Guidance divides sources into 22 
impulsive and non-impulsive based on physical characteristics at the source, with impulsive 23 
sound having physical characteristics making them more injurious25 (e.g., high peak sound 24 
                                            
25 Exposure to impulsive sounds more often leads to mechanical damage of the inner ear, as well as more complex 
patterns of hearing recovery (e.g., Henderson and Hamernik 1986; Hamernik and Hsueh 1991). 
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pressures and rapid rise times) than non-impulsive sound sources (terrestrial mammal data: Buck 1 
et al. 1984; Dunn et al. 1991; Hamernik et al. 1993; Clifford and Rogers 2009; marine mammal 2 
data: reviewed in Southall et al. 2007; Southall et al. 2019; and Finneran 2024 that appears as 3 
Appendix A of this Updated Technical Guidance).  4 
 5 
The characteristics of the sound at a receiver, rather than at the source, are the relevant 6 
consideration for determining potential impacts. However, understanding these physical 7 
characteristics in a dynamic system with receivers moving over space and time is difficult. 8 
Nevertheless, it is known that as sound propagates from the source, the characteristics of 9 
impulsive sounds that make them more injurious start to dissipate due to effects of propagation 10 
(e.g., time dispersion/time spreading; Urick 1983; Sertlek et al. 2014; Martin et al. 202026). 11 
 12 
For the purposes of this Updated Technical Guidance,27 sources are divided and defined as the 13 
following: 14 
 15 

• Impulsive: produce sounds that are typically transient, brief (less than 1 second), 16 
broadband, and consist of high peak sound pressure with rapid rise time and rapid decay 17 
(ANSI 1986; NIOSH 1998; ANSI 2005).  18 

 19 
• Non-impulsive: produce sounds that can be broadband, narrowband or tonal, brief or 20 

prolonged, continuous or intermittent) and typically do not have a high peak sound 21 
pressure with rapid rise/decay time that impulsive sounds do (ANSI 1995; NIOSH 1998). 22 

  23 
Note: The term “impulsive” in this document relates specifically to NIHL and specifies the physical 24 
characteristics of an impulsive sound source, which likely gives them a higher potential to cause 25 
auditory TTS/AUD INJ. This definition captures how these sound types may be more likely to 26 
affect auditory physiology and is not meant to reflect categorizations associated with behavioral 27 
disturbance. 28 
 29 
2.3.2 Metrics  30 
 31 
2.3.2.1 Weighted Cumulative Sound Exposure Level (SEL24h) Metric 32 
 33 
The weighted SEL24h metric takes into account both received level and duration of exposure 34 
(ANSI 2013), both factors that contribute to NIHL. Often this metric is normalized to a single 35 
sound exposure of one second28. NMFS intends for the weighted SEL24h metric to account for the 36 
accumulated exposure (i.e., weighted SEL24h cumulative exposure over the duration of the activity 37 
within a 24-h period).  38 
 39 
The recommended application of the weighted SEL24h metric is for individual activities/sources 40 
(e.g., See NMFS Optional User Spreadsheet Tool). It currently is not intended for accumulating 41 
sound exposure from multiple activities occurring within the same area or over the same time or 42 
to estimate the impacts of those exposures to an animal occurring over various spatial or 43 
temporal scales. Current data available for deriving criteria using this metric are based on 44 
exposure to only a single source and may not be appropriate for situations where exposure to 45 
                                            
26 NMFS is aware that this publication recommends the use of kurtosis to quantify the impulsiveness of a sound source. 
 
27 If these definitions are unclear, consult with NMFS. Further, NMFS is aware that one of the criticisms of these 
definitions is that they lack quantitative descriptions to define many of the key terms. NMFS also is aware that kurtosis 
might be a valuable metric to help move toward a quantitative means of defining whether a sound is impulsive or not. This 
is something that may be explored as more data become available and in reality, sounds likely fall along a continuum 
between impulsive and non-impulsive (Guan et al. 2022; Guan and Brookens 2023; Zeddies et al. 2023).  
 
28 While ANSI 1995 specifies a reference duration of one second, ISO 2017 indicates that the time duration be specified 
with this metric. Specifiyng the duration associated with is metric is essential, since it can be computed for a single signal 
or multiple signals. Note: this metric is referened to µPa2s, while SPLs are referenced to µPa and are thus, not directly 
comparable.  



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

29 

multiple sources is occurring. As more data become available, the use of this metric can be re-1 
evaluated, in terms of appropriateness, for application of exposure from multiple activities 2 
occurring in space and time. NMFS is open to exploring ways to better analyze multiple sound 3 
sources (simultaneous, concurrent, etc.), especially in terms of our optional User Spreadsheet 4 
Tool.  5 
 6 
Equal Energy Hypothesis 7 
 8 
One assumption made when applying the weighted SEL24h metric is the equal energy hypothesis 9 
(EEH), where it is assumed that sounds of equal SEL24h produce an equal risk for hearing loss 10 
(i.e., if the weighted SEL24h of two sources are similar, a sound from a lower level source with a 11 
longer exposure duration may have similar risks compared to a shorter duration exposure from a 12 
higher level source). As has been shown to be the case with humans and terrestrial mammals 13 
(Henderson et al. 1991), the EEH does not always accurately describe all exposure situations for 14 
marine mammals due the inherent complexity of predicting TSs (e.g., Kastak et al. 2007; Mooney 15 
et al. 2009a; Mooney et al. 2009b; Finneran et al. 2010a; Finneran et al. 2010b; Finneran and 16 
Schlundt 2010; Kastelein et al. 2012b; Kastelein et al. 2013b; Kastelein et al. 2014a; Kastelein et 17 
al. 2014b; Popov et al. 2014; Finneran 2015; Kastelein et al. 2015b; Kastelein et al. 2016; von 18 
Benda-Beckmann et al. 2022).  19 
 20 
Factors like sound level (e.g., overall level, sensation level, or level above background), duration, 21 
duty cycle (intermittent versus continuous exposure; potential recovery between intermittent 22 
periods), number of transient components (short duration and high amplitude), and/or frequency 23 
(especially in relation to hearing sensitivity) also are often important factors associated with TS 24 
(e.g., Buck et al. 1984; Clark et al. 1987; Ward 1991; Lataye and Campo 1996). This is especially 25 
the case for exposure to impulsive sound sources (Danielson et al. 1991; Henderson et al. 1991; 26 
Hamernik et al. 2003), which is why criteria in this Updated Technical Guidance are expressed as 27 
a PK SPL metric as well (see next section). However, in many cases the EEH approach functions 28 
reasonably well as a first-order approximation, especially for higher-level, short-duration sound 29 
exposures such as those that are most likely to result in TTS in marine mammals29 (Finneran 30 
2015). Additionally, no currently supported alternative method to accumulate exposure is 31 
available. If alternative methods become available, they can be evaluated and considered when 32 
the Updated Technical Guidance is updated. 33 
 34 
Recommended Accumulation Period  35 
 36 
To apply the weighted SEL24h metric, a specified accumulation period is needed (i.e. 24-h). 37 
Generally, it is predicted that most receivers will minimize the amount of time they remain in the 38 
closest ranges to a sound source/activity. Exposures at the closest point of approach are the 39 
primary exposures contributing to a receiver’s accumulated level (Gedamke et al. 2011). 40 
Additionally, several important factors determine the likelihood and duration overwhich a receiver 41 
is expected to be in close proximity to a sound source (i.e., overlap in space and time between 42 
the source and receiver). For example, accumulation time for fast moving (relative to the receiver) 43 
mobile sources is driven primarily by the characteristics of the source (i.e., speed, duty cycle). 44 
Conversely, for stationary sources, accumulation time is driven primarily by the characteristics of 45 
the receiver (i.e., swim speed and site fidelity associated with exposure period). NMFS 46 
recommends a maximum baseline accumulation period of 24 hours, but acknowledges that there 47 
may be specific exposure situations where this accumulation period requires adjustment (e.g., if 48 
activity lasts less than 24 hours or for situations where receivers are predicted to experience 49 
unusually long exposure durations30). 50 
                                            
29 When possible, it is valuable for action proponents to indicate the exposure conditions under which these criteria are 
likely to be exceeded. 
 
30 For example, where a resident population could be found in a small and/or confined area (Ferguson et al. 2015) and/or 
exposed to a long-duration activity with a loud sound source, or where a continuous stationery activity is nearby an area 
where marine mammals congregate, like a pinniped pupping beach. 
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After sound exposure ceases or between successive sound exposures, the potential for recovery 1 
from hearing loss exists, with AUD INJ resulting in incomplete recovery and TTS resulting in 2 
complete recovery. Predicting recovery from sound exposure can be complicated. Currently, 3 
recovery in wild marine mammals cannot be accurately quantified. However, Finneran et al. 4 
(2010a) and Finneran and Schlundt (2013) proposed a model that approximates recovery in 5 
bottlenose dolphins. The applicability of this model to other species and other exposure 6 
conditions has yet to be determined. For the Updated Technical Guidance’s criteria, NMFS 7 
assumes for intermittent, repeated exposure that there is no recovery between subsequent 8 
exposures, although it has been demonstrated in terrestrial mammals (Clark et al. 1987; Ward 9 
1991) and more recently in a marine mammal studies (Finneran et al. 2010b; Kastelein et al. 10 
2014a; Kastelein et al. 2015b), that there is a reduction in damage and hearing loss with 11 
intermittent exposures. 12 
 13 
Criteria in this Updated Technical Guidance (i.e., expressed as weighted SEL24h) take into 14 
account the duration, as well as level (dB) of exposure. NMFS recognizes that accounting for 15 
duration of exposure, although supported by the scientific literature, adds a factor, as far as 16 
application of this metric to real-world activities. 17 
 18 
NMFS does not provide specifications necessary to perform exposure modeling and relies on the 19 
action proponent to determine the model that best represents their activity. However, as an 20 
alternative option, NMFS provides a simple means of approximating exposure for action 21 
proponents that are unable to apply various factors into their model (See NMFS Optional User 22 
Spreadsheet Tool).  23 
 24 
2.3.2.2 Peak Sound Pressure Level (PK SPL) Metric31 25 
 26 
Sound exposure containing transient components (e.g., short duration and high amplitude; 27 
impulsive sounds) can create a greater risk of causing direct mechanical fatigue to the inner ear 28 
(as opposed to strictly metabolic) compared to sounds that are strictly non-impulsive (Henderson 29 
and Hamernik 1986; Levine et al. 1998; Henderson et al. 2008). Often the risk of damage from 30 
these transient components does not depend on the duration of exposure. This is the concept of 31 
“critical level,” where damage switches from being primarily metabolic to more mechanical and 32 
the short duration of the impulse can be less than the ear’s integration time, leading to the 33 
potential to damage beyond the level the ear can perceive (Akay 1978).  34 
 35 
Human noise standards recognize and provide separate criteria for impulsive sound sources 36 
using the PK SPL metric (Occupational Safety and Health Administration (OSHA) 29 CFR 37 
1910.95; Starck et al. 2003). Thus, weighted SEL24h is not an appropriate metric to capture all the 38 
effects of impulsive sounds (i.e., it often violates EEH; NIOSH 1998), which is why instantaneous 39 
PK SPL has also been chosen as part of NMFS’s dual metric criteria for impulsive sounds.32 40 
Auditory weighting is not considered appropriate with the PK SPL metric, as direct mechanical 41 
damage associated with sounds having high peak sound pressures typically does not strictly 42 
reflect the frequencies an individual species hears best (Ward 1962; Saunders et al. 1985; ANSI 43 
1986; DoD 2004; OSHA 29 CFR 1910.95). Thus, this Updated Technical Guidance recommends 44 
that the PK SPL criteria be considered unweighted/flat-weighted within the generalized hearing 45 
range of marine mammals (i.e., 7 Hz to 165 kHz). 46 
 47 
                                            
31 Note: Do not confuse PK SPL with maximum RMS SPL (See Glossary).  
 
32 For non-impulsive sounds, the weighted SEL24h criteria will likely result in the largest isopleth, compared to the PK SPL 
criteria. Thus, for the majority of non-impulsive sounds, the consideration of the PK SPL criteria is unnecessary. However, 
if a non-impulsive sound has the potential of exceeding the PK SPL criteria associated with impulsive sounds, NMFS 
recommends these PK SPL criteria be considered for non-impulsive sources (i.e., dual metrics). Publications on how to 
estimate PK SPL from SEL for seismic airguns and offshore impact pile drivers may be useful to action proponents 
(Galindo-Romero et al. 2015; Lippert et al. 2015).  
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2.3.3 Development of AUD INJ Onset Criteria 1 
 2 
The development of the AUD INJ onset criteria consisted of the following procedure described in 3 
Finneran 2024 (Appendix A): 4 
 5 

1. Methodology to derive marine mammal auditory weighting functions (described in more 6 
detail in Section 2.2.3 and Appendix A). 7 
 8 

2. Identification and evaluation of currently available published data (Table 7) on hearing 9 
loss associated with sound exposure in marine mammals. 10 

• Because only published measurements exist on unexpected PTS in marine 11 
mammals (Reichmuth et al. 201933), TTS onset measurements and associated 12 
criteria were evaluated and summarized to extrapolate to AUD INJ onset criteria. 13 
 14 

• Studies divided into the following categories:  15 
o Temporal Characteristics: Impulsive and Non-impulsive 16 

 17 
o Marine Mammal Hearing Groups: LF Cetaceans, HF Cetaceans, VHF 18 

Cetaceans, PW Pinnipeds, OW Pinniped, PA Pinnipeds, and OA 19 
Pinnipeds 20 

 21 
3. Determination of TTS onset criteria by individual (RLs, in both PK SPL and SEL24h 22 

metrics) based on methodology from Finneran 2024 for impulsive and non-impulsive 23 
sounds (Full detail in Appendix A).  24 
 25 

• Non-impulsive sounds: 26 
o Only TTS data from behavioral studies were used, since studies using 27 

AEP methodology typically result in larger thresholds shifts (e.g., up to 28 
10 dB difference, Finneran et al. 2007a) and are considered to be non-29 
representative (as illustrated in Appendix A). 30 
 31 

o TTS onset derived on a per individual basis by combining available data 32 
to create a single TTS growth curve (e.g., dB TTS/dB noise) by 33 
frequency as a function of SEL24h. 34 

 35 
 36 
Table 7:  Available underwater and in-air marine mammal threshold shift studies. 37 

 38 
References in  Chronological Order 
(new references added for Updated 
Technical Guidance are in italics) 

Sound Source 
(sound source category) 

Species  
(number of individuals^, 
hearing group) 

UNDERWATER   

Kastak et al. 1999 
Octave-band noise (non-
impulsive) 

California sea lion (1, OW); 
northern elephant seal (1, 
PW); harbor seal (1, PW) 

Finneran et al. 2000 Explosion simulator 
(impulsive)* 

Bottlenose dolphin (2, HF); 
beluga (1, HF) 

Schlundt et al. 2000 Tones (non-impulsive) Bottlenose dolphin (5, HF); 
beluga (2, HF) 

Finneran et al. 2002 Seismic watergun 
(impulsive) 

Bottlenose dolphin (1, HF); 
beluga (1, HF) 

                                            
33 Reichmuth et al. 2019 reported a PTS of 8 dB at 5.8 kHz in a harbor seal (PW) after exposure to a 4.1 kHz tone with 
cumulative SEL exposure of 199 dB (unweighted). Although these data are not suitable for directly deriving AUD INJ 
criteria, they provide an opportunity to compare the resulting AUD INJ criteria value to actual PTS data. Note: The PTS 
onset criteria for PW pinnipeds is lower than the level (195 dB SEL24h) that resulted in PTS in Reichmuth et al. 2019. 
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References in  Chronological Order 
(new references added for Updated 
Technical Guidance are in italics) 

Sound Source 
(sound source category) 

Species  
(number of individuals^, 
hearing group) 

Finneran et al. 2003 Arc-gap transducer 
(impulsive)* 

California sea lion (2, OW) 

Nachtigall et al. 2003 Octave-band noise (non-
impulsive) 

Bottlenose dolphin (1, HF) 

Nachtigall et al. 2004 Octave-band noise (non-
impulsive) 

Bottlenose dolphin (1, HF) 

Finneran et al. 2005a Tones (non-impulsive) Bottlenose dolphin (2, HF) 

Kastak et al. 2005 
Octave-band noise (non-
impulsive) 

California sea lion (1, OW); 
northern elephant seal (1, 
PW); harbor seal (1, PW) 

Finneran et al. 2007a Tones (non-impulsive) Bottlenose dolphin (1, HF) 

Lucke et al. 2009 Single airgun (impulsive) Harbor porpoise (1, VHF) 

Mooney et al. 2009a Octave-band noise (non-
impulsive) Bottlenose dolphin (1, HF) 

Mooney et al. 2009b Mid-frequency sonar (non-
impulsive) Bottlenose dolphin (1, HF) 

Finneran et al. 2010a Tones (non-impulsive) Bottlenose dolphin (2, HF) 

Finneran et al. 2010b Tones (non-impulsive) Bottlenose dolphin (1, HF) 

Finneran and Schlundt 2010 Tones (non-impulsive) Bottlenose dolphin (1, HF) 

Popov et al. 2011a ½ octave band noise (non-
impulsive) 

Yangtze finless porpoise (2, 
VHF) 

Popov et al. 2011b ½ octave band noise (non-
impulsive) Beluga (1, HF) 

Kastelein et al. 2012a Octave-band noise (non-
impulsive) Harbor seal (2, PW) 

Kastelein et al. 2012b Octave-band noise (non-
impulsive) Harbor porpoise (1, VHF) 

Finneran and Schlundt 2013 Tones (non-impulsive) Bottlenose dolphin (2, HF) 

Popov et al. 2013 ½ -octave band noise (non-
impulsive) Beluga (2, HF) 

Kastelein et al. 2013a Octave-band noise (non-
impulsive) Harbor seal (1, PW) 

Kastelein et al. 2013b Tone (non-impulsive) Harbor porpoise (1, VHF) 

Popov et al. 2014 ½ octave band noise (non-
impulsive) Beluga (2, HF) 

Kastelein et al. 2014a 1-2 kHz sonar (non-
impulsive) Harbor porpoise (1, VHF) 

Kastelein et al. 2014b 6.5 kHz tone (non-impulsive) Harbor porpoise (1, VHF) 

Kastelein et al. 2015a Impact pile driving 
(impulsive)* Harbor porpoise (1, VHF) 

Kastelein et al. 2015b 6-7 kHz sweeps (non-
impulsive) Harbor porpoise (1, VHF) 

Finneran et al. 2015 Single airgun producing 
multiple shots (impulsive)* Bottlenose dolphin (3, HF) 

Popov et al. 2015 ½ octave band noise (non-
impulsive) Beluga (1, HF) 

Kastelein et al. 2016 Impact pile driving 
(impulsive)* Harbor porpoise (2, VHF) 
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References in  Chronological Order 
(new references added for Updated 
Technical Guidance are in italics) 

Sound Source 
(sound source category) 

Species  
(number of individuals^, 
hearing group) 

Reichmuth et al. 2016 Single airgun (impulsive)* Ringed seals (2, PW); 
Spotted seals (2, PW) 

Popov et al. 2017 ½ octave band noise (non-
impulsive) Beluga (1, HF) 

Kastelein et al. 2017b 
Simultaneous airguns 
producing multiple shots 
(impulsive)* 

Harbor porpoise (1, VHF) 

Kastelein et al. 2017c 3.5-4.1 kHz sonar (non-
impulsive) Harbor porpoise (2, VHF) 

Kastelein et al. 2018 Impact pile driving 
(impulsive)* Harbor seal (2, PW) 

Kastelein et al. 2019a 6.5 kHz tone (non-impulsive) Harbor seal (2, PW) 

Kastelein et al. 2019b 1/6 octave noise at 16 kHz 
(non-impulsive) Harbor porpoise (2) 

Kastelein et al. 2019c 1/6 octave noise at 32 kHz 
(non-impulsive) Harbor porpoise (2, VHF) 

Reichmuth et al. 2019 4.1 kHz tone (non-
impulsive)+ Harbor seal (1, PW) 

Kastelein et al. 2019d 1/6 octave noise at 16 kHz 
(non-impulsive) Harbor seal (2, PW) 

Schaffeld et al. 2019 Artificial ADD with peak at 
14 kHz (non-impulsive) Harbor porpoise (1, VHF) 

Kastelein et al. 2020a 1/6 octave noise at 63 kHz 
(non-impulsive) Harbor porpoise (2, VHF) 

 
Kastelein et al. 2020b 

1/6 octave noise at 32 kHz 
(non-impulsive) Harbor seal (2. PW) 

Kastelein et al. 2020c 1/6 octave noise at 40 kHz 
(non-impulsive) Harbor seal (2, PW) 

Kastelein et al. 2020d 1/6 octave noise at 88.4 kHz 
(non-impulsive) Harbor porpoise (1, VHF) 

Kastelein et al. 2020e 1/6 octave noise at 1.5 kHz 
and 6.5 kHz (non-impulsive) Harbor porpoise (1, VHF) 

Kastelein et al. 2020f 
Simultaneous airguns 
producing multiple shots 
(impulsive)* 

Harbor porpoise (1, VHF) 

Kastelein et al. 2020g 1/6 octave noise at 0.5, 1, 
and 2 kHz (non-impulsive) Harbor seal (2, PW) 

Sills et al. 2020b 
Single airgun producing 
single and multiple shots 
(impulsive) 

Bearded seal (1, PW) 

Kastelein et al. 2021a 1/6 octave noise at 0.5 (non-
impulsive) Harbor porpoise (1, VHF) 

Kastelein et al. 2021b 1/6 octave noise at 2 and 4 
kHz (non-impulsive) California sea lion (2, OW) 

Kastelein et al. 2022a 1/6 octave noise at 8 and 16 
kHz (non-impulsive) California sea lion (2, OW) 

Kastelein et al. 2022b 1/6 octave noise at 0.6 and 
1 kHz (non-impulsive) California sea lion (2, OW) 

Schaffeld et al. 2022 28 kHz acoustic flowmeter 
ping (non-impulsive) Harbor porpoise (1, VHF) 

Finneran et al. 2023a Tones (non-impulsive) Bottlenose dolphin (2, HF) 

Kastelein et al. 2024 (in prep) 1/6 octave noise at 32 and 
40 kHz (non-impulsive) California sea lion (2, OW) 

Mulsow et al. 2023 Narrowband (1/6-octave), 
10-ms noisebursts at 8 kHz Bottlenose dolphin (3, HF) 
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References in  Chronological Order 
(new references added for Updated 
Technical Guidance are in italics) 

Sound Source 
(sound source category) 

Species  
(number of individuals^, 
hearing group) 

(impulsive) 

IN-AIR   

Kastak et al. 2007 Octave-band noise (non-
impulsive) California sea lion (1, OA) 

Reichmuth et al. 2024 (in prep) Octave-band noise (non-
impulsive) Harbor seal (1, PA) 

^Note: Some individuals have been used in multiple studies.  1 
*No incidents of temporary threshold shift were recorded in study. 2 
+PTS was reported in this study, as a result of repeated TTS. 3 
 4 

o TTS onset was defined as the SEL24h value from the growth curve 5 
interpolated at a value of TTS = 6 dB. Only datasets where data were 6 
available with a threshold shift (TS) above and below 6 dB were used to 7 
define TTS onset (i.e., extrapolation was not performed on datasets not 8 
meeting this criterion).  9 

 10 
o Interpolation was used to estimate SEL cum necessary to induce 6 dB of 11 

TTS by hearing group (Appendix A, Figure A9). The mean SEL24 for TTS 12 
onset was then computed at each frequency for which more than one 13 
data point existed. Finally, some mean TTS onset data points for groups 14 
VHF cetaceans and PW pinnipeds (represented with an open circle in 15 
Fig. A10) were excluded from the fitting process. This was done as a 16 
precautionary measure, where new data indicate higher TTS onset 17 
values than those predicted by the previous version of the Technical 18 
Guidance. 19 

 20 
o Finally, weighted criteria for TTS onset were determined by the minimum 21 

value of the auditory exposure function (Equation 2), which is 22 
mathematically equivalent to K + C (Table 8). 23 

 24 
Table 8:  TTS onset criteria for non-impulsive sounds. 25 
 26 

Hearing Group C 
(dB) 

K 
(dB) 

Weighted TTS 
onset acoustic 

criteria 
 (SEL24h)* 

UNDERWATER    
Low-frequency (LF) cetaceans 0.12 177 177 dB 
High-frequency (HF) cetaceans 0.32 181 181 dB 
Very High-frequency (VHF) 
cetaceans 0.91 160 161 dB 

Phocid pinnipeds (PW) 0.29 175 175 dB 
Otariid pinnipeds (OW) 1.37 178 179 dB 
IN-AIR    
Phocid pinnipeds (PA) 0.83 133 134 dB 
Otariid pinnipeds (OA) 1.18 156 157 dB 

* Determined from minimum value of auditory exposure function and the weighting function at its peak (i.e., 27 
mathematically equivalent to K + C).  28 

 29 
 30 
 31 
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• Impulsive sounds:  1 
o Available TTS data for impulsive sources were weighted based on 2 

auditory weighting functions for the appropriate hearing group (HF 3 
cetaceans, VHF cetaceans, and PW pinnipeds: Finneran et al. 2002; 4 
Lucke et al. 2009; Sills et al. 2020b; Mulsow et al. 2023). 5 
 6 

o For hearing groups, where impulsive TTS onset data did not exist, 7 
Finneran (2023) derived impulsive TTS onset criteria using the 8 
relationship between non-impulsive TTS onset criteria and impulsive TTS 9 
onset criteria for HF cetaceans, VHF cetaceans, and PW pinnipeds (i.e., 10 
similar to what was presented in previous version of the Technical 11 
Guidance). Using the mean of these data resulted in an 9.2 dB 12 
relationship, which was used as a surrogate for the other hearing groups 13 
(i.e., non-impulsive TTS criteria was 9.2 dB higher than impulsive TTS 14 
criteria). 15 

 16 
o To estimate PK onset criteria, dynamic range methodology34 was used 17 

(as with the previous Technical Guidance). The dynamic range 18 
methodology was defined as the difference (in dB) between the 19 
impulsive noise, PK TTS onset and the hearing threshold at f0 for hearing 20 
groups for which data are available (HF and VHF cetaceans). For HF 21 
and VHF cetaceans, the dynamic ranges are 173 and 147 dB, 22 
respectively (mean, median = 160 dB). Therefore, for the remaining 23 
hearing groups, the PK TTS criteria were estimated by adding 160 dB to 24 
the hearing threshold at f0. 25 

 26 
4. Extrapolation for AUD INJ onset criteria (in both PK SPL and SEL metrics) based on data 27 

from humans and terrestrial mammals, with the assumption that the mechanisms 28 
associated with noise-induced TS in marine mammals is similar, if not identical, to that 29 
recorded in terrestrial mammals.  30 

 31 
• Non-impulsive sounds: 32 

o AUD INJ onset criteria were estimated using TTS growth rates based on 33 
those marine mammal studies where 20 dB or more of a TS was 34 
induced. This was done to estimate more accurately AUD INJ onset, 35 
since using growth rates based on smaller TS are often shallower 36 
compared to those inducing greater TS (See Appendix A.3). 37 
 38 

o AUD INJ onset was derived using the same methodology as TTS onset, 39 
with AUD INJ onset defined as the SEL24h value from the fitted curve at a 40 
TTS of 40 dB. 41 

 42 
o Offset between TTS and AUD INJ onset criteria were examined and 43 

ranged from 9 to 52 dB (mean/median: 23/17 dB from available cetacean 44 
and pinniped data, n=12). Thus, based on these data, a conservative 20 45 
dB offset was chosen to estimate AUD INJ onset criteria from TTS onset 46 
criteria for non-impulsive sources (i.e., 20 dB was added to K to 47 
determine AUD INJ onset, assuming the shape of the AUD INJ auditory 48 
exposure function is identical to the TTS auditory exposure function for 49 
that hearing group).  50 
 51 

                                            
34 Dynamic range is used in human noise standards to define the PK SPL acoustic criteria for impulsive sounds (e.g., 140 
dB from OSHA 29 CFR 1910.95). For the purposes of this Updated Technical Guidance, the intent is to relate the 
threshold of audibility and TTS onset level, not the threshold of pain, as dynamic range is typically defined (Yost 2007). 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

36 

• Impulsive sounds: Based on limited available marine mammal impulsive data, the 1 
relationships previously derived in Southall et al. (2007, 2019; and used in 2 
previous version of the Technical Guidance), which relied upon terrestrial 3 
mammal growth rates (Henderson and Hamernik 1982; Henderson and 4 
Hamernik 1986; Price and Wansack 1989; Levine et al. 1998; Henderson et al. 5 
2008), was used to predict AUD INJ onset: 6 
 7 

o Resulting in an approximate 15 dB difference between TTS and AUD INJ 8 
onset criteria in the SEL24h metric. 9 
 10 

o Southall et al. (2007; 2019) recommended a 6 dB of TTS/dB of noise 11 
growth rate for PK SPL criteria. This recommendation was based on 12 
several factors, including ensuring that the PK SPL criteria did not 13 
unrealistically exceed the cavitation threshold of water. Resulting in an 14 
approximate 6 dB difference between TTS and AUD INJ onset criteria in 15 
the PK SPL metric. 16 

 17 
 18 

III. UPDATING ACOUSTIC TECHNICAL GUIDANCE AND CRITERIA 19 
 20 
Research on the effects of anthropogenic sound on marine mammals has increased dramatically 21 
in the last decade, as seen by the additional data available for this Updated Technical Guidance 22 
versus the previous version and will likely continue to increase in the future. As recommended 23 
(Tougaard et al. 2022), the Updated Technical Guidance will be reviewed periodically and 24 
updated as appropriate to reflect the compilation, interpretation, and synthesis of the scientific 25 
literature.  26 
 27 
NMFS’s initial approach for updating current criteria for protected marine species consisted of 28 
providing criteria for underwater and in-air AUD INJ onset for marine mammals via this document. 29 
As more data become available, technical guidance may be established for additional protected 30 
marine species, such as sea turtles and marine fishes. As with this document, public review and 31 
outside peer review will be integral to the process. 32 
 33 
3.1 PROCEDURE AND TIMELINE FOR FUTURE UPDATES TO THE TECHNICAL GUIDANCE 34 
 35 
NMFS will continue to monitor and evaluate new data as they become available and periodically 36 
convene staff from our various offices, regions, and science centers to revise the Updated 37 
Technical Guidance as appropriate (anticipating updates to occur on a three to five year cycle). In 38 
addition to evaluating new, relevant scientific studies, NMFS will also periodically re-examine 39 
basic concepts and definitions (e.g., hearing groups, AUD INJ and TTS, auditory weighting 40 
functions, impulsive/non-impulsive), appropriate metrics, temporal and spatial considerations, and 41 
other relevant topics. Updates will be posted at: https://www.fisheries.noaa.gov/national/marine-42 
mammal-protection/marine-mammal-acoustic-technical-guidance. 43 
 44 
Since the methodology for deriving composite audiograms and associated marine mammal 45 
auditory weighting functions, as well as AUD INJ and TTS criteria are data driven, any new 46 
information that becomes available has the potential to cause some amount of change for that 47 
specific hearing group but also other hearing groups, if they rely on surrogate data. It may not be 48 
feasible to make changes every time a new data point becomes available. Instead, NMFS will 49 
periodically examine new data and consider the impacts of those studies on the Updated 50 
Technical Guidance to determine what and when revisions/updates may be appropriate. At the 51 
same time, there may be special circumstances that merit evaluation of data on a more 52 

https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance
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accelerated timeline (e.g., LF cetacean data that could result in significant changes to the current 1 
Updated Technical Guidance35). 2 
 3 
 4 
 5 
 6 
 7 
  8 

                                            
35 NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on two 
minke whales during their third field season (2023) in Norway. These data have implications for not only the generalized 
hearing range for low-frequency cetaceans but also on their weighting function. However, at this time, no official results 
have been published. Furthermore, a fourth field season (2024) is proposed, where more data will likely be collected. 
Thus, it is premature for us to propose any changes to our current Updated Technical Guidance. However, mysticete 
hearing data is identified as a special circumstance that could merit re-evaluating the acoustic criteria in this document. 
Therefore, we anticipate that once the data from both field seasons are published, it will likely necessitate updating this 
document (i.e., likely after the data gathered in the summer 2024 field season and associated analysis are published). 
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APPENDIX A:  FINNERAN TECHNICAL REPORT 1 
 2 
The Finneran Technical Report (Finneran 2024), regarding methodology for deriving auditory 3 
weighting functions and thresholds for marine mammal species, is included for reference in 4 
Appendix A. NMFS has modified the contents of the Finneran Technical Report to reflect the 5 
marine mammal hearing groups depicted in our Updated Technical Guidance (main document), 6 
other than not removing reference to Sirenans (SI), which do not fall under NMFS’s jurisdiction.  7 
Additionally, NMFS has added “A” before Figures and Tables to denote Appendix A and be 8 
consistent with the other appendices in the Updated Technical Guidance. 9 
 10 
Some of the abbreviations within this Appendix may not reflect those used elsewhere in the 11 
Updated Technical Guidance. The following provides some “translations”: 12 
 13 

Term Updated Technical 
Guidance Appendix A 

Auditory injury AUD INJ INJ 
Otariid pinnipeds in-air OA OCA 
Otariid pinnipeds in water OW OCW 
Phocid pinnipeds in-air PA PCA 
Phocid pinnipeds underwater PW PCW 
Peak sound pressure level PK SPL Peak SPL 
Cumulative sound exposure level  SEL24h SEL 

 14 
 15 
Note:  16 

• Literature cited in this section are included at the end of this Appendix (i.e., not all 17 
references found in this Appendix are included in the Literature Cited for the Updated 18 
Technical Guidance).  19 
 20 

• Additionally, terminology, symbols, and abbreviations used in this appendix may not 21 
match those used elsewhere in the Updated Technical Guidance.  22 

 23 
• Finally, this document includes criteria for species that are not under NMFS’s jurisdiction 24 

(e.g., walrus, polar bears, manatees, dugongs, sea otters). 25 
 26 
 27 

  28 
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 1 

Marine mammal  2 

auditory weighting functions and 3 

exposure functions for 4 

US Navy Phase 4  5 

acoustic effects analyses 6 

 7 

James J. Finneran 8 
NIWC Pacific 9 
 10 

 26 FEB 2024 11 

 12 

 13 

 14 

 15 

 16 
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EXECUTIVE SUMMARY 1 
The US Navy conducts acoustic effects analyses to estimate the potential effects of Navy 2 
activities that introduce high-levels of sound or explosive energy into the marine environment. 3 
Acoustic effects analyses begin with mathematical modeling to predict the sound transmission 4 
patterns from Navy sources. These data are then coupled with marine species distribution and 5 
abundance data to determine the sound levels likely to be received by various marine species. 6 
Finally, received exposure levels are compared to acoustic impact criteria and thresholds to 7 
estimate the specific effects that animals exposed to Navy-generated sound may experience. 8 
This document describes the rationale and steps used to define criteria and numeric thresholds 9 
for predicting auditory effects on marine mammals exposed to non-impulsive acoustic sources 10 
(e.g., sonars and other active acoustic sources) and impulsive sources (e.g., explosives, pile 11 
driving, and air guns). Previous development of Navy acoustic impact criteria and thresholds 12 
occurred as part of Phase 2 (c. 2012) and Phase 3 (c. 2015) of the Navy’s Tactical Training 13 
Theater Assessment and Planning (TAP) Program. To remain consistent with prior terminology, 14 
the present criteria and thresholds are referred to as the “Phase 4” criteria and thresholds. Since 15 
the derivation of Phase 3 acoustic criteria and thresholds, new data have been obtained related 16 
to the effects of noise on marine mammal hearing. Therefore, for Phase 4, new criteria and 17 
thresholds for the onset of temporary hearing loss and the onset of auditory injury were 18 
developed utilizing all relevant, available data.  19 
 20 
Marine mammals were divided into eight groups for analysis: low-frequency cetaceans (group LF: 21 
mysticetes), high-frequency cetaceans (group HF: delphinids, monodonts, beaked whales, sperm 22 
whales), very high-frequency cetaceans (group VHF: phocoenids, river dolphins, pygmy/dwarf 23 
sperm whales), sirenians (group SI: manatees and dugongs), phocid carnivores in water and in 24 
air (groups PCW and PCA, respectively: true seals), and otariids and other non-phocid marine 25 
carnivores in water and air (groups OCW and OCA, respectively: sea lions, fur seals, walruses, 26 
sea otters, polar bears).  27 
 28 
For each group, a frequency-dependent weighting function and numeric thresholds for the onset 29 
of temporary threshold shift (TTS) and the onset of auditory injury (INJ) were estimated. The 30 
onset of TTS is defined as a TTS of 6 dB measured approximately 2–5 min after exposure. A TTS 31 
of 40 dB is used as a proxy for the onset of auditory injury; i.e., it is assumed that exposures 32 
beyond those capable of causing 40 dB of TTS have the potential to result in permanent 33 
threshold shift (PTS) or other auditory injury (e.g., loss of cochlear neuron synapses, even in the 34 
absence of PTS). Exposures just sufficient to cause TTS or INJ are denoted as “TTS onset” or 35 
“INJ onset” exposures. Onset levels are treated as step functions or “all-or-nothing” thresholds: 36 
exposures above the TTS or INJ onset level are assumed to always result in TTS or INJ, while 37 
exposures below the TTS or INJ onset level are assumed to not cause TTS or INJ. For non-38 
impulsive exposures, onset levels are specified in frequency-weighted sound exposure level 39 
(SEL); for impulsive exposures, dual metrics of weighted SEL and unweighted peak sound 40 
pressure level (PK) are used. 41 
 42 
Weighting function amplitudes (Fig. A.E-1) are specified using Eq. (E-1). Tables A.E-1 and A.E-2 43 
summarize the parameters necessary to calculate the weighting function amplitudes and the 44 
weighted threshold values, respectively.  45 
 46 

  (E-1) 47 

 48 
 49 

 50 
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 1 

 2 
 3 
Figure A.E-1.  Navy Phase 4 weighting functions for all species groups. Parameters 4 

required to generate the functions are provided in Table A.E-1. 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

42 

Table A.E-1.  Summary of function parameters for use in Eqs. (A.E-1) and (A.E-2) to 1 
generate Phase 4 weighting functions and exposure functions, 2 
respectively.  3 

 4 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
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Table A.E-2.  Summary of Phase 4 TTS/INJ thresholds*. SEL thresholds are in dB re 1 1 
μPa2s underwater and dB re (20 μPa)2s in air (groups OCA and PCA only). 2 
Peak SPL thresholds are in dB re 1 μPa underwater and dB re 20 μPa in air 3 
(groups OCA and PCA only). 4 

 5 

 6 
* NMFS added footnote: Thresholds are determined from minimum value of auditory exposure function and the 7 
weighting function at its peak (i.e., mathematically equivalent to K + C) in Table A-8. However, it should be noted that only 8 
rounded values are presented in this Table, so for HFC and OCW, impulsive SEL thresholds do not appear to equal K + C, 9 
but in actuality, they do.. 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
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To compare Phase 4 weighting functions and TTS/INJ SEL thresholds to those used in Phase 3, 1 
both the weighting function shape and the weighted threshold values must be considered; the 2 
weighted thresholds by themselves only indicate the TTS/INJ threshold at the most susceptible 3 
frequency (based on the relevant weighting function). In contrast, the TTS/INJ exposure functions 4 
incorporate both the shape of the weighting function and the weighted threshold value and 5 
provide the best means of comparing the frequency-dependent TTS/INJ thresholds for Phase 3 6 
and 4. Exposure functions are defined using Eq. (E-2).  7 
 8 

  (E-2) 9 

 10 
Figures A.E-2 and A.E-3 compare the TTS/INJ exposure functions for non-impulsive sounds 11 
(e.g., sonars) and impulsive sounds (e.g., explosions), respectively, used in Phase 3 and Phase 12 
4. Figures A.E-4 and A.E-5 compare exposure functions across species groups, for non-impulsive 13 
and impulsive exposures, respectively. Table A.E-3 compares the Phase 3 and 4 (unweighted) 14 
peak SPL thresholds for impulsive sounds. 15 
 16 

 17 
Figure A.E-2.  TTS and INJ exposure functions for sonars and other (non-impulsive) 18 

active acoustic sources. Heavy solid lines — Navy Phase 4 TTS exposure 19 
functions (Table A.E-1). Thin solid lines — Navy Phase 3 TTS exposure 20 
functions. Heavy dashed lines — Navy Phase 4 INJ exposure functions 21 
(Table A.E-1). Thin dashed lines — Navy Phase 3 INJ exposure functions.  22 

 23 
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 1 
Figure A.E-3.  TTS and INJ exposure functions for explosives, impact pile driving, air 2 

guns, and other impulsive sources. Heavy solid lines — Navy Phase 4 TTS 3 
exposure functions (Table A.E-1). Thin solid lines — Navy Phase 3 TTS 4 
exposure functions. Heavy dashed lines — Navy Phase 4 INJ exposure 5 
functions (Table  A.E-1). Thin dashed lines — Navy Phase 3 INJ exposure 6 
functions. 7 

 8 
 9 

 10 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

46 

 1 
Figure A.E-4.  Comparison of Navy Phase 4 TTS exposure functions for sonars and other 2 

(non-impulsive) active acoustic sources across species groups.  3 
 4 
 5 
 6 
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 1 
 2 

Figure A.E-5.  Comparison of Navy Phase 4 TTS exposure functions for explosives, 3 
impact pile driving, air guns, and other impulsive sources across species 4 
groups.  5 

 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

48 

Table A.E-3.  Comparison of Phase 3 and Phase 4 TTS/INJ peak SPL thresholds for 1 
explosives, impact pile driving, air guns, and other impulsive sources. Peak 2 
SPL thresholds are in dB re 1 μPa underwater and dB re 20 μPa in air 3 
(groups OCA and PCA only). 4 

 5 

 6 
 7 
 8 
The most significant differences between the Phase 3 and Phase 4 functions and thresholds 9 
include the following:  10 
 11 
(1) Group names were changed from Phase 3 to be consistent with Southall et al. (2019). 12 
Specifically, the Phase 3 mid-frequency (MF) cetacean group is now designated as the high-13 
frequency (HF) cetacean group, and the group previously designated as high-frequency (HF) 14 
cetaceans is now the very-high frequency (VHF) cetacean group. 15 
 16 
(2) For the HF group, Phase 4 onset TTS/INJ thresholds are lower compared to Phase 3 at 17 
frequencies below ~10 kHz. This is a result of new TTS onset data for dolphins at low frequencies 18 
(Finneran et al., 2022).  19 
 20 
(3) For the PCW group, new TTS data for harbor seals (Kastelein et al., 2020b; Kastelein et al., 21 
2020f) resulted in slightly lower TTS/INJ thresholds at high-frequencies compared to Phase 3. 22 
 23 
(4) For group OCW, new TTS data for California sea lions (Kastelein et al., 2021b; Kastelein et 24 
al., 2022b, a) resulted in significantly lower TTS/INJ thresholds compared to Phase 3. 25 
 26 
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1. INTRODUCTION 1 

1.1. OVERVIEW 2 
The US Navy conducts acoustic effects analyses to estimate the potential effects of Navy training 3 
and testing activities that introduce high-levels of sound or explosive energy into the marine 4 
environment. Acoustic effects analyses begin with mathematical modeling to predict the sound 5 
transmission patterns from Navy sources. These data are then coupled with marine species 6 
distribution and abundance data to determine sound levels likely to be received by various marine 7 
species. Finally, acoustic impact criteria and thresholds are applied to estimate the specific 8 
effects that animals exposed to Navy-generated sound may experience.  9 
 10 
This document describes the rationale and steps used to define numeric thresholds for predicting 11 
auditory effects on marine mammals exposed to active sonars, other (non-impulsive) active 12 
acoustic sources, explosives, pile driving, air guns, and other impulsive acoustic sources for Navy 13 
acoustic effects analyses. Previous development of Navy acoustic impact criteria and thresholds 14 
occurred as part of Phase 2 (c. 2012) and Phase 3 (c. 2015) of the Navy’s Tactical Training 15 
Theater Assessment and Planning (TAP) Program. To remain consistent with prior terminology, 16 
the present criteria and thresholds are referred to as the “Phase 4” criteria and thresholds.  17 
 18 
1.2. IMPULSE VERSUS. NON-IMPULSIVE NOISE 19 
When analyzing the auditory effects of noise exposure, it is often helpful to broadly categorize 20 
noise as either impulsive noise — noise with high peak sound pressure, short duration, and fast 21 
rise-time — or non-impulsive (i.e., steady-state) noise. When considering auditory effects, sonars, 22 
other coherent active sources, and vibratory pile driving are considered to be non-impulsive 23 
sources, while explosives, impact pile driving, and air guns are treated as impulsive sources. 24 
Note that the terms non-impulsive or steady-state do not necessarily imply long duration signals, 25 
only that the acoustic signal has sufficient duration to overcome starting transients and reach a 26 
steady-state condition.  27 
 28 
1.3. NOISE-INDUCED THRESHOLD SHIFTS AND AUDITORY INJURY 29 
Exposure to sound with sufficient duration and sound pressure level (SPL) may result in an 30 
elevated hearing threshold (i.e., a loss of hearing sensitivity), called a noise-induced threshold 31 
shift (NITS). If the hearing threshold eventually returns to normal, the NITS is called a temporary 32 
threshold shift (TTS); otherwise, if thresholds remain elevated after some extended period of 33 
time, the remaining NITS is called a permanent threshold shift (PTS). 34 
  35 
A variety of terrestrial and marine mammal data sources (e.g., Ward et al., 1958; Ward et al., 36 
1959; Ward, 1960; Miller et al., 1963; Kryter et al., 1966; Finneran et al., 2007; Kastelein et al., 37 
2013a) indicate that NITSs up to 40 to 50 dB, measured a few minutes after exposure, may be 38 
induced without PTS. Therefore, an exposure producing an initial TTS of 40 dB can be 39 
considered a conservative upper limit for reversibility and any additional exposure could result in 40 
some PTS. This means that 40 dB of TTS, measured a few minutes after exposure, can be used 41 
as a conservative estimate for the onset of PTS. 42 
 43 
In some cases, intense noise exposures have caused auditory injury (INJ, e.g., loss of cochlear 44 
neuron synapses), despite thresholds eventually returning to normal; i.e., it is possible to have 45 
INJ without a resulting PTS (e.g., Kujawa and Liberman, 2006, 2009; Kujawa, 2010; Fernandez et 46 
al., 2015; Ryan et al., 2016; Houser, 2021). In these situations, however, NITSs were 30–50 dB 47 
measured 24 h after the exposure; i.e., there is no evidence that an exposure resulting in < 40 dB 48 
TTS measured a few minutes after exposure can produce INJ. Therefore, an exposure producing 49 
40 dB of TTS, measured a few minutes after exposure, can also be used as an upper limit to 50 
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prevent INJ; i.e., it is assumed that exposures beyond those capable of causing 40 dB of TTS 1 
have the potential to result in INJ (which may or may not result in PTS).  2 
 3 
1.4. ONSET TTS AND ONSET INJ 4 
Navy thresholds for predicting auditory effects of sound on marine animals focus on defining 5 
thresholds for the onset of TTS and INJ (which includes, but is not limited to, PTS). In practice, it 6 
can be difficult to discern a “true” threshold elevation after noise exposure from typical variations 7 
in thresholds over time, therefore a TTS of 6 dB has been historically used to distinguish non-trivial 8 
amounts of TTS in marine mammals from fluctuations in threshold measurements that typically occur 9 
across test sessions (e.g., Ridgway et al., 1997; Schlundt et al., 2000; Southall et al., 2007; Southall 10 
et al., 2019). This is similar to the “standard threshold shift” concept applied to workplace hearing 11 
assessment (29 CFR 1910.95, 2008). Navy acoustic impact analyses therefore consider the onset of 12 
TTS to be 6 dB of TTS measured a few minutes (typ. 2–5 min) after exposure. Navy analyses 13 
assume that exposures resulting in a NITS ≥ 40 dB measured a few minutes after exposure may 14 
result in some amount of INJ and/or residual PTS. A TTS of 40 dB is therefore used as a proxy for 15 
the onset of INJ.  16 
 17 
Sound levels just-capable of resulting in TTS or INJ are referred to as “onset” levels; e.g., an 18 
exposure just-capable of producing TTS is referred to as the onset-TTS exposure. Onset levels 19 
are treated as step functions or “all-or-nothing” thresholds: exposures above the TTS or INJ onset 20 
level are assumed to always result in TTS or INJ, while exposures below the TTS or INJ onset 21 
level are assumed to not cause TTS or INJ. 22 
 23 
1.5. AUDITORY WEIGHTING FUNCTIONS  24 
Animals are not equally sensitive to noise at all frequencies. To capture the frequency-dependent 25 
nature of the effects of noise, US Navy acoustic impact analyses use auditory weighting 26 
functions. Auditory weighting functions are mathematical functions used to emphasize 27 
frequencies where animals are more susceptible to noise exposure and de-emphasize 28 
frequencies where animals are less susceptible. The functions may be thought of as frequency-29 
dependent filters that are applied to a noise exposure before a single, weighted sound level is 30 
calculated. The filters are normally “band-pass” in nature; i.e., the function amplitude resembles 31 
an inverted “U” when plotted versus frequency. The weighting function amplitude is approximately 32 
flat within a limited range of frequencies, called the “pass-band,” and declines at frequencies 33 
below and above the pass-band.  34 
 35 
1.6. PHASE 4 WEIGHTING FUNCTIONS AND TTS/INJ THRESHOLDS 36 
Weighting function derivation for Navy Phase 3 was consistent with the National Marine Fisheries 37 
Service Technical Guidance (National Marine Fisheries Service, 2016; Department of the Navy, 38 
2017; National Marine Fisheries Service, 2018). Marine mammal species were divided into 39 
groups for analysis. For each group, a frequency-dependent weighting function and numeric 40 
thresholds for the onset of TTS and INJ were derived from available data describing hearing 41 
abilities and effects of noise on marine mammal hearing. Measured or predicted auditory 42 
threshold data, as well as measured equal latency contours, were used to influence the weighting 43 
function shape for each group. For species groups for which TTS data were available, the 44 
weighting function parameters were adjusted to provide the best fit to the experimental data. 45 
Extrapolation methods were then used to derive parameters for the groups for which TTS data 46 
did not exist. 47 
 48 
Since the derivation of Phase 3 acoustic criteria and thresholds, new data have been obtained 49 
regarding marine mammal hearing and the effects of noise on marine mammal hearing (e.g., see 50 
Tougaard et al., 2022). As a result, new weighting functions and TTS/INJ thresholds have been 51 
developed for Phase 4. Derivation of the new criteria and thresholds followed the same general 52 
approach utilized in Phase 3; however, some changes were made to accommodate new data, 53 
simplify the methodology, and align methods with recommendations from Southall et al. (2019).  54 
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1.7. USE OF MEAN/MEDIAN 1 
At various steps during weighting function derivation, the central tendency of a dataset is needed. 2 
Since the underlying data are often limited, it can be difficult to identify whether the mean 3 
(average) value or median (50th percentile) value is the most appropriate estimate for the central 4 
tendency. Therefore, by convention, Phase 4 analyses utilize the mean value, unless there is 5 
evidence that the distribution of the underlying data is skewed (i.e., not normally distributed) or 6 
outliers exist. In these situations, the use of the median is specifically noted. 7 
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2. WEIGHTING FUNCTIONS AND EXPOSURE FUNCTIONS 1 
As in Phase 3, the Phase 4 auditory weighting function shapes are based on a generic band-pass 2 
filter defined by the equation 3 
 4 

, 5 

 (1) 6 
where W( f ) is the weighting function amplitude (in dB) at the frequency f (in kHz). During 7 
implementation, the weighting function defined by Eq. (1) is used in conjunction with weighted 8 
thresholds for TTS and INJ for non-impulsive and impulsive exposures, expressed in units of 9 
sound exposure level (SEL).  10 
 11 
For developing and visualizing the effects of the various weighting functions, it is helpful to invert 12 
Eq. (1), yielding 13 
 14 

, (2) 15 

 16 
where E( f ) is the acoustic exposure level as a function of frequency f, the parameters f1, f2, a, 17 
and b are identical to those in Eq. (1), and K is a constant. The function described by Eq. (2) has 18 
a “U-shape” similar to an audiogram or equal loudness/latency contour (Figs. 1 and 2, right 19 
panels). K is defined to set the minimum value of E( f ) to match the weighted threshold for the 20 
onset of TTS or INJ, for non-impulsive or impulsive exposures. Equation (2) therefore describes 21 
how the exposure level necessary to cause TTS or INJ varies with frequency. The function 22 
defined by Eq. (2) is therefore referred to as an exposure function, since the curve defines the 23 
acoustic exposure that equates to onset TTS or INJ as a function of frequency. There are four 24 
exposure functions (and thus four separate values for K) for each species group: non-impulsive 25 
exposure TTS and INJ, and impulsive exposure TTS and INJ.  26 
 27 
The shapes of the weighting function [Eq. (1)] and exposure function [Eq. (2)] are defined by the 28 
parameters C, K, f1, f2, a, and b (Figs. A.1 and A.2):  29 
 30 

C weighting function gain (dB). The value of C defines the vertical position of the 31 
weighting function. Changing the value of C shifts the function up/down. The value of 32 
C is often chosen to set the maximum amplitude of W to 0 dB (i.e., the value of C 33 
does not necessarily equal the peak amplitude of the curve). 34 

 35 
K exposure function gain (dB). The value of K defines the vertical position of the 36 

exposure function. Changing the value of K shifts the function up/down. The value of 37 
K is chosen to set the minimum amplitude of E to match the weighted threshold 38 
value. For each species group, separate values of K will exist for TTS (KTTS) and 39 
injury (KINJ) for non-impulsive and impulsive sounds. 40 

 41 
f1 low-frequency cutoff (kHz). The value of f1 defines the lower limit of the filter pass-42 

band; i.e., the lower frequency at which the weighting function amplitude begins to 43 
decline or “roll-off” from the flat, central portion of the curve. The specific amplitude at 44 
f1 depends on the value of a. Decreasing f1 will enlarge the pass-band of the function 45 
(the flat, central portion of the curve). 46 

 47 
f2 high-frequency cutoff (kHz). The value of f2 defines the upper limit of the filter pass-48 

band; i.e., the upper frequency at which the weighting function amplitude begins to 49 
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roll-off from the flat, central portion of the curve. The amplitude at f2 depends on the 1 
value of b. Increasing f2 will enlarge the pass-band of the function. 2 

 3 
a low-frequency exponent (dimensionless). The value of a defines the rate at which the 4 

weighting function amplitude declines with frequency at the lower frequencies. As 5 
frequency decreases, the change in weighting function amplitude becomes linear 6 
with the logarithm of frequency, with a slope of 20a dB/decade. Larger values of a 7 
result in lower weighting function amplitudes at f1 and steeper roll-offs at frequencies 8 
below f1.  9 

 10 
b high-frequency exponent (dimensionless). The value of b defines the rate at which 11 

the weighting function amplitude declines with frequency at the upper frequencies. As 12 
frequency increases, the change in weighting function amplitude becomes linear with 13 
the logarithm of frequency, with a slope of -20b dB/decade. Larger values of b result 14 
in lower weighting function amplitudes at f2 and steeper roll-offs at frequencies above 15 
f2. 16 

 17 
 18 

 19 
Figure A.1.  Examples of (left) weighting function amplitude described by Eq. (1) and 20 

(right) exposure function amplitude described by Eq. (2). The parameters f1 21 
and f2 specify the extent of the filter pass-band, while the exponents a and 22 
b control the rate of amplitude change below f1 and above f2, respectively. 23 
As the frequency decreases below f1 or above f2, the amplitude approaches 24 
linear-log behavior with a slope magnitude of 20a or 20b dB/decade, 25 
respectively. The constants C and K determine the vertical positions of the 26 
curves.  27 

 28 
 29 
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 1 
Figure A.2.  Influence of parameter values on the resulting shapes of the weighting 2 

functions (left) and exposure functions (right). The arrows indicate the 3 
direction of change when the designated parameter is increased.  4 
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3. METHODOLOGY TO DERIVE FUNCTION PARAMETERS 1 
Weighting and exposure functions are defined by selecting appropriate values for the parameters 2 
C, K, f1, f2, a, and b in Eqs. (1) and (2). Ideally, parameters for each group would be selected as 3 
those values resulting in the “best-fit” of Eq. (2) to experimental data describing the onset of 4 
TTS/INJ over a range of exposure frequencies, species, and individual subjects within that group. 5 
Data for the frequency-dependency of TTS in marine mammals exist, however they are limited at 6 
present, and there are no data showing frequency dependency of INJ in marine mammals. 7 
Therefore, in addition to TTS data, weighting and exposure function derivations also utilized 8 
auditory threshold measurements (audiograms), equal latency contours, and anatomical 9 
predictions of sensitivity.  10 
 11 
For Phase 4, marine mammal species were divided into eight groups based on auditory, 12 
ecological, and phylogenetic relationships among species and the medium (air or water) in which 13 
they could be exposed. For each group, exposure/weighting functions and weighted thresholds 14 
were derived for impulsive and non-impulsive exposures. For the species groups containing 15 
sufficient data, TTS exposure functions were directly fit to the TTS data. The relationships 16 
between the exposure functions and audiogram shapes for these groups were then used as a 17 
basis for extrapolation to the other groups. This extrapolation relied on an assumption that TTS 18 
exposure functions would resemble the audiogram, but would show less change with frequency 19 
compared to audiograms.  20 
 21 
Table A.1 lists the specific steps for function parameter derivation in Phase 4 and compares them 22 
to the steps used in Phase 3. 23 
 24 
  25 
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Table A.1.  Steps used to define weighting function and exposure function parameters 1 
in Eqs. (1) and (2) for Phase 3 and Phase 4.  2 

Step Phase 3 Phase 4 

1 Marine mammal species were divided into groups. 

2 For each group, a representative, composite audiogram was estimated. 

3 The exponent a was defined as the smaller of the low frequency slope from the 
audiogram and equal latency contour. 

4 The exponent b was set equal to two. The exponent b was set equal to five. 

5 

f1 and f2 were defined as the 
frequencies where composite 
audiogram thresholds were ΔT-dB 
above the lowest threshold.  
For groups with sufficient onset TTS 
data, the optimum value of ΔT was 
found by adjusting ΔT to best-fit Eq. 
(2) to the non-impulsive TTS onset 
data. This value of ΔT was used for 
the remaining groups. 
The parameter K was then adjusted to 
fit Eq. (2) to available or estimated 
TTS onset data. 

For groups with sufficient onset TTS data 
(delphinids, porpoises, otariids in water, and 
phocids in water), the parameters f1, f2, and K 
were adjusted to fit Eq. (2) to the non-impulsive 
TTS onset data. If the resulting exposure 
function bandwidth, defined as 10 dB above 
the minimum TTS onset value, did not meet or 
exceed that of the composite audiogram, f1 was 
decreased and/or f2 increased as necessary to 
ensure that the 10-dB bandwidth criterion was 
met.  
For the remaining groups, f1 and f2 were 
defined so the differences between the 
audiogram thresholds at f1 and f2 and the 
minimum threshold (ΔT1 and ΔT2, respectively) 
matched the median value of ΔT1 and mean 
value of ΔT2 for the delphinids, porpoises, 
otariids in water, and phocids in water in water. 
The parameter K was then adjusted to fit Eq. 
(2) to available or estimated TTS onset data. 

6 The non-impulsive, weighted TTS threshold was defined as the minimum of the TTS 
exposure function. 

7 The parameter C was defined to set the peak amplitude of the weighting function to zero.  

8 The non-impulsive, weighted INJ threshold was found by adding a constant value (20 
dB) to the weighted TTS thresholds.  

9 

For groups with impulse TTS onset data, weighted SEL and peak SPL TTS thresholds 
for explosives and other impulsive sources were obtained from the available impulse 
TTS data. Weighted SEL and peak SPL INJ thresholds were estimated from the onset 
TTS thresholds. For other groups, the weighted SEL thresholds were estimated using 
the relationship between the steady-state TTS weighted threshold and the impulse TTS 
weighted threshold for the groups with data. Peak SPL thresholds were estimated using 
the relationship between hearing thresholds and the impulse TTS peak SPL thresholds 
for the groups with data. 
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4. MARINE MAMMAL SPECIES GROUPS 1 
Marine mammals were divided into eight groups (Table A.2), with the same weighting function 2 
and TTS/INJ thresholds used for all species within a group. Species were grouped by considering 3 
their known or suspected audible frequency range, auditory sensitivity, ear anatomy, and acoustic 4 
ecology (i.e., how they use sound), as has been done previously (e.g., Ketten, 2000; Southall et 5 
al., 2007; Finneran and Jenkins, 2012; National Marine Fisheries Service, 2018; Southall et al., 6 
2019).  7 
 8 
4.1. LOW-FREQUENCY CETACEANS (GROUP LF) 9 
The LF cetacean group contains the mysticetes (baleen whales). Although there have been no 10 
direct measurements of hearing sensitivity in any mysticete, an audible frequency range of 11 
approximately 10 Hz to 30 kHz has been estimated from measured vocalization frequencies, 12 
observed reactions to playback of sounds, and anatomical analyses of the auditory system. A 13 
natural division may exist within the mysticete whales, with some species (e.g., blue, fin) having 14 
better low-frequency sensitivity and others (e.g., humpback, minke) having better sensitivity to 15 
higher frequencies; however, at present there is insufficient knowledge to justify separating 16 
species into multiple groups. Therefore, a single species group is used for all mysticetes.  17 
 18 
4.2. HIGH FREQUENCY CETACEANS (GROUP HF) 19 
The HF cetacean group contains most delphinid species (e.g., bottlenose dolphin, common 20 
dolphin, killer whale, pilot whale), monodonts (belugas, narwhals), beaked whales, and sperm 21 
whales (but not pygmy and dwarf sperm whales of the genus Kogia, which are treated as very 22 
high frequency species). Hearing sensitivity has been directly measured for several species 23 
within this group using psychophysical (behavioral) or auditory evoked potential (AEP) 24 
measurements.  25 
 26 
4.3. VERY HIGH FREQUENCY CETACEANS (GROUP VHF) 27 
The VHF cetacean group contains the porpoises, river dolphins, pygmy/dwarf sperm whales, 28 
Cephalorhynchus species, and some Lagenorhynchus species. Hearing sensitivity has been 29 
measured for several species within this group using behavioral or AEP measurements. VHF 30 
cetaceans generally possess a higher upper-frequency limit and better sensitivity at higher 31 
frequencies compared to the HF cetacean species. 32 
 33 
4.4. SIRENIANS (GROUP SI) 34 
The sirenian group contains manatees and dugongs. Behavioral and AEP threshold 35 
measurements for manatees have revealed lower upper-cutoff frequencies and lower sensitivities 36 
(higher thresholds) compared to the HF cetaceans.  37 
 38 
4.5. PHOCID CARNIVORES (GROUPS PCA, PCW) 39 
This group contains all earless seals or “true seals,” including all Arctic and Antarctic ice seals, 40 
harbor or common seals, gray seals and inland seals, elephant seals, and monk seals. Since 41 
these animals are amphibious, weighting functions and TTS/INJ thresholds are included for both 42 
airborne (group PCA) and underwater exposure (group PCW). Aerial and underwater hearing 43 
thresholds exist for some Northern Hemisphere species in this group. There is emerging 44 
evidence suggesting that a natural division may exist within the family Phocidae, with species 45 
within the subfamily Monachinae having lower hearing sensitivity and less susceptibility to noise 46 
compared to the subfamily Phocinae (Kastak et al., 2005; Sills et al., 2021); however, data exist 47 
from only single individuals from two Monachid species and there is insufficient knowledge to 48 
justify separation into two groups at this time.  49 
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4.6. OTARIIDS AND OTHER NON-PHOCID MARINE CARNIVORES (GROUPS OCA, OCW) 1 
This group contains all eared seals (fur seals and sea lions), walruses (Odobenidae), sea otters 2 
(Mustelidae), and polar bears (Ursidae). The division of marine carnivores by placing phocids in 3 
one group and all others into a second group was made after considering auditory anatomy and 4 
measured audiograms for the various species and noting the similarities between the non-phocid 5 
audiograms (see Fig. A.1-1, Appendix A.1). Aerial and underwater hearing thresholds exist for 6 
some Northern Hemisphere species in this group. Separate weighting functions and TTS/INJ 7 
thresholds are included for airborne (group OCA) and underwater exposure (group OCW). 8 
 9 
  10 
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Table A.2.  Marine mammal species group designations for Navy Phase 4 auditory 1 
weighting functions. 2 

Code Name Members 

LF Low frequency 
cetaceans 

Balaenidae (right and bowhead whales): Eubalaena spp., Balaena  
Balaenopteridae (rorquals): Balaenoptera spp., Megaptera 
Eschrichtiidae (gray whale): Eschrichtius 
Neobalenidae (pygmy right whale): Caperea 

HF High frequency 
cetaceans 

Physeteridae (sperm whale): Physeter 
Ziphiidae (beaked whales): Berardius spp., Hyperoodon spp., Indopacetus, 
Mesoplodon spp., Tasmacetus, Ziphius  
Delphinidae (killer whale, melon-headed whale, false/pygmy killer whale, 
pilot whales, some dolphin species): Orcinus, Delphinus, Feresa, Globicephala 
spp., Grampus, Lagenodelphis, Lagenorhynchus acutus, L. albirostris, L. 
obliquidens, L. obscurus, Lissodelphis spp., Orcaella spp., Peponocephala, 
Pseudorca, Sotalia spp., Sousa spp., Stenella spp., Steno, Tursiops spp. 

VHF Very high 
frequency 
cetaceans 

Delphinidae (some dolphin species): Cephalorhynchus spp.;  
Lagenorhynchus cruciger, L. austrailis 
Phocoenidae (porpoises): Neophocaena spp., Phocoena spp., Phocoenoides 
Iniidae (Amazon river dolphin): Inia 
Kogiidae(Pygmy/dwarf sperm whale): Kogia 
Lipotidae (Baiji): Lipotes 
Pontoporiidae (La Plata dolphin): Pontoporia 

SI Sirenians Trichechidae (manatees): Trichechus spp.  
Dugongidae (dugongs): Dugong 

OCW 
 
 
 

OCA 

Otariids and other 
non-phocid marine 
carnivores (water) 
 
Otariids and other 
non-phocid marine 
carnivores (air) 

Odobenidae (walrus): Odobenus 
Otariidae (fur seals and sea lions): Arctocephalus spp., Callorhinus, Eumetopias, 
Neophoca, Otaria, Phocarctos, Zalophus spp. 
Mustelidae (sea/marine otter): Enhydra, Lontra feline 
Ursidae (polar bear): Ursus maritimus 

PCW 
 

PCA 

Phocids (water) 
 
Phocids (air) 

Phocidae (true seals): Cystophora, Erignathus, Halichoerus, Histriophoca, 
Hydrurga, Leptonychotes, Lobodon, Mirounga spp., Monachus, Neomonachus, 
Ommatophoca, Pagophilus, Phoca spp., Pusa spp. 

 3 
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5. COMPOSITE AUDIOGRAMS 1 
Composite audiograms for each species group were determined by first searching the available 2 
literature for threshold data for the species of interest. For each group, all available AEP and 3 
psychophysical (behavioral) threshold data were initially examined. To derive the composite 4 
audiograms, the following rules were applied: 5 
 6 

1.  For all marine mammal groups except LF cetaceans, only behavioral (i.e., no 7 
AEP) data were used. Mammalian AEP thresholds are typically elevated from 8 
behavioral thresholds in a frequency-dependent manner, with increasing 9 
discrepancy between AEP and behavioral thresholds at the lower frequencies 10 
where there is a loss of phase synchrony in the neurological responses and a 11 
concomitant increase in measured AEP thresholds. The frequency-dependent 12 
relationship between the AEP and behavioral data is problematic for defining the 13 
audiogram slope at low frequencies, since the AEP data will systematically over-14 
estimate thresholds and therefore over-estimate the low-frequency slope of the 15 
audiogram.  16 
 17 
For LF cetaceans, for which no behavioral or AEP threshold data exist, hearing 18 
thresholds were estimated by synthesizing predictions from anatomical 19 
measurements and mathematical models of hearing, and animal vocalization 20 
frequencies (see Appendix A.2).  21 
 22 

2. Data from an individual animal were included only once at a particular frequency. 23 
If data from the same individual were available from multiple studies, typically the 24 
earlier published data were used, when the individual was younger and less likely 25 
to exhibit age-related hearing loss. In some cases, data judged to be more 26 
representative or of higher quality were used, or data at overlapping frequencies 27 
were averaged. These cases are noted in Tables A.1-1 and A.1-2 (Appendix 28 
A.1).  29 
 30 

3. Individuals with obvious high-frequency hearing loss for their species or aberrant 31 
audiograms (e.g., obvious notches or thresholds known to be elevated for that 32 
species due to auditory masking or hearing loss) were excluded. 33 
  34 

Table A.1-1 (Appendix A.1) lists the individual audiogram data ultimately used to construct the 35 
composite audiograms (for all species groups except the LF cetaceans). Table A.1-2 lists the 36 
data that were excluded, along with the rationale for exclusion. 37 
 38 
In contrast to Phase 3, where composite audiograms were derived using the original (absolute) 39 
threshold values and normalized threshold values, composite audiograms are only derived in 40 
Phase 4 using the actual threshold data (not normalized). Normalized audiograms are excluded 41 
in Phase 4 to simplify the analysis and to avoid inherent problems in normalizing datasets that do 42 
not contain the frequency region of best sensitivity.  43 
 44 
Combining individual datasets requires a common set of frequency values. Therefore, frequency 45 
values for each individual were replaced with frequencies spaced at 1/12-octave intervals, 46 
encompassing the range of frequencies present in the original data. Threshold values at the 1/12-47 
octave frequencies were obtained by linear-log interpolation (linear thresholds, logarithmic 48 
frequencies) between sequential data points. Figure A.3 shows an example of the interpolation 49 
process. 50 
 51 
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 1 
Figure A.3.  To ensure common frequencies across studies, threshold data for each 2 

study were interpolated onto a grid of frequencies, logarithmically spaced 3 
at 1/12-octave intervals.  4 

 5 
From these data, the median threshold value was calculated at each frequency and fit by the 6 
function 7 
 8 

, (3) 9 

 10 
where T( f ) is the threshold at frequency f, and T0, F1, F2, A, and B are fitting parameters. The 11 
median value was used to reduce the influence of outliers. The particular form of Eq. (3) was 12 
chosen to provide linear-log roll-off with variable slope at low frequencies and a steep rise at high 13 
frequencies. Equation (3) was fit to the median threshold data using the curve_fit function in the 14 
optimize module of the python package SciPy (Virtanen et al., 2020).  15 
 16 
For Phase 4, composite audiograms were derived using the median value of the individual 17 
threshold data (as in Phase 3). From a statistical perspective, it would be better to first compute 18 
the median threshold for each species, then compute the overall median value for each group 19 
from the species’ medians. This would prevent a species from being over-represented in the final 20 
median value. In practice, however, this approach is more sensitive to the quality of individual 21 
audiograms, especially when the number of species is small. This is illustrated in Figure A.1-2, 22 
which compares composite audiograms derived using the two methods.  23 
 24 
The resulting fitting parameters and goodness of fit values (R2) are provided in Table 3. Because 25 
of the large number and possible high dependency of fitting parameters, in some cases the 26 
specific fitting parameter values may not make physical sense (e.g., HF group F1 = 9910 kHz); 27 
the important point is how well the resulting curve fits the median threshold data. Equation (3) 28 
was also used to describe the shape of the estimated audiogram for the LF cetaceans, with the 29 
parameter values chosen to provide reasonable thresholds based on the limited available data 30 
regarding mysticete hearing (see Appendix A.2 for details). 31 
 32 
Figure A.4 shows the threshold data and composite audiograms based on the fitted curve for 33 
each species group. The composite audiograms for each species group are compared to each 34 
other in Fig. 5, and to the Phase 3 audiograms in Fig. A.6.  35 
 36 
From the composite audiograms, the frequency of lowest threshold, F0, and the slope at the lower 37 
frequencies (over a 3-octave span), were calculated (Tables A.3 and A.4).  38 
 39 
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Table A.3. Composite audiogram parameter values for use in Eq. (3). For all groups 1 
except LF cetaceans, values represent the best-fit parameters from fitting 2 
Eq. (3) to median values derived from experimental threshold data. For the 3 
LF cetaceans, parameter values for Eq. (3) were estimated as described in 4 
Appendix B. The parameter F0 is the frequency corresponding to the 5 
minimum threshold (Min Thresh). Min Thresh has units of dB re 1 μPa for 6 
underwater groups and dB re 20 μPa for in-air groups (OCA and PCA only). 7 

 8 

 9 
 10 
  11 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

63 

 1 

 2 
Figure A.4.  Thresholds and composite audiograms for the marine mammal species 3 

groups. Thin lines represent the threshold data from individual animals. 4 
Thick lines represent the Phase 4 composite audiograms. Thresholds are 5 
expressed in dB re 1 μPa for underwater data and dB re 20 μPa for in-air 6 
data (groups OCA and PCA only). Appendix A.1 lists the individual 7 
audiograms used to derive the composite functions. Derivation of the LF 8 
cetacean curve is described in Appendix A.2. 9 

  10 
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 1 
Figure A.5.  Comparison of Phase 3 and Phase 4 composite audiograms. Thresholds 2 

are expressed in dB re 1 μPa for underwater data and dB re 20 μPa for in-3 
air data (groups OCA and PCA only).  4 

 5 
 6 
 7 
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 1 
Figure A.6.  Composite audiograms for the various species groups underwater (upper) 2 

and in-air (lower). The thin (gray) lines in the upper panel represent ambient 3 
noise spectral density levels (referenced to the left ordinate, but in dB re 1 4 
μPa2/Hz) corresponding to the limits of prevailing noise (upper and lower 5 
traces) and various sea-state conditions, from 0.5 to 6 (National Research 6 
Council (NRC), 2003).  7 

 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
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Table A.4.  Frequency of best hearing (F0) and the magnitude of the low-frequency 1 
slope derived from composite audiograms (Aud. slope) and equal latency 2 
contours (Eq. lat. slope). Audiogram slopes were calculated across a 3 
frequency range of 3 octaves beginning with the lowest frequency present 4 
for each group. Equal latency slopes were calculated from the available 5 
equal latency contour data (Reichmuth, 2013; Wensveen et al., 2014; 6 
Mulsow et al., 2015).  7 

 8 

 9 
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6. TTS DATA REVIEW 1 

6.1. NON-IMPULSIVE (STEADY-STATE) EXPOSURES – TTS ONSET 2 
Figure A.7 shows the non-impulsive TTS data available for each marine mammal group. The 3 
symbol style indicates the amount of TTS produced by that combination of exposure frequency 4 
and SEL: open symbols, TTS < 6 dB; filled symbols, TTS ≥ 6 dB; transparency indicates the 5 
relative amount of TTS (less transparent means larger TTS).  6 
 7 

 8 
Figure A.7.  Summary of available TTS data for each marine mammal group. Open 9 

symbols indicate combinations of exposure frequency and SEL that 10 
resulted in < 6 dB of mean TTS. Filled symbols indicate combinations of 11 
exposure frequency and SEL that resulted in ≥ 6 dB of mean TTS. The 12 
transparency of each symbol indicates the relative amount of TTS; i.e., less 13 
transparent symbols indicate more TTS. Units for TTS onset are dB re 1 14 
µPa2s in water (groups HF, VHF, PCW, OCW) and re (20 µPa)2s in air 15 
(groups OCA, PCA).  16 

 17 
For weighting/exposure function derivation, the most critical data are TTS onset exposure levels 18 
as a function of exposure frequency — for species groups with sufficient data, the parameters in 19 
Eq. (2) are adjusted so the exposure function matches these TTS onset data. TTS onset values 20 
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are estimated from published literature by examining TTS as a function of SEL for various 1 
frequencies. As in Phase 3, only TTS data from psychophysical (behavioral) hearing tests were used 2 
(National Marine Fisheries Service, 2016; Department of the Navy, 2017; National Marine 3 
Fisheries Service, 2018; Southall et al., 2019).  4 
 5 
To determine TTS onset for each subject, the amount of TTS observed after exposures with 6 
different SPLs and durations (Figure 7) were combined to create a single TTS growth curve as a 7 
function of SEL. The use of (cumulative) SEL is a simplifying assumption to accommodate 8 
sounds of various SPLs, durations, and duty cycles. This is referred to as an “equal energy” 9 
approach, since SEL is related to the energy of the sound and this approach assumes exposures 10 
with equal SEL result in equal effects, regardless of the duration or duty cycle of the sound. It is 11 
well-known that the equal energy rule may over-estimate the effects of intermittent noise, since 12 
the quiet periods between noise exposures will allow some recovery of hearing compared to 13 
noise that is continuously present with the same total SEL (Ward, 1997). For continuous 14 
exposures with the same SEL but different durations, the exposure with the longer duration has 15 
often produced more TTS (e.g., Kastak et al., 2007; Mooney et al., 2009b; Finneran et al., 16 
2010b). Despite these limitations, the equal energy rule is still a useful concept because it 17 
includes the effects of both noise amplitude and duration when predicting auditory effects. SEL is 18 
a simple metric, allows the effects of multiple noise sources to be combined in a meaningful way, 19 
has physical significance, and is correlated with most TTS growth data reasonably well — in 20 
some cases even across relatively large ranges of exposure duration (see Finneran, 2015).  21 
Marine mammal TTS studies have shown that TTS generally increases with SEL in an 22 
accelerating fashion: At low exposure SELs, the amount of TTS is small and the growth curves 23 
have shallow slopes. At higher SELs, the growth curves generally become steeper and approach 24 
linear relationships with the noise SEL. Accordingly, most TTS growth data were fit with the 25 
function 26 
 27 

 , (4) 28 
 29 

where t is the amount of TTS, L is the SEL, and m1 and m2 are fitting parameters. This particular 30 
function has an increasing slope when L < m2 and approaches a linear relationship for L > m2 31 
(Maslen, 1981). The linear portion of the curve has a slope of m1/10 and an x-intercept of m2. 32 
Fitting was accomplished using the curve_fit function in the optimize module of the python 33 
package SciPy (Virtanen et al., 2020). 34 
 35 
Some TTS data do not fit the accelerating growth predicted by Eq. (4), but instead show some 36 
amount of growth followed by a plateau, where further increases in SEL do not result in 37 
increasing TTS (referred to as asymptotic threshold shift). These datasets were visually identified 38 
and fit instead with the function 39 
 40 

 , (5) 41 
 42 

where t is the amount of TTS, L is the SEL, and TF, p, and L0 are fitting parameters. This function 43 
has a value of zero when L << L0, then increases and asymptotically approaches TF when L >> 44 
L0. Fitting was done with the curve_fit function in the optimize module of the python package 45 
SciPy (Virtanen et al., 2020). 46 
 47 
After fitting Eq. (4) or (5) to the TTS growth data, the SEL necessary to induce 6 dB of TTS was 48 
determined. Extrapolation was not performed when estimating TTS onset; this means only data sets 49 
with exposures producing TTS both above and below 6 dB were used to estimate TTS onset.  50 
 51 
Figures A.3-1 to A.3-5 (Appendix A.3) show all behavioral TTS data to which growth curves 52 
defined by Eq. (4) or (5) could be fit. The TTS onset exposure values, growth rates, and 53 
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references to these data are provided in Tables A.3-1 to A.3-5. The resulting TTS onset SELs as 1 
functions of frequency are summarized in Figure A.8, with the Phase 3 composite audiograms 2 
and exposure functions for comparison. Figure A.9 also shows additional data not used for TTS 3 
onset determination, either because the data were from AEP measurements, or all TTSs were > 4 
6 dB (thus TTS onset could not be determined). 5 
 6 

 7 
Figure A.8.  SELs corresponding to TTS onset for each marine mammal species group, 8 

obtained from TTS growth functions (see Appendix C). Solid symbols 9 
indicate data that were available for Phase 3; open symbols indicate new 10 
data since Phase 3 analyses. Dashed line – Phase 3 composite audiogram. 11 
Dotted line – Phase 3 exposure function. Units for TTS onset are dB re 1 12 
µPa2s in water (groups HF, VHF, PCW, OCW) and re (20 µPa)2s in air 13 
(groups OCA, PCA).  14 

 15 
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 1 
Figure A.9.  SELs corresponding to TTS ≥ 6 dB for each marine mammal species group. 2 

Solid symbols indicate onset TTS data obtained by interpolation within TTS 3 
growth functions (Appendix C); open symbols indicate data with TTS ≥ 6 4 
dB, but for which TTS onset could not be determined. Dashed line – Phase 5 
3 composite audiogram. Dotted line – Phase 3 exposure function. Units for 6 
TTS onset are dB re 1 µPa2s in water (groups HF, VHF, PCW, OCW) and dB 7 
re (20 µPa)2s in air (groups OCA, PCA). 8 

 9 
For fitting the exposure function parameters in Eq. (2), the data shown in Fig. 8 were reduced to a 10 
single value at each frequency for each group (otherwise, some frequencies would exert more 11 
influence on the fitting process than others). This was accomplished by first identifying multiple 12 
data for the same animal at a single exposure frequency. This typically occurred when hearing was 13 
tested at multiple frequencies after an exposure, or exposures with different duty cycles were utilized. 14 
In these cases, only the single, lowest onset-TTS exposure level was utilized (the others were 15 
excluded from further analysis). Similarly, TTS onset data obtained from post-exposure testing at 16 
extended time periods (e.g., >5 min post-exposure) were eliminated from further analysis. The mean 17 
SEL for TTS onset was then computed at each frequency for which more than one data point 18 
existed. Figure A.10 shows the resulting mean onset TTS SELs versus exposure frequency for 19 
each group.  20 
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Finally, some mean TTS onset data points for groups VHF and PCW (represented with an open 1 
circle in Fig. A.10) were excluded from the fitting process. This was done as a precautionary 2 
measure, where new data indicate higher TTS onset values than those predicted by Phase 3, but 3 
uncertainties in the data suggest that some caution should be exercised: 4 
 5 

For VHF, new data suggest substantially higher onset TTS SELs at frequencies 6 
above ~10 kHz compared to the Phase 3 predictions, with high variability in the 7 
TTS onset data for harbor porpoises at 63 kHz (~40 dB difference in TTS onset 8 
for the two porpoises). Furthermore, the harbor porpoise behavioral TTS onset 9 
SELs are significantly higher than SELs resulting in large amounts (e.g., 23–45 10 
dB) of AEP TTS in Yangtze finless porpoise (see Fig. A.8). Although some 11 
differences in AEP/behavioral TTS data are expected, these large differences 12 
indicate that caution is warranted in adopting the high-frequency behavioral TTS 13 
data at the present time. For this reason, the VHF behavioral TTS onset data at 14 
frequencies > 10 kHz were not used during the exposure function fitting process.  15 
For PCW, new data below 2.5 kHz show significantly higher TTS onset 16 
compared to the Phase 3 predictions. It is surprising that the harbor seal TTS 17 
onset data at 1-2 kHz are ~10 dB higher than that of dolphins, given the better 18 
hearing sensitivity for seals at lower frequencies. The slope of the TTS data at 19 
low frequencies is also substantially higher than the audiogram slope (47 vs 33 20 
dB/dec); this is also unexpected: the increased spread of excitation within the 21 
cochlea at the high sound levels associated with TTS would be expected to make 22 
the TTS slope shallower than the audiogram slope, not steeper. There are also 23 
uncertainties regarding the effective exposure level for the seals, since the 24 
animals spent a significant amount of time at the water’s surface during the noise 25 
exposures, suggesting the animals may have behaviorally mitigated the 26 
exposure. Given these concerns and the limited nature of the data at present, 27 
harbor seal TTS onset data below 2.5 kHz were excluded from the Phase 4 fitting 28 
process.  29 
For PCA, substantially higher TTS onset was observed in the N. elephant seal 30 
compared to the harbor seal. These data fit emerging evidence suggesting that 31 
Monachinae have lower hearing sensitivity and less susceptibility to noise 32 
compared to Phocinae, and thus TTS onset for Monachinae would be too high 33 
for Phocinae. Therefore, the N. elephant seal data were excluded from the Phase 34 
4 fitting process.  35 
 36 

Note that even though these data are not directly used in the fitting process, they are still 37 
considered in evaluating the final exposure function (i.e., there is no question that TTS occurred, 38 
so the mean TTS onset SELs should be above the resulting exposure function). As additional 39 
data become available, the decision whether to include these data will be re-assessed. Future 40 
studies may increase confidence in these data and thus warrant their direct inclusion in the fitting 41 
process.  42 
 43 
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 1 
Figure A.10.  Mean TTS onset SELs for each species group as a function of exposure 2 

frequency. Open symbols indicate mean onset TTS data that were not used 3 
during the fitting process. The dotted line shows the Phase 3 exposure 4 
function. 5 

 6 
6.2. NON-IMPULSIVE (STEADY-STATE) EXPOSURES – INJ ONSET 7 
There has been one documented occurrence of PTS in a marine mammal after an intense noise 8 
exposure: Reichmuth et al. (2019) reported a PTS of 8 dB at 5.8 kHz in a harbor seal after 9 
exposure to a 4.1 kHz tone with (unweighted) SEL of 199 dB re 1 μPa2s. The initial TS (1 min 10 
post-exposure) was ~57 dB. Although these data are not suitable for directly deriving INJ 11 
thresholds, they provide an opportunity to compare the resulting INJ threshold value to actual 12 
PTS data.  13 
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Beyond Reichmuth et al. (2019), there are no direct data relating auditory injury to noise exposure 1 
in marine mammals, thus exposures producing 40 dB TTS were used as a proxy to estimate 2 
onset INJ. Since few marine mammal TTS studies have resulted in 40 dB of TTS, TTS growth 3 
curves were extrapolated to determine the SEL required for a TTS of 40 dB. To avoid over-4 
estimating INJ onset by using growth curves based on small amounts of TTS, where the growth 5 
rates are shallower than at higher amounts of TTS, extrapolation was only performed if the 6 
measured TTS exceeded 20 dB. From these growth curves, the SEL difference between TTS 7 
onset (6-dB TTS) and estimated INJ onset (40-dB TTS) was calculated (see Figs. A.3-1 to A.3-5, 8 
Tables A.3-1 to A.3-5). 9 
 10 
6.3. IMPULSIVE EXPOSURES 11 
Marine mammal TTS data from impulsive sources are limited to four studies with measured TTS 12 
of 6 dB or more (Table 5):  13 
 14 

Finneran et al. (2002) reported behaviorally measured TTSs of 6 and 7 dB in a 15 
beluga exposed to single impulses from a seismic water gun (unweighted SEL = 16 
186 dB re 1 μPa2s, peak SPL = 224 dB re 1 μPa).  17 
Lucke et al. (2009) reported AEP-measured TTS of 7 to 20 dB in a harbor 18 
porpoise exposed to single impulses from a seismic air gun (unweighted SEL 19 
165–166 dB re 1 μPa2s, peak SPL of 195 dB re 1 μPa). Note that the data from 20 
Lucke et al. (2009) are based on AEP measurements; however, they are used 21 
here because of the limited nature of the impulse TTS data for marine mammals 22 
and the likelihood that the VHF cetaceans are more susceptible than the HF 23 
cetaceans (i.e., use of the HF cetacean value is not appropriate). Based on the 24 
limited data, it is reasonable to assume that the exposures described by Lucke et 25 
al. (2009), which produced AEP-measured TTS of up to 20 dB, would have 26 
resulted in a behavioral TTS of at least 6 dB. 27 
Sills et al. (2020b) reported TTS of 6 dB in a bearded seal after exposure to four 28 
impulses from a seismic air gun (unweighted, single-impulse SEL of 185 dB re 1 29 
μPa2s or peak SPL of 203 dB re 1 μPa). Note that when the same individual was 30 
exposed to single impulses with the same peak SPL, no measurable mean TTS 31 
was obtained, therefore these data cannot be used to establish a peak SPL 32 
threshold.  33 
 34 
Mulsow et al. (2022) behaviorally measured TTS in three dolphins exposed to 35 
sequences of narrowband (1/6-octave), 10-ms noisebursts centered at 8 kHz 36 
(unweighted, single-impulse SEL ~160 dB re 1 μPa2s or peak SPL ~183 dB re 1 37 
μPa). Inter-pulse intervals ranged from 1.25 to 40 s and the number of impulses 38 
varied from 40 to 2560. Maximum mean TTS was 16 dB. At the same peak 39 
SPLs, some conditions (i.e., fewer impulses) produced no TTS, therefore these 40 
data cannot be used to establish a peak SPL threshold. 41 
 42 

The small reported amounts of TTS and/or the limited distribution of exposures prevent 43 
these data from being used to estimate INJ onset.  44 
 45 
Several impulsive noise exposure studies have also resulted in < 6 dB (behavioral) TTS (see 46 
Table A.5): 47 
 48 

HF: Finneran et al. (2000) exposed dolphins and belugas to single impulses from 49 
an “explosion simulator” (maximum unweighted SEL = 179 dB re 1 μPa2s, peak 50 
SPL = 217 dB re 1 μPa) and Finneran et al. (2015) exposed three dolphins to 51 
sequences of 10 impulses from a seismic air gun (maximum unweighted 52 
cumulative SEL = 193 to 195 dB re 1 μPa2s, peak SPL = 196 to 210 dB re 1 μPa) 53 
without measurable TTS.  54 
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VHF: Kastelein et al. (2015b) reported behaviorally measured mean TTS of 4 dB 1 
at 8 kHz and 2 dB at 4 kHz after a harbor porpoise was exposed to a series of 2 
impulsive sounds produced by broadcasting underwater recordings of impact pile 3 
driving strikes through underwater sound projectors (simulated impact pile 4 
driving). The exposure contained 2760 individual impulses presented at an 5 
interval of 1.3 s (total exposure time was 1 h). The average single-impulse, 6 
unweighted SEL was approximately 146 dB re 1 μPa2s and the cumulative 7 
(unweighted) SEL was approximately 180 dB re 1 μPa2s. Kastelein et al. (2016) 8 
observed behaviorally measured mean TTS up to 3 dB at 4 kHz and 5 dB at 8 9 
kHz after harbor porpoises were exposed to up to 16560 simulated impact pile 10 
strikes. The average single-impulse, unweighted SEL was approximately 145 dB 11 
re 1 μPa2s and the maximum cumulative (unweighted) SEL was approximately 12 
187 dB re 1 μPa2s. Kastelein et al. (2017c) measured mean TTS of 3–4 dB at 4 13 
kHz after a harbor porpoise was exposed to 10–20 impulses from a pair of 14 
seismic air guns. The average single-impulse, unweighted SEL was 15 
approximately 178 dB re 1 μPa2s, the maximum cumulative (unweighted) SEL 16 
was approximately 191 dB re 1 μPa2s, and the maximum peak SPL was 199 dB 17 
re 1 µPa. Subsequent testing with four airguns and cumulative SELs up to 199 18 
dB re 1 µPa2s produced maximum mean TTS of 3 dB (Kastelein et al., 2020g). 19 
OCW: Finneran et al. (2003) exposed two sea lions to single impulses from an 20 
arc-gap transducer with no measurable TTS (maximum unweighted SEL = 163 21 
dB re 1 μPa2s, peak SPL = 203 dB re 1 μPa).  22 
PCW: Reichmuth et al. (2016) exposed two spotted seals (Phoca largha) and two 23 
ringed seals (Pusa hispida) to single impulses from a 10 in3 sleeve air gun with 24 
no measurable TTS (maximum unweighted SEL = 181 dB re 1 μPa2s, peak SPL 25 
~ 203 dB re 1 μPa). Kastelein et al. (2018) exposed two harbor seals to 26 
simulated impact pile driving strikes with single-impulse, unweighted SEL ~151 27 
dB re 1 μPa2s, maximum cumulative (unweighted) SEL ~193 dB re 1 μPa2s, and 28 
maximum peak SPL ~176 dB re 1 µPa. The maximum observed TTS was 4 dB. 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
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Table A.5.  Summary of existing data for marine mammal TTS from impulsive sources. 1 
SEL values are in dB re 1 μPa2s. Peak SPL values are in dB re 1 μPa. 2 
Exposures with cumulative SEL associated with onset TTS are indicated by 3 
an asterisk in the “TTS onset, SEL” column. For these exposures, Cs – Ci is 4 
the difference between the onset TTS weighted SEL threshold for non-5 
impulsive and impulsive exposures. Exposures with peak SPL associated 6 
with onset TTS are indicated by an asterisk in the “TTS onset, peak SPL” 7 
column. For these exposures, “peak SPL dynamic range” indicates the 8 
difference (in dB) between the peak SPL TTS onset (in dB re 1 μPa) and the 9 
hearing threshold at f0 (in dB re 1 μPa). 10 

 11 

 12 
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7. TTS EXPOSURE FUNCTIONS FOR SONARS 1 

7.1. OVERVIEW 2 
Derivation of the parameters for the weighting/exposure functions consisted of two main steps: 3 
First, for groups with sufficient TTS onset data, the parameters K, a, b, f1, and f2 were determined. 4 
Then, extrapolation procedures were used to derive the exposure function shapes for the 5 
remaining groups. The specific steps are described in the following sections. 6 
 7 
7.2. LOW- AND HIGH-FREQUENCY EXPONENTS (A, B) 8 
As in Phase 3, the low-frequency exponent, a, was defined as a = s0/20, where s0 is the lower of 9 
the slope of the audiogram or equal latency curves (in dB/decade) at low frequencies (Table 4). 10 
This causes the weighting function slope to match the shallower slope of the audiogram or equal 11 
latency contours at low frequencies. This approach was used instead of directly using the low-12 
frequency slope of the TTS onset data because of the limited number of data points available for 13 
TTS onset at low frequencies compared to the audiogram data (e.g., VHF, PCW, OCW) and/or 14 
weak fits to the data (e.g., HF).  15 
 16 
The high-frequency exponent, b, was fixed at b = 5, which is higher than that used in the Phase 3 17 
functions (b=2). The value was increased to better fit the OCW function without substantially 18 
affecting the other group fits.  19 
 20 
7.3. FREQUENCY CUTOFFS (F1, F2) AND GAIN PARAMETER (K) 21 
For groups HF, VHF, OCW, and PCW, nonlinear regression was used to find values of K, f1, and 22 
f2 to best-fit Eq. (2) to the onset TTS data. Nonlinear regression was performed using the 23 
curve_fit function in the optimize module of the python package SciPy (Virtanen et al., 2020). For 24 
some datasets, Eq. (2) can exhibit high dependency among the parameters, resulting in small 25 
changes in the function despite large changes in parameter values. This can cause problems in 26 
extrapolating to the other groups. Therefore, the optimization process was constrained so that fL ≤ 27 
f1 ≤ F0 and F0 ≤ f2 ≤ fH, where fL and fH are the frequencies below and above F0 (the composite 28 
audiogram frequency of best hearing), respectively, where the composite audiogram thresholds 29 
were 40 dB above the minimum audiogram threshold at F0.  30 
 31 
Following each curve-fit, the frequencies at which the resulting exposure function amplitude 32 
exceeded the minimum value by 10 dB were compared to the corresponding frequencies for the 33 
composite audiogram (see Figure 11). If the lower exposure function frequency was above the 34 
audiogram frequency, the parameter f1 was adjusted downward until the exposure function and 35 
audiogram frequencies matched. Similarly, if the upper exposure function frequency was below 36 
the audiogram frequency, the parameter f2 was adjusted upward until the exposure function and 37 
audiogram frequencies matched. This procedure ensured that the exposure function 10-dB 38 
bandwidth was at least as wide as the audiogram, since it is expected that the high sound levels 39 
capable of causing TTS would cause the exposure function to “flatten” relative to the audiogram. 40 
The practical effect of this step was to decrease f1 for the PCW and OCW groups and increase f2 41 
for the VHF group.  42 
 43 
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 1 
Figure A.11.  (a) After fitting Eq. (2) to the onset TTS data, the frequencies at which the 2 

exposure function amplitude was 10 dB above the minimum (LE and UE) 3 
were compared to the corresponding frequencies in the composite 4 
audiogram (LA and UA, respectively). (b) If LE > LA, then f1 in Eq. (2) was 5 
iteratively decreased until LE = LA. Similarly, if UE < UA, f2 in Eq. (2) was 6 
iteratively increased until UE = UA. 7 

 8 
 9 
To determine f1 and f2 for the remaining groups, the parameters ΔT1 and ΔT2 were defined, such 10 
that ΔT1 was the amount that the composite audiogram threshold at f1 exceeded the minimum 11 
threshold value, and ΔT2 was the amount that the composite audiogram threshold at f2 exceeded 12 
the minimum threshold value. After determining the best-fit values of f1, f2, and K for groups HF, 13 
VHF, OCW, and PCW, ΔT1 and ΔT2 were determined for each group: ΔT1 = 36.8, 11.5, 3.9, 6.5 14 
dB and ΔT2 = 38.6, 22.7, 38.9, 39.4 dB, for HF, VHF, OCW, and PCW, respectively. For ΔT1, the 15 
value at 36.8 appears to be an outlier; therefore the median value of ΔT1 (9.0 dB) and the mean 16 
of ΔT2 (34.9 dB) were used in conjunction with the composite audiograms for the LF, SI, PCA, 17 
and OCA groups to determine f1 and f2.  18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 

 26 
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 1 
Figure A.12.  The parameter ΔT1 was defined as the amount that the composite 2 

audiogram threshold at f1 exceeded the minimum threshold value. 3 
Similarly, ΔT2 was defined as the amount that the composite audiogram 4 
threshold at f2 exceeded the minimum threshold value. Central tendencies 5 
of ΔT1 and ΔT2 were computed for the groups HF, VHF, OCW, and PCW. For 6 
the remaining groups, f1 and f2 were defined as the lower and upper 7 
frequencies where the composite audiogram was ΔT1 and ΔT2 dB above the 8 
minimum value.  9 

 10 
 11 
For the groups with TTS data (PCA, OCA), the gain parameter K was defined to minimize the 12 
mean squared error between the exposure function and TTS data for each species group. 13 
 14 
For the low-frequency cetaceans and sirenians, for which no TTS data exist, TTS onset at the 15 
frequency of best hearing (F0) was estimated by assuming the numeric difference between the 16 
auditory threshold (in dB SPL) at F0 and the onset of TTS (in dB SEL) at F0 would be similar to 17 
that for the in-water marine mammal groups. Table 6 summarizes the onset TTS and composite 18 
threshold data for the HF, VHF, OCW, and PCW groups. For these groups, the mean difference 19 
between TTS onset and composite audiogram threshold at F0 was 121 dB. For the LF group, the 20 
hearing threshold at F0 is 56 dB re 1 μPa, therefore the TTS onset value at F0 is 177 dB re 1 21 
μPa2s (Table A.5). For the SI group, the lowest threshold was 59 dB re 1 μPa, making the onset 22 
TTS estimate 180 dB re 1 μPa2s (Table 6). The value of K was then defined so the TTS exposure 23 
function matched the estimated TTS onset at F0.  24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

79 

 1 
Table A.6.  Differences between composite audiogram threshold values (Fig. A.4) and 2 

TTS onset values at the frequency of best hearing (F0). The values for the 3 
low-frequency cetaceans and sirenians were estimated using the mean 4 
difference (121) from the HF, VHF, OCW, and PCW groups.  5 

 6 

 7 
 8 
Once K was determined, the weighted threshold for onset TTS was determined from the 9 
minimum value of the exposure function. Finally, the constant C was determined by substituting 10 
parameters a, b, f1, and f2 into Eq. (1) and adjusting C so the maximum amplitude of the 11 
weighting function was 0 dB.  12 
 13 
Table A.7 summarizes the various function parameters, the weighted TTS thresholds, and the 14 
goodness of fit values between the TTS exposure functions and the mean onset TTS data. 15 
Figures A.13–A.17 show the exposure functions for each group.  16 
  17 
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Table A.7.  Weighting function and non-impulsive TTS/INJ exposure function 1 
parameters for use in Eqs. (1) and (2) for non-impulsive (steady-state) 2 
exposures. R2 values represent goodness of fit between the exposure 3 
function and the mean TTS onset data (Appendix A.3, Fig. A.13 filled 4 
symbols). 5 

 6 

 7 
 8 

 9 
 10 
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 1 
Figure A.13.  TTS Exposure functions (solid lines) for non-impulsive exposures, 2 

generated from Eq. (2) with the parameters specified in Table A.7. Dashed 3 
lines — (normalized) composite audiograms. Audiograms were normalized 4 
(for display only) by adding a constant value to equate the minimum 5 
audiogram value with the exposure function minimum. Dotted lines — Navy 6 
Phase 3 exposure functions for TTS onset for each group. Filled symbols 7 
— mean onset TTS exposure data (in dB SEL) used to define exposure 8 
function shape and vertical position. Open symbols — mean onset TTS 9 
data not used to fit exposure functions. 10 

 11 
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 1 
Figure A.14.  HF cetacean non-impulsive exposure function, (normalized for display 2 

only) composite audiogram, and Phase 3 exposure function compared to 3 
HF cetacean TTS data ≥ 6 dB. Filled symbols — onset TTS data (Appendix 4 
A.3). Open symbols — SELs producing TTS ≥ 6 dB for which TTS onset 5 
could not be determined. Large, yellow-filled circles indicate (mean) TTS 6 
onset values used during the fitting process.  7 
  8 
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 1 

 2 
Figure A.15.  VHF cetacean non-impulsive exposure function, (normalized for 3 

display only) composite audiogram, and Phase 3 exposure function 4 
compared to VHF cetacean TTS data ≥ 6 dB. Filled symbols — onset 5 
TTS data (Appendix A.3). Open symbols — SELs producing TTS ≥ 6 6 
dB for which TTS onset could not be determined. Large, yellow-filled 7 
circles indicate (mean) TTS onset values used during the fitting 8 
process. Large, red-filled squares indicate (mean) TTS onset values 9 
excluded from the fitting process. 10 
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 1 
Figure A.16.  PCW non-impulsive exposure function, (normalized for display only) 2 

composite audiogram, and Phase 3 exposure function compared to PCW 3 
TTS data ≥ 6 dB. Filled symbols — onset TTS data (Appendix A.3). Large, 4 
yellow-filled circles indicate (mean) TTS onset values used during the 5 
fitting process. Large, red-filled squares indicate (mean) TTS onset values 6 
excluded from the fitting process. 7 
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 1 
Figure A.17.  OCW non-impulsive exposure function, (normalized for display only) 2 

composite audiogram, and Phase 3 exposure function compared to OCW 3 
TTS data ≥ 6 dB. Filled symbols — onset TTS data (Appendix A.3). Open 4 
symbol — SEL producing TTS ≥ 6 dB for which TTS onset could not be 5 
determined. Large, yellow-filled circles indicate (mean) TTS onset values 6 
used during the fitting process.  7 
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8. INJURY EXPOSURE FUNCTIONS FOR SONARS 1 
As in previous acoustic effects analyses (Southall et al., 2007; Finneran and Jenkins, 2012; 2 
Southall et al., 2019), the shape of the INJ exposure function for each species group is assumed 3 
to be identical to the TTS exposure function for that group. Therefore, definition of the INJ 4 
function only requires the value for the constant K to be determined. This equates to identifying 5 
the increase in noise exposure between the onset of TTS and the onset INJ, defined here as an 6 
exposure producing 40 dB of TTS. For Navy Phase 3, a difference of 20 dB between TTS onset 7 
and INJ onset was used for all species groups. This was based on estimates of exposure levels 8 
required for 40 dB of TTS from the marine mammal TTS growth curves.  9 
 10 
For Phase 4, the same approach was followed, with the inclusion of new published data. Tables 11 
A.3-1 to A.3-5 reveal differences of ~9 to 52 dB (mean = 23, median = 17, n = 12) between TTS 12 
onset and INJ onset (i.e., 40 dB TTS) in marine mammals. Figure A.18 shows the distribution of 13 
values. For simplicity and consistency with past approaches, Phase 4 utilizes a single value of 20 14 
dB to estimate the difference between TTS onset and INJ onset for all species groups. The value 15 
of K for each INJ exposure function and the weighted INJ threshold were therefore determined by 16 
adding 20 dB to the K-value for the TTS exposure function or the TTS weighted threshold, 17 
respectively (see Table A.7).  18 
 19 
For PCW, this 20 dB difference results in an INJ threshold of 195 dB re 1 μPa2s at 4.1 kHz. This 20 
is 4 dB below the exposure SEL of 199 dB re 1 μPa2s reported by Reichmuth et al. (2019) to 21 
result in PTS in a harbor seal. The Phase 4 PCW non-impulsive INJ criteria are therefore 22 
consistent with the harbor seal PTS data. 23 
 24 

 25 
Figure A.18.  Distribution of values indicating the increase in noise exposure between 26 

the onset of TTS and the onset INJ, based on marine mammal TTS growth 27 
curves with measured TTS ≥ 20 dB (Appendix A.3). The dotted and dashed 28 
lines show the median and mean values, 17 and 23 dB, respectively.  29 

 30 
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9. TTS/INJ EXPOSURE FUNCTIONS FOR EXPLOSIVES 1 
The shapes of the TTS and INJ exposure functions for explosives and other impulsive sources 2 
are identical to those used for sonars and other active acoustic sources (i.e., steady-state or non-3 
impulsive noise sources). Thus, defining the TTS and INJ functions only requires the values for 4 
the constant K to be determined.  5 
 6 
Phase 4 analyses for TTS and INJ from underwater detonations and other impulsive sources 7 
follow previous approaches, where a weighted SEL threshold is used in conjunction with an 8 
unweighted peak SPL threshold (Southall et al., 2007; Finneran and Jenkins, 2012; National 9 
Marine Fisheries Service, 2016; Department of the Navy, 2017; National Marine Fisheries 10 
Service, 2018; Southall et al., 2019). The threshold producing the greater range for effect is used 11 
for estimating the effects of the noise exposure.  12 
 13 
Peak SPL thresholds for TTS were based on TTS data from single impulsive sound exposures 14 
that produced 6 dB or more TTS for the HF and VHF groups (the only groups for which data are 15 
available). The peak SPL thresholds from these data were 224 and 196 dB re 1 μPa, for groups 16 
HF and VHF, respectively (Table A.5, Finneran et al., 2002; Lucke et al., 2009). Note the data 17 
from Sills et al. (2020b) and Mulsow et al. (2022) were not used to establish a peak SPL 18 
threshold for PCW and HF, respectively, since exposures with the same peak SPL did not always 19 
result in TTS when the number of impulses was reduced. 20 
 21 
SEL thresholds for TTS were based on TTS data from single or multiple impulsive sound 22 
exposures that produced 6 dB or more TTS for the HF, VHF, and PCW groups (the only groups 23 
for which data are available). The SEL-based thresholds were determined by applying the Phase 24 
4 weighting functions for the appropriate species groups to the exposure 1/3-octave frequency 25 
spectra that produced TTS, then calculating the resulting cumulataive weighted SELs. When this 26 
method is applied to the exposure data from Lucke et al. (2009) and Sills et al. (2020b), the 27 
cumulative weighted SEL TTS thresholds are 144 and 168 dB re 1 μPa2s, respectively (Table 28 
A.5). For the HF group, cumulative weighted SELs for onset TTS were 175, 177, 178, and 188 dB 29 
re 1 μPa2s (mean = 180, median = 178). Since the 188-dB value appears to be an outlier from the 30 
other three values, the median of 178 dB re 1 μPa2s was therefore used as the SEL-based onset 31 
TTS for the HF group. Similarly, the median value for Cs - Ci (3.5 dB) was used for the HF group. 32 
 33 
For species groups for which no impulse TTS data exist for TTS onset, the weighted SEL 34 
thresholds were estimated using the relationship between the steady-state TTS weighted 35 
threshold and the impulse TTS weighted threshold for the groups for which data exist (HF, VHF, 36 
PCW): 37 
 38 

, (6) 39 
 40 

where G indicates thresholds for a species group for which impulse TTS data are not available, C 41 
indicates the threshold for the groups for which data exist, the subscript s indicates a steady-state 42 
threshold, the subscript i indicates an impulse threshold, and the overbar symbol (―) indicates 43 
the mean value. For groups HF, VHF, PCW, Cs - Ci = 3.5, 17, and 7.0 dB, respectively (mean = 44 
9.2 dB). Therefore, for each of the remaining groups the SEL-based impulse TTS threshold is 9.2 45 
dB below the steady-state (non-impulse) TTS threshold (Table A.9). 46 
 47 
 48 
 49 
 50 
 51 
 52 
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Table A.8.  Summary of function parameters for use in Eqs. (1) and (2) to generate 1 
Phase 4 weighting functions and exposure functions, respectively. Values 2 
for K are rounded to the nearest dB. 3 

 4 

 5 
 6 
To estimate peak SPL-based thresholds, the peak SPL “dynamic range” was defined as the 7 
difference (in dB) between the impulsive noise, peak SPL TTS onset (in dB re 1 μPa) and the 8 
hearing threshold at f0 (in dB re 1 μPa) for the groups for which peak SPL TTS onset data are 9 
available (HF, VHF). For groups HF and VHF, dynamic ranges are 173 and 147 dB, respectively 10 
(mean, median = 160 dB). Therefore, for the remaining species groups, the impulsive peak SPL-11 
based TTS thresholds were estimated by adding 160 dB to the hearing threshold at f0 (Table 6).  12 
 13 
Since marine mammal PTS/auditory injury data from impulsive noise exposures do not exist, 14 
onset-INJ levels were estimated by adding 15 dB to the SEL-based TTS threshold and adding 6 15 
dB to the peak-pressure based thresholds. These relationships were derived by Southall et al. 16 
(2007) from impulse noise TTS growth rates in chinchillas, and utilized in subsequent analyses 17 
(Finneran and Jenkins, 2012; National Marine Fisheries Service, 2016; Department of the Navy, 18 
2017; National Marine Fisheries Service, 2018; Southall et al., 2019). The appropriate frequency 19 
weighting function for each functional hearing group is applied only when using the SEL-based 20 
thresholds to predict INJ. 21 
 22 
Figure A.19 illustrates the shapes of the various Phase 4 auditory weighting functions. Table A.8 23 
summarizes the parameters necessary to calculate the weighting function and exposure function 24 
amplitudes. Table A.9 summarizes the weighted TTS and INJ thresholds. 25 
 26 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

89 

 1 
Figure A.19.  Navy Phase 4 weighting functions for all marine mammal species groups. 2 

Parameters required to generate the functions are provided in Table A.8. 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
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Table A.9.  TTS and INJ thresholds for non-impulsive and impulsive sources*. SEL 1 
thresholds in dB re 1 μPa2s underwater and dB re (20 μPa)2s in air (groups 2 
OCA and PCA only). Peak SPL thresholds in dB re 1 μPa underwater and 3 
dB re 20 μPa in air (groups OCA and PCA only). 4 

 5 

 6 
*NMFS added footnote: Thresholds are determined from minimum value of auditory exposure function and the weighting 7 
function at its peak (i.e., mathematically equivalent to K + C) in Table A-8. However, it should be noted that only rounded 8 
values are presented in this Table, so for HFC and OCW, impulsive SEL thresholds do not appear to equal K + C, but in 9 
actuality, they do.. 10 
 11 
 12 
To properly compare the TTS/INJ criteria and thresholds used by Navy for Phase 3 and Phase 4, 13 
both the weighting function shape and weighted threshold values must be considered; the 14 
weighted thresholds by themselves only indicate the TTS/INJ threshold at the most susceptible 15 
frequency (based on the relevant weighting function). Since the exposure functions incorporate 16 
both the shape of the weighting function and the weighted threshold value, they provide the best 17 
means of comparing the frequency-dependent TTS/INJ thresholds for Phase 3 and 4 (Figs. A.20 18 
and A.21).  19 
 20 
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 1 
Figure A.20.  TTS and INJ exposure functions for sonars and other (non-impulsive) 2 

active acoustic sources (see Table 8 for function parameters). Heavy solid 3 
lines — Navy Phase 4 TTS exposure functions. Thin solid lines — Navy 4 
Phase 3 TTS exposure functions. Thick dashed lines — Navy Phase 4 INJ 5 
exposure functions. Thin dashed lines — Navy Phase 3 INJ exposure 6 
functions. 7 

 8 
 9 
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 1 
Figure A.21.  TTS and INJ exposure functions for explosives, impact pile driving, air 2 

guns, and other impulsive sources (see Table 8 for function parameters). 3 
Heavy solid lines — Navy Phase 4 TTS exposure functions. Thin solid lines 4 
— Navy Phase 3 TTS exposure functions. Thick dashed lines — Navy 5 
Phase 4 INJ exposure functions. Thin dashed lines — Navy Phase 3 INJ 6 
exposure functions. 7 

 8 
 9 
  10 
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APPENDIX A.1 AUDIOGRAM DATA 1 
 2 
Table A.1-1.  Audiogram datasets used for creating composite audiograms.  3 

 4 
 5 
 6 
 7 
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Table A.1-1. (cont.)  1 

 2 
 3 
  4 
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Table A.1-1. (cont.)  1 

 2 
  3 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

96 

Table A.1-2.  Audiogram datasets available but not used for composite audiogram 1 
creation. 2 

 3 
  4 
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Table A.1-2. (cont.)  1 

 2 
  3 
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 1 

 2 
Figure A.1-1.  Comparison of Otariid, Mustelid, Odobenid, and Ursid psychophysical 3 

hearing thresholds measured underwater (top) and in-air (bottom). The 4 
thick, solid line is the composite audiogram based on data for all species. 5 
The thick, dashed line is the composite audiogram based on the otariids 6 
only. 7 

 8 
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 1 
Figure A.1-2.  Comparison of composite thresholds for groups with audiogram data. The 2 

thick, solid line is the composite audiogram based on the median of the 3 
individual threshold data. The dotted line is the composite audiogram 4 
based on the median of the thresholds for each species; i.e., the median 5 
threshold was first computed for each species, then the median of these 6 
data was computed. 7 

 8 
  9 
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APPENDIX A.2 ESTIMATING A LOW-FREQUENCY CETACEAN 1 
AUDIOGRAM 2 
 3 
A.2.1. BACKGROUND 4 
Psychophysical and/or electrophysiological auditory threshold data exist for at least one species 5 
within each hearing group, except for the mysticetes, for which auditory thresholds have not been 6 
directly measured. For this reason, composite audiograms for mysticetes must be estimated. 7 
 8 
Mathematical models based on anatomical data have been used to predict hearing curves for 9 
several mysticete species (e.g., Ketten and Mountain, 2009; Cranford and Krysl, 2015). However, 10 
these predictions are not directly used to derive the Phase 4 composite mysticete audiograms 11 
because: (1) There are no peer-reviewed publications that provide a complete description of the 12 
process by which anatomical frequency-place maps were integrated with middle-ear transfer 13 
functions to predict the audiograms (e.g., Ketten and Mountain, 2009). (2) The fin whale model 14 
(Cranford and Krysl, 2015) does not include the sensory receptors of the inner ear, therefore the 15 
upper cutoff of hearing and audiogram shape above the region of best sensitivity cannot be 16 
predicted. Furthermore, the predicted audiogram does not possess the typical shape one would 17 
expect for an individual with normal hearing based on measurements from other mammals. 18 
 19 
Vocalization data also cannot solely be used to estimate auditory thresholds and audible range, 20 
since there are many examples of mammals that vocalize with energy below the frequency range 21 
where they have best hearing sensitivity, and well below their upper frequency limit (UFL) of 22 
hearing (including cattle, dogs, and humans, see Heffner and Heffner, 1992). However, it is 23 
generally expected that animals have at least some degree of overlap between the auditory 24 
sensitivity curve and the predominant frequencies present in conspecific communication signals. 25 
Therefore, vocalization data can be used to evaluate, at least at a general level, whether the 26 
composite audiogram is reasonable; i.e., to ensure that the predicted thresholds make sense 27 
given what we know about animal vocalization frequencies, source levels, and communication 28 
range. Similarly, behavioral observations of animals reacting to sound playbacks can be used to 29 
evaluate the proposed audiogram, but cannot be used to directly derive the function, since it is 30 
impossible to know if the animals detected the sound but simply did not react (i.e., the data do not 31 
permit absolute sensitivity to be determined). 32 
 33 
Given the limited nature of the available data, Phase 4 mysticete audiograms were estimated not 34 
from any one source but by synthesizing information from a variety of sources, including: cochlear 35 
frequency-place maps created from anatomical measurements of basilar membrane dimensions 36 
(e.g., Ketten, 1994; Parks et al., 2007); scaling relationships between mammalian inter-aural time 37 
differences and UFL (see Ketten, 2000); finite element models of head-related and middle-ear 38 
transfer functions (Tubelli et al., 2012; Cranford and Krysl, 2015); model-based predictions of 39 
relative hearing sensitivity for the humpback whale (Houser et al., 2001); measurements of the 40 
source levels and frequency content of mysticete vocalizations (see review by Tyack and Clark, 41 
2000); and observations of mysticete reactions to sound playbacks (e.g., Kvadsheim et al., 2017; 42 
Boisseau et al., 2021). These data were then supplemented with extrapolations from the other 43 
marine mammal species groups where necessary. 44 
 45 
 46 
A.2.2. AUDIOGRAM FUNCTIONAL FORM AND REQUIRED PARAMETERS 47 
 48 
Composite audiograms are defined by the equation 49 
 50 

, (A.2-1) 51 

 52 
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where T( f ) is the threshold at frequency f, and T0, F1, F2, A, and B are constants. To understand 1 
the roles of the parameters T0, F1, F2, A, and B, Eq. (A.2-1) may be viewed as the sum of three 2 
individual terms: 3 
 4 

, (A.2-2) 5 
 6 

where 7 

 , (A.2-3) 8 

and 9 

. (A.2-4) 10 

 11 
The first term, T0, controls the vertical position of the curve; i.e., T0 shifts the audiogram up and 12 
down. 13 
 14 
The second term, L(f ), controls the low-frequency behavior of the audiogram. At low frequencies, 15 
when f < F1, Eq. (A.2-3) approaches 16 
 17 

 , (A.2-5) 18 

 19 
which can also be written as 20 
 21 

. (A.2-6) 22 
 23 

Equation (A.2-6) has the form of y(x) = b - Ax, where x = log10f; i.e., Eq. (B-6) describes a linear 24 
function of the logarithm of frequency. This means that, as frequency gets smaller and smaller, 25 
Eq. (A.2-3) — the low-frequency portion of the audiogram function — approaches a linear 26 
function with the logarithm of frequency, and has a slope of -A dB/decade. As frequency 27 
increases towards F1, L(f ) asymptotically approaches zero. 28 
 29 
The third term, H(f ), controls the high-frequency behavior of the audiogram. At low frequencies, 30 
when f << F2, Eq. (B-4) has a value of zero. As f increases, H(f ) exponentially grows. The 31 
parameter F2 defines the frequency at which the thresholds begin to exponentially increase, while 32 
the factor B controls the rate at which thresholds increase. Increasing F2 will move the upper-33 
cutoff frequency to the right (to higher frequencies). Increasing B will increase the “sharpness” of 34 
the high-frequency slope.  35 
 36 
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 1 
FIGURE A.2-1.  Relationship between estimated threshold, T(f), (thick, gray line), low-2 

frequency term, L(f), (solid line), and high-frequency term, H(f), (dashed 3 
line). 4 

 5 
 6 
A.2.3. ESTIMATING AUDIOGRAM PARAMETERS 7 
To derive a composite mysticete audiogram using Eq. (A.2-1), the values of T0, F1, F2, A, and B 8 
must be defined. The constant A is defined by assuming a value for the low-frequency slope of 9 
the audiogram, in dB/decade. Most mammals for which thresholds have been measured have 10 
low-frequency slopes ~30 to 40 dB/decade. However, finite element models of middle ear 11 
function in fin whales (Cranford and Krysl, 2015) and minke whales (Tubelli et al., 2012) suggest 12 
lower slopes, of ~25 or 20 dB/decade, respectively. We therefore conservatively assume that 13 
A = 20 dB/decade.  14 
 15 
To define F1, we first define the variable T′ as the maximum threshold tolerance within the 16 
frequency region of best sensitivity (i.e., within the frequency range of best sensitivity, thresholds 17 
are within T′ dB of the lowest threshold). Further, let f ′ be the lower frequency bound of the region 18 
of best sensitivity. When f = f ′, L(f ) = T′, and Eq. (A.2-3) can then be solved for F1 as a function 19 
of f ′, T′, and A: 20 
 21 

. (A.2-7) 22 
 23 

Anatomically based models of mysticete hearing have resulted in various estimates for audible 24 
frequency ranges and frequencies of best sensitivity. Houser et al. (2001) estimated best 25 
sensitivity in humpback whales to occur in the range of 2 to 6 kHz, with thresholds within 3 dB of 26 
best sensitivity from ~1.4 to 7.8 kHz. For right whales, Parks et al. (2007) estimated the audible 27 
frequency range to be 10 Hz to 22 kHz. For minke whales, Tubelli et al. (2012) estimated the 28 
most sensitive hearing range, defined as the region with thresholds within 40 dB of best 29 
sensitivity, to extend from 30 to 100 Hz up to 7.5 to 25 kHz, depending on the specific model 30 
used. Cranford and Krysl (2015) predicted best sensitivity in fin whales to occur at 1.2 kHz, with 31 
thresholds within 3-dB of best sensitivity from ~1 to 1.5 kHz. Together, these model results 32 
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broadly suggest best sensitivity (thresholds within ~3 dB of the lowest threshold) from ~1 to 8 1 
kHz, and thresholds within ~40 dB of best sensitivity as low as ~30 Hz and up to ~25 kHz.  2 
 3 
Based on this information, we assume LF cetacean thresholds are within 3 dB of the lowest 4 
threshold over a frequency range of 1 to 8 kHz, therefore T′ = 3 dB and f′ = 1 kHz, resulting in F1 5 
= 0.412 kHz [Eq. (A.2.7)]. In other words, we define F1 so that thresholds are ≤ 3 dB relative to 6 
the lowest threshold when the frequency is within the region of best sensitivity (1 to 8 kHz).  7 
 8 
To define the high-frequency portion of the audiogram, the values of B and F2 must be estimated. 9 
To estimate B for LF cetaceans, the median of the B values from the composite audiograms for 10 
the other in-water species groups is used (HF=1.66, VHF=24.5, SI=2.5, OCW=0.786, and 11 
PCW=1.79). This results in B = 1.79 for the LF cetaceans.  12 
 13 
Once B is defined, F2 is adjusted to achieve a threshold value at 30 kHz of 40 dB relative to the 14 
lowest threshold. This results in F2 = 3.73 kHz.  15 
 16 
Finally, T0 is adjusted to set the lowest threshold value from the composite audiogram to a 17 
specific SPL. For Navy Phase 4 analyses, the lowest LF cetacean threshold is matched to the 18 
mean threshold of the in-water marine mammal species groups (HF, VHF, SI, OCW, PCW; mean 19 
= 56 dB re 1 μPa); this results in T0 = 54.2 dB. 20 
 21 
The resulting composite audiograms are shown in Fig. A.2-2. For comparison, predicted 22 
audiograms for the fin whale (Cranford and Krysl, 2015), and humpback whale (Houser et al., 23 
2001) are included. The LF cetacean composite audiogram has lowest threshold at 2.8 kHz, but 24 
the audiogram is fairly shallow in the region of best sensitivity and thresholds are within 3 dB of 25 
the lowest threshold from ~0.55 to 8.5 kHz. Low-frequency (< ~500 Hz) thresholds are 26 
considerably lower than those predicted by Cranford and Krysl (2015). High-frequency thresholds 27 
are also substantially lower than those predicted for the fin whale, with thresholds at 30 kHz only 28 
40 dB above best hearing thresholds, and those at 40 kHz approximately 70 dB above best 29 
threshold. The resulting composite audiogram appear reasonable considering the predominant 30 
frequencies present in mysticete conspecific vocal communication signals. While some species 31 
(e.g., blue whales) produce some extremely low (e.g., 10 Hz) frequency call components, the 32 
majority of mysticete calls occur in the range of a few tens of Hz to a few kHz , overlapping 33 
reasonably well with the predicted auditory sensitivity shown in the composite audiograms (within 34 
~0 to 30 dB of predicted best sensitivity). A general pattern of some vocalizations containing 35 
energy shifted below the region of best hearing sensitivity is well-documented in other low-36 
frequency species including many phocid seals (see Wartzok and Ketten, 1999), Steller sea lions 37 
(Mulsow and Reichmuth, 2010), and some terrestrial mammals, notably the Indian elephant 38 
(Heffner and Heffner, 1982; Heffner and Heffner, 1992). 39 
 40 
 41 
 42 
 43 
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 1 
FIGURE A.2-2.  Comparison of proposed LF cetacean thresholds to those predicted by 2 

anatomical and finite-element models. 3 
 4 
 5 
  6 
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APPENDIX A.3 MARINE MAMMAL TTS GROWTH CURVES 1 
 2 

 3 
Figure A.3-1.  TTS growth data for HF cetaceans obtained using behavioral methods. 4 

Growth curves were obtained by fitting Eq. (4) to the TTS data as a function 5 
of SEL. Onset TTS was defined as the SEL value from the fitted curve at 6 
TTS = 6 dB (shown with light gray dashed lines), for only those datasets 7 
that bracketed 6 dB of TTS. Onset INJ was defined as the SEL value from 8 
the fitted curve at a TTS = 40 dB, for only those datasets with maximum 9 
TTS > 20 dB. Solid lines are fit to the filled circles, dashed lines are fit to the 10 
open circles, and the dotted line is fit to the triangles. See Table A.3-1 for 11 
explanation of the datasets in each panel. SEL units are dB re 1 µPa2s.  12 
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Table A.3-1.  Summary of group HF TTS growth data and onset exposure levels. Only those data from which growth curves could be 1 
generated are included. TTS onset values are expressed in SEL, in dB re 1 μPa2s. Tests featured exposure to steady-2 
state noise and behavioral threshold measurements. “Panel” refers to corresponding sub-panel plot within Figure A.3-1. 3 

 4 
 5 
 6 
 7 
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Table A.3-1. (cont.) 1 

 2 
** Data excluded from mean onset TTS calculation. Reasons for exclusion include: (i) another data set resulted in a lower onset TTS at the same frequency, (ii) the 3 
data set featured a duty cycle less than 100%, (iii) TTS values were measured at times significantly larger than 4 min, (iv) a lower TTS onset was found at a 4 
different hearing test frequency (also see Notes).  5 
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 1 
Figure A.3-2.  TTS growth data for VHF cetaceans obtained using behavioral methods. 2 

Growth curves were obtained by fitting Eq. (4) or (5) to the TTS data as a 3 
function of SEL. Onset TTS was defined as the SEL value from the fitted 4 
curve at TTS = 6 dB, for only those datasets that bracketed 6 dB of TTS. 5 
Onset INJ was defined as the SEL value from the fitted curve at a TTS = 40 6 
dB, for only those datasets with maximum TTS > 20 dB. Solid lines are fit to 7 
the filled circles, dashed lines are fit to the open circles, and dotted lines fit 8 
to the triangles. See Table A.3-2 for explanation of the datasets in each 9 
panel. SEL units are dB re 1 µPa2s.10 
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Table A.3-2.  Summary of group VHF TTS growth data and onset exposure levels. Only those data from which growth curves could be 1 
generated are included. TTS onset values are expressed in SEL, in dB re 1 μPa2s. Tests featured continuous exposure to 2 
steady-state noise and behavioral threshold measurements. “Panel” refers to corresponding sub-panel plot within 3 
Figure A.3-2. 4 

 5 
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 1 
Table A.3-2. cont. 2 

 3 
  4 
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Table A.3-2. cont. 1 

 2 
* SELs not used during exposure function fitting process.  3 
** Data excluded from mean onset TTS calculation. Reasons for exclusion include: (i) another data set resulted in a lower onset TTS at the same frequency, (ii) the 4 
data set featured a duty cycle less than 100%, (iii) TTS values were measured at times significantly larger than 4 min, (iv) a lower TTS onset was found at a 5 
different hearing test frequency (also see Notes). 6 
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 1 

 2 
Figure A.3-3.  TTS growth data for group OCA obtained using behavioral methods. The 3 

growth curve was obtained by fitting Eq. (4) to the TTS data as a function of 4 
SEL. Onset TTS was defined as the SEL value from the fitted curve at TTS = 5 
6 dB. Onset INJ was defined as the SEL value from the fitted curve at a TTS 6 
= 40 dB. See Table A.3-3 for explanation of the dataset. SEL units are dB re 7 
(20 µPa)2s.8 
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Table A.3-3.  Summary of group OCA TTS growth data and onset exposure levels. TTS onset values are expressed in SEL, in dB re (20 1 
μPa)2s. Tests featured continuous exposure to steady-state noise and behavioral threshold measurements.   2 

 3 
 4 
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 1 

 2 
Figure A.3-4.  TTS growth data for group OCW obtained using behavioral methods. 3 

Growth curves were obtained by fitting Eq. (4) to the TTS data as a function 4 
of SEL. Onset TTS was defined as the SEL value from the fitted curve at 5 
TTS = 6 dB, for only those datasets that bracketed 6 dB of TTS. Onset INJ 6 
was defined as the SEL value from the fitted curve at a TTS = 40 dB, for 7 
only those datasets with maximum TTS > 20 dB. Solid lines are fit to the 8 
filled circles, dashed lines are fit to the open circles, and dotted lines fit to 9 
the triangles. See Table A.3-4 for explanation of the datasets in each panel. 10 
SEL units are dB re 1 µPa2s.11 
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Table A.3-4.  Summary of group OCW TTS growth data and onset exposure levels. Only those data from which growth curves could 1 
be generated are included. TTS onset values are expressed in SEL, in dB re 1 μPa2s. Tests featured continuous exposure 2 
to steady-state noise and behavioral threshold measurements. “Panel” refers to corresponding sub-panel plot within 3 
Figure A.3-4. 4 

  5 
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Table A.3-4. (cont.) 1 

 2 
  3 
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Table A.3-4. (cont.) 1 

 2 
** Data excluded from mean onset TTS calculation. Reasons for exclusion include: (i) another data set resulted in a lower onset TTS at the same frequency, (ii) the data 3 
set featured a duty cycle less than 100%, (iii) TTS values were measured at times significantly larger than 4 min, (iv) a lower TTS onset was found at a different hearing 4 
test frequency (also see Notes). 5 
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 1 
Figure A.3-5.  TTS growth data for group PCA obtained using behavioral methods. 2 

Growth curves were obtained by fitting Eq. (4) to the TTS data as a function 3 
of SEL. Onset TTS was defined as the SEL value from the fitted curve at 4 
TTS = 6 dB, for only those datasets that bracketed 6 dB of TTS. Solid lines 5 
are fit to the filled circles, dashed lines are fit to the open circles. See Table 6 
A.3-5 for explanation of the datasets in each panel. SEL units are dB re (20 7 
µPa)2s. 8 



This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information quality guidelines. It has not been formally disseminated by 
NOAA. It does not represent and should not be construed to represent any agency determination or policy. 

 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL HEARING (VERSION 3.0) 119 

Table A.3-5.  Summary of group PCA TTS growth data and onset exposure levels. Only those data from which growth curves could be 1 
generated are included. TTS onset values are expressed in SEL, in dB re (20 μPa)2s. Tests featured exposure to steady-2 
state noise and behavioral threshold measurements. “Panel” refers to corresponding sub-panel plot within Figure A.3-5. 3 

 4 
* SELs not used during exposure function fitting process.  5 
** Data excluded from mean onset TTS calculation. Reasons for exclusion include: (i) another data set resulted in a lower onset TTS at the same frequency, (ii) the data 6 
set featured a duty cycle less than 100%, (iii) TTS values were measured at times significantly larger than 4 min, (iv) a lower TTS onset was found at a different hearing 7 
test frequency (also see Notes). 8 
 9 
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 1 
Figure A.3-6.  TTS growth data for group PCW obtained using behavioral methods. 2 

Growth curves were obtained by fitting Eq. (4) or (5) to the TTS data as a 3 
function of SEL. Onset TTS was defined as the SEL value from the fitted 4 
curve at TTS = 6 dB, for only those datasets that bracketed 6 dB of TTS. 5 
Onset INJ was defined as the SEL value from the fitted curve at a TTS = 40 6 
dB, for only those datasets with maximum TTS > 20 dB. Solid lines are fit to 7 
the filled circles, dashed lines are fit to the open circles, and the dotted line 8 
is fit to the triangles. See Table A.3-6 for explanation of the datasets in each 9 
panel. SEL units are dB re 1 µPa2s. 10 
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Table A.3-6.  Summary of group PCW TTS growth data and onset exposure levels. Only those data from which growth curves could be 1 
generated are included. TTS onset values are expressed in SEL, in dB re 1 μPa2s. Tests featured exposure to steady-2 
state noise and behavioral threshold measurements. “Panel” refers to corresponding sub-panel plot within Figure A.3-5. 3 

  4 
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Table A.3-6. (cont.) 1 

 2 
* SELs not used during exposure function fitting process.  3 
** Data excluded from mean onset TTS calculation. Reasons for exclusion include: (i) another data set resulted in a lower onset TTS at the same frequency, (ii) the data 4 
set featured a duty cycle less than 100%, (iii) TTS values were measured at times significantly larger than 4 min, (iv) a lower TTS onset was found at a different hearing 5 
test frequency (also see Notes). 6 
 7 
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APPENDIX B: RESEARCH RECOMMENDATIONS FOR IMPROVED 1 
CRITERIA 2 

 3 
In compiling, interpreting, and synthesizing the scientific literature to produce criteria for this 4 
Updated Technical Guidance, it is evident that additional data would be useful for future iterations 5 
of this document, since many data gaps still exist (Table B1). The need for the Updated Technical 6 
Guidance to identify critical data gaps was also recommended during the initial peer review and 7 
public comment period.  8 

Table B1: Summary of currently available marine mammal data. 9 
 10 

Hearing Group 
Audiogram 

Data/Number of 
Species+ 

TTS 
Data/Number of 

Species 
Sound Sources for TTS Studies 

UNDERWATER    

LF Cetaceans 
Predictive 

modeling*/2 
species 

None/0 species None 

HF Cetaceans Behavioral/7 
species 

Behavioral/2 
species 

Octave-band noise; Tones; Mid-
frequency sonar; Explosion 
simulator; Watergun; Airgun 

VHF Cetaceans Behavioral/2 
species 

Behavioral/1 
species 

Tones, Mid-frequency sonar; 
Impact pile driver; Artificial Add; 
Airgun 

PW Pinnipeds Behavioral/7 
species 

Behavioral/5 
species 

Octave-band noise; Impact pile 
driver; Airgun 

OW Pinnipeds Behavioral/3 
species 

Behavioral/1 
species 

Octave-band noise; Arc-gap 
transducer 

IN-AIR    
PA Pinnipeds Behavior/3 Behavioral/1 Octave-band noise 
OA Pinnipeds Behavior/3 Behavioral/1 Octave-band noise 

+ This column refers specifically to data to derive the composite audiograms presented in the Updated Technical 11 
Guidance. 12 

* NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on two 13 
minke whales during their third field season (2023) in Norway. These data have implications for not only the 14 
generalized hearing range for low-frequency cetaceans but also on their weighting function. However, at this time, no 15 
official results have been published. Furthermore, a fourth field season (2024) is proposed, where more data will 16 
likely be collected. Thus, it is premature for us to propose any changes to our current Updated Technical Guidance. 17 
However, mysticete hearing data is identified as a special circumstance that could merit re-evaluating the acoustic 18 
criteria in this document. Therefore, we anticipate that once the data from both field seasons are published, it will 19 
likely necessitate updating this document (i.e., likely after the data gathered in the summer 2024 field season and 20 
associated analysis are published). 21 

 22 
Below is a list of research recommendations that NMFS believes would help address current data 23 
gaps. Some of these areas of recommended research have been previously identified in other 24 
publications/reports (e.g., NRC 1994; NRC 2000; Southall et al. 2007; Southall et al. 2009; 25 
Hawkins et al. 2014;36 Houser and Moore 2014; Lucke et al. 2014; Popper et al. 2014;37 Williams 26 

                                            
36 Although, Hawkins et al. 2014 identifies research gaps for fishes and invertebrates, many of the research 
recommendations can also be considered for other species, like marine mammals. 
 
37 Although Popper et al. 2014 identifies research gaps for fishes and sea turtles, many of the research recommendations 
can also be considered for other species, like marine mammals. 
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et al. 2014; Erbe et al. 2016; Lucke et al. 2016a; Popper et al. 201938; Southall et al. 2019). Many 1 
of these recommendations are similar to what was provided in the NMFS 2018 Revised Technical 2 
Guidance (NMFS 2018). However, they have been updated where appropriate with new 3 
literature.  4 
 5 
Note: Just because there may not be enough information to allow for quantifiable modifications to 6 
criteria associated with many of these recommendations, does not mean these recommendations 7 
cannot be incorporated as qualitative considerations within the comprehensive effects analysis. 8 
 9 
I. SUMMARY OF RESEARCH RECOMMENDATIONS 10 
 11 
1.1 LOW-FREQUENCY CETACEAN HEARING 12 
 13 
As previously stated, direct measurements of LF cetacean hearing are lacking. Therefore, 14 
hearing predictions for these species are based on other methods (e.g., anatomical studies, 15 
predictive models, vocalizations, taxonomy, and behavioral responses to sound). Thus, additional 16 
data39 collected would be extremely valuable to furthering the understanding of hearing ability 17 
within this hearing group and validating other methods for approximating hearing ability. For 18 
example, data (e.g., anatomical, auditory evoked potential (AEP) hearing thresholds) collected on 19 
either stranded or animals associated with subsistence hunts (e.g., Waugh et al. 2023) would be 20 
extremely useful in confirming current predictions of LF cetacean hearing ability and would allow 21 
for the development of more accurate auditory weighting functions (e.g., Do species that vocalize 22 
at ultra-low frequencies, like blue and fin whales, have dramatically different hearing abilities than 23 
other mysticete species?). Until direct measurements can be made, predictive models based on 24 
anatomical data will be the primary means of approximating hearing abilities, with validation 25 
remaining a critical component of any modeling exercise (e.g., Cranford and Krysl 2014). 26 
 27 
In 2018, The Subcommittee on Ocean Science and Technology (SOST) Interagency Working 28 
Group on Ocean Sound and Marine Life issued a call on the topic of the development of 29 
audiograms for mysticetes. Three projects that covered a variety of methods were funded to 30 
increase the chance of success in obtaining data to address the need topic: 31 
 32 

1. Collection of auditory evoked potential hearing thresholds in minke whales (Balaenoptera 33 
acutorostrata)40 34 

o Principal Investigator: Dorian Houser (National Marine Mammal Foundation) 35 
o The objective of this project is to collect AEP hearing thresholds for one 36 

mysticete species, the minke whale. This method involves measuring small 37 
voltages that the brain and auditory nervous system generate in response to 38 
sound. The minke AEP hearing thresholds will provide the first direct 39 
measurement of hearing in a mysticete, which will contribute to the development 40 
of a mysticete audiogram. 41 

 42 
2. Towards a mysticete audiogram using humpback whales’ behavioral response thresholds 43 

                                            
38 Although Popper et al. 2019 identifies research gaps for fishes, many of the research recommendations can also be 
considered for other species, like marine mammals. 
39 Data should be collected under appropriate permits or authorizations.  
 
40 NMFS is aware that the National Marine Mammal Foundation successfully collected preliminary hearing data on two 
minke whales during their third field season (2023) in Norway. These data have implications for not only the generalized 
hearing range for low-frequency cetaceans but also on their weighting function. However, at this time, no official results 
have been published. Furthermore, a fourth field season (2024) is proposed, where more data will likely be collected. 
Thus, it is premature for us to propose any changes to our current Updated Technical Guidance. However, mysticete 
hearing data is identified as a special circumstance that could merit re-evaluating the acoustic criteria in this document. 
Therefore, we anticipate that once the data from both field seasons are published, it will likely necessitate updating this 
document (i.e., likely after the data gathered in the summer 2024 field season and associated analysis are published). 
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o Principal Investigators: Rebecca Dunlop and Michael Noad (The University of 1 
Queensland) 2 

o The objective of this project is to use behavioral response experiments as a 3 
proxy for audiometric measurements to estimate hearing sensitivity in humpback 4 
whales. The researchers will play a range of tones to migrating humpback 5 
whales at frequencies across their expected hearing range and will observe their 6 
behavioral response to develop an audiogram. 7 
 8 

3. Investigating bone-conduction as a pathway for mysticete hearing 9 
o Principal Investigators: Ted Cranford (San Diego State University) and Petr Krysl 10 

(University of California San Diego) 11 
o The objective of this project is to investigate whether bone conduction is a valid 12 

pathway for hearing in mysticetes as previously reported by this team. The 13 
investigators will use a combination of finite element model simulations and two 14 
interdependent lab experiments designed to measure the transmission of sound 15 
vibrations from the water into the skull and hearing apparatus of a gray whale 16 
(stranded specimen). 17 

 18 
Data collected with these projects will aid in informing in future iterations of the Technical 19 
Guidance.  20 
 21 
1.2 HEARING DIVERSITY AMONG SPECIES AND AUDITORY PATHWAYS 22 
 23 
A better understanding of hearing diversity among species within a hearing group is also needed 24 
(e.g., Mooney et al. 2014) to comprehend how representative certain species (e.g., bottlenose 25 
dolphins, harbor porpoise, harbor seals) are of their hearing group as a whole. For example, are 26 
there certain species more susceptible to hearing loss from sound (i.e., all members of VHF 27 
cetaceans), or are there additional delineations needed among the current hearing groups (e.g., 28 
deep diving species, separating certain species within LF or HF cetaceans or PW pinnipeds into 29 
their own hearing groups as suggested by Southall et al. 2019, etc.)? Having more data from 30 
species within a hearing group would also help identify if additional hearing groups are needed. 31 
This is especially the case for VHF cetaceans where data are only available from six individuals 32 
of two species and those individuals have a lower hearing threshold compared to all other hearing 33 
groups. 34 
 35 
Additionally, having a more complete understanding of how sound enters the heads/bodies of 36 
marine mammals and its implication on hearing and impacts of noise among various species is 37 
another area of importance (e.g., bone conduction mechanism in mysticetes: Cranford and Krysl 38 
2015; previously undescribed acoustic pathways in odontocetes: Cranford et al. 2008; Cranford et 39 
al. 2010; filtering/amplification of transmission pathway: Cranford and Krysl 2012; directional 40 
hearing: Renaud and Popper 1975; Au and Moore 1984; Kastelein et al. 2005b). 41 
 42 
1.3 REPRESENTATIVENESS OF CAPTIVE INDIVIDUALS 43 
 44 
Data from Castellote et al. (2014), from free-ranging belugas in Alaska, indicate that of the seven 45 
healthy individuals tested (3 females/4 males; 1 subadult/6 adults), all had hearing abilities 46 
“similar to those of belugas measured in zoological settings.” In a follow-up publication, Mooney 47 
et al. (2018) obtained audiograms from 26 more belugas in Alaska, including seven animals from 48 
Castellote et al. (2014), and reported “ thresholds of sensitive individuals were comparable to 49 
those of some odontocetes that were measured in controlled laboratory conditions and were 50 
without hearing loss.” 51 
 52 
Similarly, data from Ruser et al. (2017) reported that harbor porpoise live-stranded (15 individuals 53 
both males and females; subadults and adults) and wild individuals incidentally caught in pound 54 
nets (12 both males and females; subadult and adults) had “the shape of the hearing curve is 55 
generally similar to previously published results from behavioral trials.” Thus, from these studies, 56 
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it appears that for baseline hearing measurements, captive individuals may be appropriate 1 
surrogates for free-ranging animals. Additionally, Mulsow et al. (2011b) measured aerial hearing 2 
abilities of seven stranded California sea lions and found a high degree of intersubject variability 3 
but that high-frequency hearing limits were consistent with previously tested captive individuals. 4 
However, these are currently the only studies of their kind. Finally, Lucke et al. (2016b) compared 5 
aerial hearing in captive and free-ranging harbor seals and found “relatively small differences 6 
[aerial hearing thresholds] between the animals in both test settings (zoo and the wild).” 7 
 8 
More research is needed to examine if this trend is applicable to other species (Lucke et al. 9 
2016a). 10 
 11 
1.3.1  Impacts of Age on Hearing 12 
 13 
Hearing loss can result from a variety of factors beyond anthropogenic noise, including exposure 14 
to ototoxic compounds (chemicals poisonous to auditory structures), disease and infection, and 15 
heredity, as well as a natural part of aging (Corso 1959; Kearns 1977; WGSUA 1988; Yost 2007). 16 
High-frequency hearing loss, presumably a normal process of aging that occurs in humans and 17 
other terrestrial mammals, has also been demonstrated in captive cetaceans (Ridgway and 18 
Carder 1997; Yuen et al. 2005; Finneran et al. 2005b; Houser and Finneran 2006; Finneran et al. 19 
2007b; Schlundt et al. 2011) and in stranded individuals (Mann et al. 2010). Thus, the potential 20 
impacts of age on hearing can be a concern when extrapolating from older to younger individuals. 21 
 22 
Few studies have examined this phenomenon in marine mammals, particularly in terms of the 23 
potential impact of aging on hearing ability and TSs: 24 
 25 

• Houser and Finneran (2006) conducted a comprehensive study of the hearing sensitivity 26 
of the U.S. Navy bottlenose dolphin population (i.e., tested 42 individuals from age four to 27 
47 years; 28 males/14 females). They found that high-frequency hearing loss typically 28 
began between the ages of 20 and 30 years. However, the frequencies where this 29 
species is most susceptible to noise-induced hearing loss (i.e., 10 to 30 kHz) are the 30 
frequencies where the lowest variability exists in mean thresholds between individuals of 31 
different ages.  32 
 33 

• Houser et al. (2008) measured hearing abilities of 13 Pacific bottlenose dolphins, ranging 34 
in age from 1.5 to 18 years. The authors’ reported that “Variability in the range of hearing 35 
and age-related reductions in hearing sensitivity and range of hearing were consistent 36 
with those observed in Atlantic bottlenose dolphins.” 37 

 38 
• Mulsow et al. (2014) examined aerial hearing thresholds for 16 captive sea lions, from 39 

age one to 26 years, and found that only the two 26-year old individuals had hearing 40 
classified as “aberrant” compared to other individuals (i.e., high-frequency hearing loss), 41 
which were deemed to have similar hearing abilities to previously measured individuals.  42 

 43 
• Additionally, for harbor seals, similar exposure levels associated with TTS onset were 44 

found in Kastelein et al. 2012a for individuals of four to five years of age compared to that 45 
used in Kastak et al. 2005, which was 14 years old and for belugas in Popov et al. 2014 46 
for an individual of 2 years of age compared to those used in Schlundt et al. 2000, which 47 
were 20 to 22 years old or 29 to 31 years old.  48 

 49 
From these limited data, it appears that age may not be a significant complicating factor, in terms 50 
of assessing TSs for animals of different ages. Nevertheless, additional data are needed to 51 
confirm if these data are representative for all species (Lucke et al. 2016a).  52 

 53 
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1.4 ADDITIONAL TTS MEASUREMENTS WITH MORE SPECIES AND/OR INDIVIDUALS 1 
 2 
Currently, TTS measurements only exist for four species of cetaceans (bottlenose dolphins, 3 
belugas, harbor porpoises, and Yangtze finless porpoise) and six species of pinnipeds (Northern 4 
elephant seal, harbor seal, ringed seal, spotted seal, bearded seal, and California sea lion). 5 
Additionally, the existing marine mammal TTS measurements are from a limited number of 6 
individuals within these species. Having more data from a broader range of species and 7 
individuals would be useful to confirm how representative current individuals are of their species 8 
and/or entire hearing groups (Lucke et al. 2016a). For example, TTS onset criteria for harbor 9 
porpoise (VHF cetacean) are much lower compared to other odontocetes (HF cetaceans), and it 10 
would be useful to know if all VHF cetaceans share these lower TTS onset criteria or if harbor 11 
porpoises are the exception. 12 
 13 
Finally, cetaceans are often used as surrogates for pinnipeds when no direct data exist. Having 14 
more information on the appropriateness of using cetaceans as surrogates for pinnipeds would 15 
be useful (i.e., Is there another mammalian group more appropriate?). 16 
 17 
1.5 SOUND EXPOSURE TO MORE REALISTIC SCENARIOS 18 
 19 
Most marine mammal TTS measurements are for individuals exposed to a limited number of 20 
sound sources (i.e., mostly tones and octave-band noise41) in primarily42 laboratory settings. 21 
Measurements from exposure to actual sound sources (opposed to tones or octave-band noise) 22 
under more realistic exposure conditions (e.g., more realistic exposure durations and/or 23 
scenarios, including multiple pulses/pile strikes and at frequencies below 1 kHz where most 24 
anthropogenic noise occurs) are needed.  25 
 26 
1.5.1  Frequency and Duration of Exposure 27 
 28 
In addition to received level, NMFS recognizes that other factors, such as frequency and duration 29 
of exposure, are also important to consider within the context of AUD INJ onset criteria (Table 30 
B2). However, there are not enough data to establish numerical criteria based on these added 31 
factors (e.g., alternatives to the EEH for accumulated exposure), beyond what has already been 32 
included in this document, in terms of marine mammal auditory weighting functions and SEL24h 33 
criteria. When more data become available, it may be possible to incorporate these factors into 34 
quantitative assessments. 35 
 36 
Further, it has been demonstrated that exposure to lower-frequency broadband sounds has the 37 
potential to cause TSs at higher frequencies (e.g., Lucke et al. 2009; Kastelein et al. 2015a; 38 
Kastelein et al. 2016). The consideration of duty cycle (i.e., energy per unit time) is another 39 
important consideration in the context of exposure duration (e.g., Kastelein et al. 2015b). Having 40 
a better understanding of these phenomena would be helpful. 41 
 42 
1.5.2 Multiple Sources 43 

 44 
Further, a better understanding of the effects of multiple sources and multiple activities on TS, as 45 
well as impacts from long-term exposure is needed. Studies on terrestrial mammals indicate that 46 
exposure scenarios from complex exposures (i.e., those involving multiple types of sound 47 
sources) result in more complicated patterns of NIHL (e.g., Ahroon et al. 1993). Recently Guan et 48 
al. 2022 and Guan and Brookens 2023 indicated that there is a need to conduct TTS 49 

                                            
41 More recent studies (e.g., Lucke et al. 2009; Mooney et al. 2009b; Kastelein et al. 2014a; Kastelein et al. 2014b; 
Kastelein et al. 2015a; Kastelein et al. 2015b; Finneran et al. 2015; Kastelein et al. 2016; Kastelein et al. 2017b; Kastelein 
et al. 2017c; Kastelein et al. 2018; Kastelein et al. 2020f; Sills et al. 2020b) have used exposures from more realistic 
sources, like airguns, impact pile drivers, or tactical sonar. 
 
42 Pacini et al. 2017 reported NIHL in stranded rough-toothed and spinner dolphins exposed to dynamite fishing. 
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measurements on exposures to more complex sounds (e.g., multiple sounds, including those with 1 
both impulsive and non-impulsive components). 2 
 3 
1.5.3 Possible Protective Mechanisms 4 
 5 
Nachtigall and Supin (2013) reported that a false killer whale was able to reduce its hearing 6 
sensitivity (i.e., conditioned dampening of hearing) when a loud sound was preceded by a 7 
warning signal. Nachtigall and Supin (2014) reported a similar finding in a bottlenose dolphin, a 8 
beluga (Nachtigall et al. 2016a), and in harbor porpoises (Nacthigall et al. 2016b). Further studies 9 
showed that conditioning is associated with the frequency of the warning signal (Nachtigall and 10 
Supin 2015), as well as if an animal is able to anticipate when a loud sound is expected to occur 11 
after a warning signal (Nachtigall et al. 2016c).  12 
 13 
 14 
Table B2: Additional factors for consideration (frequency and duration of exposure) 15 

in association with AUD INJ onset criteria. 16 

Factor General Trends 

Frequency 

 
1) Growth of TS: Growth rates of TS (dB of TTS/dB noise) are higher for 

frequencies where hearing is more sensitive (e.g., Finneran and 
Schlundt 2010; Finneran and Schlundt 2013; Kastelein et al. 2014a; 
Kastelein et al. 2015b) 

Duration 

 
1) Violation of : Non-impulsive, intermittent exposures require higher 

SEL24h  to induce a TS compared to continuous exposures of the same 
duration (e.g., Mooney et al. 2009a; Finneran et al. 2010b; Kastelein et 
al. 2014a) 

 
2) Violation of EEH: Exposures of longer duration and lower levels induce 

a TTS at a lower level than those exposures of higher level (below the 
critical level) and shorter duration with the same SEL24h (e.g., Kastak et 
al. 2005; Kastak et al. 2007; Mooney et al. 2009b; Finneran et al. 
2010a; Kastelein et al. 2012a; Kastelein et al. 2012b) 
 

3) Recovery from a TS: With the same SEL24h, longer exposures require 
longer durations to recover (e.g., Mooney et al. 2009b; Finneran et al. 
2010a) 
 

4) Recovery from a TS: Intermittent exposures recover faster compared to 
continuous exposures of the same duration (e.g., Finneran et al. 2010b; 
Kastelein et al. 2014a; Kastelein et al. 2015b) 

Cumulative 
Exposure 

 
1) Animals may be exposed to multiple sound sources and stressors, 

beyond acoustics, during an activity, with the possibility of additive or 
synergistic effects (e.g., Sih et al. 2004; Rohr et al. 2006; Chen et al. 
2007; Lucke et al. 2016a; NRC 2016) 

 17 
 18 
Additionally, Finneran et al. (2015) observed two of the three dolphins in their study displayed 19 
“anticipatory” behavior (e.g., head movement) during an exposure sequence to multiple airgun 20 
shots. It is unknown if this behavior resulted in some mitigating effects of the exposure. Popov et 21 
al. (2016) investigated the impact of prolonged sound stimuli (i.e., 1500 s continuous pip 22 
successions versus 500-ms pip trains) on the beluga auditory system and found that auditory 23 
adaptation occurred during exposure (i.e., decrease in amplitude of rate following response 24 
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associated with evoked potentials) at levels below which TTS onset would likely be induced. The 1 
amount of amplitude reduction depended on stimulus duration, with higher reductions occurring 2 
during prolonged stimulation. The authors also caution that adaptation will vary with sound 3 
parameters. Similarly, Kastelein et al. 2020f also believed a harbor porpoise was able to “self 4 
mitigate” exposure to repeated airgun shots. Finneran (2018) confirmed that bottlenose dolphins 5 
can “self mitigate” when warned of an upcoming exposure and that mechanism for this mitigation 6 
occurs in the cochlea or auditory nerve. More recently, Finneran et al. (2023b, 2023c) 7 
demonstrated that bottlenose dolphins can self mitigate based on the ability to learn the timing of 8 
repetitive, intermittent sounds, and increased exposure level. 9 
 10 
In the wild, potential protective mechanisms have been observed, with synchronous surfacing 11 
associated with exposure to playbacks of tactical sonar recorded in long-finned pilot whales 12 
(Miller et al. 2012). However, it is unclear how effective this behavior is in reducing received 13 
levels (Wensveen et al. 2015).  14 
Thus, marine mammals may have multiple means of reducing or ameliorating the effects of noise 15 
exposure. However, at this point, directly incorporating them into a comprehensive effects 16 
analysis that anticipates the likelihood of exposure ahead of an activity is difficult. More 17 
information on these mechanisms, especially associated with real-world exposure scenarios, 18 
would be useful. 19 
 20 
1.5.4 Long-Term Consequences of Exposure 21 
 22 
Kujawa and Liberman (2009) found that with large, but recoverable noise-induced threshold shifts 23 
(maximum 40 dB TS measured by auditory brainstem response (ABR)), sound could cause 24 
delayed cochlear nerve degeneration in mice. Further, Lin et al. (2011) reported a similar pattern 25 
of neural degeneration in guinea pigs after large but recoverable noise-induced TSs (maximum 26 
~50 dB TS measured by ABR), which suggests a common phenomenon in all mammals. The 27 
long-term consequences of this degeneration remain unclear.  28 
 29 
Another study reported impaired auditory cortex function (i.e., behavioral and neural 30 
discrimination of sound in the temporal domain (discriminate between pulse trains of various 31 
repetition rates)) after sound exposure in rats that displayed no impairment in hearing (Zhou and 32 
Merzenich 2012). Zheng (2012) found reorganization of the neural networks in the primary 33 
auditory cortex (i.e., tonotopic map) of adult rats exposed to low-level noise, which suggests an 34 
adaptation to living in a noisy environment (e.g., noise exposed rats performed tasks better in 35 
noisy environment compared to control rats). Heeringa and van Dijk (2014) reported firing rates in 36 
the inferior colliculus of guinea pigs had a different recovery pattern compared to ABR thresholds. 37 
Bohne et al. 2017 found that noise-exposed chinchillas demonstrated that inner ear hair cells and 38 
their support cells continue to degenerate months after exposure. Thus, it is recommended that 39 
there be additional studies to look at these potential effects in marine mammals (Tougaard et al. 40 
2015).  41 
 42 
Houser (2021) best described TTS as a continuum of responses: ”A limited amount of evidence 43 
from terrestrial laboratory animals suggests that both neuropathic and non-neuropathic TTS are 44 
feasible, with the onset of neuropathology occurring at noise exposures well exceeding those 45 
corresponding to the onset of TTS. Given this evidence, it is probable that threshold shifts in 46 
marine mammals can occur with noise exposures that also range in magnitude and effect from 47 
fully recoverable TTS without tissue damage, through fully recoverable TTS with tissue damage, 48 
to the destruction of tissue producing PTS. In other words, TTS is a graded phenomenon that is 49 
fully recoverable at low levels but can lead to tissue damage as it becomes more extreme–not all 50 
TTS results in the destruction of tissue.” Thus, the Updated Technical Guidance has adopted the 51 
approach of considering auditory injury along with PTS. 52 
 53 
Finally, it is also important to understand how repeated exposures resulting in TTS could 54 
potentially lead to AUD INJ (e.g., Kastak et al. 2008; Wang and Ren 2012; Reichmuth et al. 55 
2019). For example, occupational noise standards, such as those from the Occupational Safety & 56 
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Health Administration (OSHA), consider the impact of noise exposure over a lifetime of exposure 1 
(e.g., 29 CFR Part 1926 over 40 years). Similar, longer-term considerations are needed for 2 
marine mammals.  3 

1.6 IMPACTS OF NOISE-INDUCED THRESHOLD SHIFTS ON FITNESS 4 
 5 
When considering noise-induced threshold shifts, it is important to understand that hearing is 6 
more than merely the mechanical process of the ear and neural coding of sound (detection). It 7 
also involves higher processing and integration with other stimuli (perception) (Yost 2007; Alain 8 
and Berstein 2008). Currently, more is known about the aspects of neural coding of sounds 9 
compared to the higher-level processing that occurs on an individual level. 10 
 11 
Typically, effects of noise exposure resulting in energetic (Williams et al. 2006; Barber et al. 2010) 12 
and fitness consequences (increased mortality or decreased reproductive success) are deemed 13 
to have the potential to affect a population/stock (NRC 2005; Southall et al. 2007; SMRU Marine 14 
2014) or as put by Gill et al. 2001 “From a conservation perspective, human disturbance of 15 
wildlife is important only if it affects survival or fecundity and hence causes a population to 16 
decline.” The number of individuals exposed and the location and duration of exposure are 17 
important factors, as well. To determine whether a TS will result in a fitness consequence 18 
requires one to consider several factors. 19 
 20 
First, one has to consider the likelihood an individual would be exposed for a long enough 21 
duration or to a high enough level to induce a TS (e.g., realistic exposure scenarios). Richardson 22 
et al. (1995) hypothesized that “Disturbance effects are likely to cause most marine mammals to 23 
avoid any ‘zone of discomfort or nonauditory effects’ that may exist” and that “The greatest risk of 24 
immediate hearing damage might be if a powerful source were turned on suddenly at full power 25 
while a mammal was nearby.” It is uncertain how frequently individuals in the wild are 26 
experiencing situations where TSs are likely from individual sources (Richardson et al.1995; Erbe 27 
and Farmer 2000; Erbe 2002; Holt 2008; Mooney et al. 2009b). 28 
 29 
In determining the severity of a TS, it is important to consider the magnitude of the TS, time to 30 
recovery (seconds to minutes or hours to days), the frequency range of the exposure, the 31 
frequency range of hearing and vocalization for the particular species (i.e., how animal uses 32 
sound in the frequency range of anthropogenic noise exposure; e.g., Kastelein et al. 2014b), and 33 
their overlap (e.g., spatial, temporal, and spectral). Richardson et al. (1995) noted, “To evaluate 34 
the importance of this temporary impairment, it would be necessary to consider the ways in which 35 
marine mammals use sound, and the consequences if access to this information were impaired.” 36 
Thus, exposure to an anthropogenic sound source may affect individuals and species differently 37 
(Sutherland 1996).  38 
 39 
Finally, different degrees of hearing loss exist: ranging from slight/mild to moderate and from 40 
severe to profound (Clark 1981), with profound loss being synonymous with deafness (CDC 41 
2004; WHO 2015). For hearing loss in humans, Miller (1974) summarized “any injury to the ear or 42 
any change in hearing threshold level that places it outside the normal range constitutes a 43 
hearing impairment. Whether a particular impairment constitutes a hearing handicap or a hearing 44 
disability can only be judged in relation to an individual’s life pattern or occupation.” This 45 
statement can translate to considering effects of hearing loss in marine mammals, as well (i.e., 46 
substituting “occupation” for “fitness”).  47 
 48 
Simply because a hearing impairment may be possible does not necessarily mean an individual 49 
will experience a disability in terms of overall fitness consequence. However, there needs to be a 50 
better understanding of the impacts of repeated exposures. As Kight and Swaddle (2011) indicate 51 
“Perhaps the most important unanswered question in anthropogenic noise research – and in 52 
anthropogenic disturbance research, in general – is how repeated exposure over a lifetime 53 
cumulatively impacts an individual, both over the short- (e.g. condition, survival) and long- (e.g., 54 
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reproductive success) term.” Thus, more research is needed to understand the true 1 
consequences of noise-induced TSs (acute and chronic) to overall fitness. 2 
 3 
1.7 BEHAVIOR OF MARINE MAMMALS UNDER EXPOSURE CONDITIONS WITH THE POTENTIAL TO 4 

CAUSE HEARING IMPACTS 5 
 6 
Although assessing the behavioral response of marine mammals to sound is outside the scope of 7 
this document, understanding these reactions, especially in terms of exposure conditions having 8 
the potential to cause NIHL is critical to be able to predict exposure better. Understanding marine 9 
mammal responses to anthropogenic sound exposure presents a set of unique challenges, which 10 
arise from the inherent complexity of behavioral reactions. Responses can depend on numerous 11 
factors, including intrinsic, natural extrinsic (e.g., ice cover, prey distribution), or anthropogenic, as 12 
well as the interplay among factors (Archer et al. 2010). Behavioral reactions can vary not only 13 
among individuals but also within an individual, depending on previous experience with a sound 14 
source, hearing sensitivity, sex, age, reproductive status, geographic location, season, health, 15 
social behavior, or context.  16 
 17 
Severity of behavioral responses can also vary depending on characteristics associated with the 18 
sound source (e.g., whether it is moving or stationary, number of sound sources, distance from 19 
the source) or the potential for the source and individuals to co-occur temporally and spatially 20 
(e.g., persistence or recurrence of the sound in specific areas; how close to shore, region where 21 
animals may be unable to avoid exposure, propagation characteristics that are either enhancing 22 
or reducing exposure) (Richardson et al. 1995; NRC 2003; Wartzok et al. 2004; NRC 2005; 23 
Southall et al. 2007; Bejder et al. 2009; Southall et al. 2021). 24 
 25 
Further, not all species or individuals react identically to anthropogenic sound exposure. There 26 
may be certain species-specific behaviors (e.g., fight or flight responses; particularly behaviorally 27 
sensitive species) that make a species or individuals of that species more or less likely to react to 28 
anthropogenic sound. Having this information would be useful in improving the recommended 29 
accumulations period (i.e., 24 h) and understanding situations where individuals are more likely to 30 
be exposed to noise over longer durations and are more at risk for NIHL, either temporary or 31 
permanent. 32 
 33 
1.8 CHARACTERISTICS OF SOUND ASSOCIATED WITH NIHL AND IMPACTS OF PROPAGATION 34 
 35 
It is known that as sound propagates through the environment various physical characteristics 36 
change (e.g., frequency content with lower frequencies typically propagating further than higher 37 
frequencies; dispersion in continental shelf or trapped waveguide propagation; increased pulse 38 
length due to reverberation or multipath propagation in shallow and deep water). Having a better 39 
understanding of the characteristics of a sound that makes it injurious (e.g., peak pressure 40 
amplitude, rise time, pulse duration, etc.; Henderson and Hamernik 1986; NIOSH 1998) and how 41 
those characteristics change under various propagation conditions would be extremely helpful in 42 
the application of appropriate criteria and be useful in supporting a better understanding as to 43 
how sounds could possess less injurious characteristics further from the source (e.g., transition 44 
range)43.  45 
 46 
Further, validation and/or comparison of various propagation and exposure models for a variety of 47 
sources would be useful to regulators, who with criteria that are more complex will be faced with 48 
evaluating the results from a multitude of models. This would also allow for a more complete 49 
comparison to the methodologies provided in this Updated Technical Guidance. This would allow 50 
for a determination of how precautionary these methodologies are under various scenarios and 51 
allow for potential refinement.  52 

 53 
                                            
43 NMFS is aware of Martin et al. 2020, which recommends the kurtosis metric to define a source’s impulsiveness.  
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1.9 NOISE-INDUCED THRESHOLD SHIFT GROWTH RATES AND RECOVERY 1 
 2 
TS growth rate data for marine mammals are limited, with higher growth rates for frequencies 3 
where hearing is more sensitive (Finneran and Schlundt 2010; Finneran and Schlundt 2013; 4 
Kastelein et al. 2015b; Kastelein et al. 2020g; Finneran et al. 2023a; Kastelein et al. 2022a). 5 
Understanding how these trends vary with exposure to more complex sound sources (e.g., 6 
broadband impulsive sources) and among various species would be valuable.  7 
 8 
Understanding recovery after sound exposure is also an important consideration. Currently, there 9 
is a lack of recovery data for marine mammals, especially for exposure to durations and levels 10 
expected under real-world scenarios. Thus, additional marine mammal noise-induced recovery 11 
data would be useful. A better understanding of likely exposure scenarios, including the potential 12 
for recovery, including how long after noise exposure recovery is likely to occur, could also 13 
improve the recommended baseline accumulation period.  14 

1.10 METRICS AND TERMINOLOGY 15 

Sound can be described using a variety of metrics, with some being more appropriate for certain 16 
sound types or effects compared with others (e.g., Coles et al. 1968; Hamernik et al. 2003; 17 
Madsen 2005; Davis et al. 2009; Zhu et al. 2009). A better understanding of the most appropriate 18 
metrics for establishing criteria and predicting impacts to hearing would be useful in confirming 19 
the value of providing dual metric criteria using the PK SPL and weighted SEL24h metrics for 20 
impulsive sources.  21 
 22 
As science advances, additional or more appropriate metrics may be identified and further 23 
incorporated by NMFS, such as kurtosis has been recently recommended as more appropriate 24 
metric for defining the impulsiveness of a sound (Martin et al. 2020; Müller et al. 2020; Guan et al. 25 
2022; Guan and Brookens 2023; Zeddies et al. 2023). However, caution is recommended when 26 
comparing sound descriptions in different metrics (i.e., they are not directly comparable). 27 
Additionally, Von Benda-Beckmann et al. 2022 indicated that the applicability of the Goley et al. 28 
2011 fitting parameter (λ) for marine mammals needs to be further investigated. Finally, the 29 
practicality of measuring and applying metrics is another important consideration.  30 
 31 
Further, the Updated Technical Guidance’s criteria are based on the EEH, which is known to be 32 
inaccurate in some situations. Popov et al. 2014 suggested that RMS SPL multiplied by log 33 
duration better described their data than the EEH. Thus, better means of describing the 34 
interaction between SPL and duration of exposure would be valuable.  35 
 36 
Finally, in trying to define metrics and certain terms (e.g., impulsive and non-impulsive) within the 37 
context of the Updated Technical Guidance, NMFS often found difficulties due to lack of 38 
universally accepted standards and common terminology. Within the Updated Technical 39 
Guidance, NMFS has tried to adopt terminology, definitions, symbols, and abbreviations that 40 
reflect those of the American National Standards Institute (ANSI) or more appropriately the more 41 
recent International Organization for Standardization (ISO)44. Thus, NMFS encourages the further 42 
development of appropriate standards for marine application.  43 

1.11 EFFECTIVE QUIET 44 
 45 
“Effective quiet” is defined as the maximum sound pressure level that will fail to produce any 46 
significant TS in hearing despite duration of exposure and amount of accumulation (Ward et al. 47 

                                            
44 This version (3.0) of Updated Technical Guidance is more reflective of ISO 18405 (ISO 2017). ISO 18405 is the 
preferred standard because it was developed specifically for underwater acoustics, compared with standards developed 
for airborne acoustics that use different conventions. With the addition of in-air criteria for pinnipeds, NMFS is relying upon 
ISO 8000-8 (ISO 2020).  
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1976; Ward 1991). Effective quiet can essentially be thought of as a “safe exposure level” (i.e., 1 
risks for TS are extremely low or nonexistent) in terms of hearing loss45 (Mills 1982; NRC 1993) 2 
and is frequency dependent (Ward et al. 1976; Mills 1982). Effective quiet is an important 3 
consideration for the onset TTS and AUD INJ criteria expressed by the weighted SEL24h metric 4 
because if not taken into consideration unrealistically low levels of exposure with long enough 5 
exposure durations could accumulate to exceed current weighted SEL24h  criteria, when the 6 
likelihood of an actual TS is extremely low (e.g., humans exposed to continuous levels of normal 7 
speech levels throughout the day are not typically subjected to TTS from this type of exposure).  8 
 9 
Currently, there are limited data available to define effective quiet for marine mammals. However, 10 
a study by Popov et al. 2014 on belugas exposed to half-octave noise centered at 22.5 kHz 11 
indicates that effective quiet for this exposure scenario and species might be around 154 dB. In 12 
Finneran’s (2015) review of NIHL in marine mammals, effective quiet is predicted to vary by 13 
species (e.g., below 150 to 160 dB for bottlenose dolphins and belugas; below 140 dB for 14 
Yangtze finless porpoise; 124 dB for harbor porpoise; and 174 dB for California sea lions). More 15 
recently, Martin et al. 2020 suggested effective quiet be derived from daily TTS criteria for non-16 
impulsive sources (i.e., 50 dB below TTS onset, SEL24), while Pirotta et al. 2021 suggested 17 
effective quiet to be derived from human data (10 dB below TTS onset, SEL24 based on Ward et 18 
al. 197646). 19 
 20 
As more data become available, they would be useful in contributing to the better understanding 21 
of appropriate accumulations periods for the weighted SEL24h metric and NIHL, as well as if there 22 
is potential of low-level (e.g., Copping et al. 2014; Schuster et al. 2015; Copping and Hemery 23 
2020; Tougaard et al. 2020; Stöber and Thomsen 2021; Kulkarni and Edwards 2022), 24 
continuously operating sources (e.g., alternative energy tidal, wave, or wind turbines) to induce 25 
noise-induced hearing loss or not (i.e., below effective quiet). 26 
 27 
1.12 TRANSLATING BIOLOGICAL COMPLEXITY INTO PRACTICAL APPLICATION 28 
 29 
Although not a specific research recommendation, practical application of science is an important 30 
consideration. As more is learned about the potential effects of sound on marine mammals, the 31 
more complex future criteria are likely to become. Practical application always needs to be 32 
weighed against making criteria overly complicated (cost versus benefit considerations). The 33 
creation of tools to help ensure action proponents, as well as managers apply complex criteria 34 
correctly, is a critical need.  35 
 36 
Additionally, there is always a need for basic, practical acoustic training opportunities for action 37 
proponents and managers (most acoustic classes available are for students within an academic 38 
setting and not necessarily those who deal with acoustics in a more applied manner). Having the 39 
background tools and knowledge to be able to implement the Updated Technical Guidance is 40 
critical to this document being a useful and effective tool in assessing the effects of noise on 41 
marine mammal hearing.  42 
  43 

                                            
45 Note: “Effective quiet” only applies to hearing loss and not to behavioral response (i.e., levels below “effective quiet” 
could result in behavioral responses). It also is a separate consideration from defining “quiet” areas (NMFS 2009). 
46 In reviewing Ward et al. 1976, NMFS assumes Pirotta et al. 2021 is referring to where this publication says “As a rough 
generalization, one can say that a 5-dB TTS2 is produced by an 8-h exposure about 8 to 9 dB above EQ [effective 
quiet]…” to derive the 10 dB below TTS onset criteria they are recommending for effective quiet. Note: However, Ward et 
al. 1976 defines effective quiet in terms of an 8-h workday.  
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APPENDIX C:  UPDATED TECHNICAL GUIDANCE REVIEW 1 
PROCESSES: PEER REVIEW, FEDERAL AGENCY 2 
PREVIEW, AND PUBLIC COMMENT 3 

 4 
 5 

The Updated Technical Guidance before its finalization went through several stages of peer 6 
review and public comment.   7 

I. PEER REVIEW PROCESS 8 
 9 
The President’s Office Management and Budget (OMB 2005) states, “Peer review is one of the 10 
important procedures used to ensure that the quality of published information meets the 11 
standards of the scientific and technical community. It is a form of deliberation involving an 12 
exchange of judgments about the appropriateness of methods and the strength of the author’s 13 
inferences. Peer review involves the review of a draft product for quality by specialists in the field 14 
who were not involved in producing the draft.” 15 
 16 
The peer review of this document was conducted in accordance with NOAA’s Information Quality 17 
Guidelines47 (IQG), which were designed for “ensuring and maximizing the quality, objectivity, 18 
utility, and integrity of information disseminated by the agency” (with each of these terms defined 19 
within the IQG). Further, the IQG stipulate that “To the degree that the agency action is based on 20 
science, NOAA will use (a) the best available science and supporting studies (including peer-21 
reviewed science and supporting studies when available), conducted in accordance with sound 22 
and objective scientific practices, and (b) data collected by accepted methods or best available 23 
methods.” Under the IQG and in consistent with OMB’s Final Information Quality Bulletin for Peer 24 
Review (OMB Peer Review Bulletin (OMB 2005), peer review was required before it could be 25 
disseminated by the Federal Government. OMB (2005) notes “Peer review should not be 26 
confused with public comment and other stakeholder processes. The selection of participants in a 27 
peer review is based on expertise, with due consideration of independence and conflict of 28 
interest.” 29 
 30 
The peer review of the Updated Technical Guidance consisted an independent review. Upon 31 
completion of the peer review, NMFS was required to post and respond to all peer reviewer 32 
comments received via the Peer Review Reports.  33 

1.1 PEER REVIEW 34 
 35 
For the peer review of this document (October/November 2022), potential qualified peer 36 
reviewers were nominated by the Marine Mammal Commission (MMC) and its Committee of 37 
Scientific Advisors on Marine Mammals. Nominated peer reviewers were those with expertise in 38 
marine mammal bioacoustics, noise-induced hearing loss or auditory injury, and/or acoustics in 39 
the marine environment. 40 
 41 
Nominated peer reviewers were those with expertise marine mammalogy, acoustics/bioacoustics, 42 
and/or acoustics in the marine environment. Of the thirteen nominated peer reviewers, three 43 
volunteered, had no conflicts of interest, had the appropriate area of expertise,48 and were 44 
available to complete an individual review (Table C1). The focus of the peer review was on the 45 

                                            
47 NOAA's Information Quality Guidelines. 
 
48 Reviewer credentials are posted at: https://www.noaa.gov/information-technology/update-to-20162018-technical-
guidance-for-assessing-effects-of-anthropogenic-sound-on-marine-mammal 
 
 

http://www.cio.noaa.gov/services_programs/IQ_Guidelines_011812.html
https://www.noaa.gov/information-technology/update-to-20162018-technical-guidance-for-assessing-effects-of-anthropogenic-sound-on-marine-mammal
https://www.noaa.gov/information-technology/update-to-20162018-technical-guidance-for-assessing-effects-of-anthropogenic-sound-on-marine-mammal


This information is distributed solely for the purpose of pre-dissemination for public comment under applicable information 
quality guidelines. It has not been formally disseminated by NOAA. It does not represent and should not be construed to 

represent any agency determination or policy. 
 

2024 UPDATE TO: TECHNICAL GUIDANCE FOR ASSESSING THE EFFECTS OF ANTHROPOGENIC SOUND ON MARINE MAMMAL 
HEARING (VERSION 3.0) 

147 

scientific/technical studies that have been applied and the manner that they have been applied in 1 
this document.  2 

Table C1: Peer review panel. 3 
 4 

Name Affiliation 
Dr. David Barclay Dalhousie University 
Dr. Jillian Sills University of California Santa Cruz 
Dr. Douglas Wartzok Florida International University 

 5 
 6 
1.2 CONFLICT OF INTEREST DISCLOSURE 7 
 8 
Each peer reviewer completed a conflict of interest disclosure form. It is essential that peer 9 
reviewers not be compromised by any significant conflict of interest. For this purpose, the term 10 
“conflict of interest” means any financial or other interest which conflicts with the service of the 11 
individual because it (1) could significantly impair the individual's objectivity or (2) could create an 12 
unfair competitive advantage for any person or organization. No individual can be appointed to 13 
review information subject to the OMB Peer Review Bulletin if the individual has a conflict of 14 
interest that is relevant to the functions to be performed. 15 
 16 
The following https://www.noaa.gov/information-technology/update-to-20162018-technical-17 
guidance-for-assessing-effects-of-anthropogenic-sound-on-marine-mammal contains information 18 
on the peer review process including: the charge to peer reviewers, peer reviewers’ names, peer 19 
reviewers’ individual reports, and NMFS’s response to peer reviewer reports. 20 
 21 
1.3 CHANGES TO UPDATED TECHNICAL GUIDANCE AS A RESULT OF PEER REVIEW 22 
 23 
Overall, most of the changes to the Updated Technical Guidance, as a result of the Peer Review, 24 
were considered minor. None of the peer reviewers identified any major issues with the Updated 25 
Technical Guidance. Peer reviewers’ comments and NMFS’s responses to the comments, from 26 
the peer review, can be found at: https://www.noaa.gov/sites/default/files/2023-05/ID429-FINAL-27 
Peer-Review-Report-508_0.pdf. 28 
 29 
1.4 CHANGES TO UPDATED TECHNICAL GUIDANCE SINCE PEER REVIEW 30 
 31 
After the Peer Review concluded, there were minor changes made to the Updated Technical 32 
Guidance document by the Navy (December 2023). Namely, two new audiograms were 33 
published for California sea lions (Kastelein et al. 2023b) and a correction to the calculation of the 34 
offset between the TTS and AUD INJ impulsive SEL thresholds was made (i.e., rounding error) 35 
(identified during the Federal Agency Preview). These additional changes only resulted in minor 36 
changes to the thresholds and weighting functions. Thus, the Peer Reviewers were alerted to 37 
these changes prior to the public comment period and were encouraged to submit any additional 38 
comments they may have during this time.  39 
 40 
II. FEDERAL AGENCY PREVIEW 41 
 42 
NMFS also solicited input on the Updated Technical Guidance from other Federal agencies after 43 
the peer review (May/June 2023) but before the public comment period. NMFS contacted 17 44 
Federal agencies to inquire if they wanted to participate in the Federal Agency Preview. Of the 17 45 
agencies contacted, 12 asked to participate in the Federal Agency Preview (i.e., received the 46 
draft document). Six agencies provided comments  on the draft document, three indicated they 47 
had no comments to provide, and three had no response (Table C2). 48 
 49 

https://www.noaa.gov/information-technology/update-to-20162018-technical-guidance-for-assessing-effects-of-anthropogenic-sound-on-marine-mammal
https://www.noaa.gov/information-technology/update-to-20162018-technical-guidance-for-assessing-effects-of-anthropogenic-sound-on-marine-mammal
https://www.noaa.gov/sites/default/files/2023-05/ID429-FINAL-Peer-Review-Report-508_0.pdf
https://www.noaa.gov/sites/default/files/2023-05/ID429-FINAL-Peer-Review-Report-508_0.pdf
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Table C2: Federal Agency Preview participants (in alphabetical order). 1 
 2 

Federal Agency Provided Comments 
Bureau of Ocean Energy Management Yes 
Department of Energy Yes 
Department of Transportation Yes 
Marine Mammal Commission Yes 
National Park Service Yes 
National Science Foundation Yes 
U.S. Air Force No response* 
U.S. Army Corps of Engineers No response* 
U.S. Coast Guard Had no comments 
U.S. Fish and Wildlife Service Had no comments 
U.S. Geological Survey Had no comments 
U.S. Navy No response* 

*Federal agencies were sent multiple emails inquiring about the status of their review of the Updated Technical Guidance, 3 
but they never responded. 4 
 5 
 2.1 CHANGES TO UPDATED TECHNICAL GUIDANCE AS A RESULT OF FEDERAL AGENCY PREVIEW 6 
 7 
Overall, most of the changes to the Updated Technical Guidance, as a result of the Federal 8 
Agency Preview, were considered minor. None of the Federal agency reviewers identified any 9 
major issues with the Updated Technical Guidance. Federal agency reviewers’ comments and 10 
NMFS’s responses to the comments, from the Federal Agency Preview, can be found at 11 
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-12 
technical-guidance. 13 
 14 
2.2 CHANGES TO UPDATED TECHNICAL GUIDANCE SINCE FEDERAL AGENCY PREVIEW 15 
 16 
As with the Peer Review, there were minor changes made to the Updated Technical Guidance 17 
document, since the Federal Agency Preview. Namely, two new audiograms were published for 18 
California sea lions (Kastelein et al. 2023b) and a correction to the calculation of the offset 19 
between the TTS and AUD INJ impulsive SEL thresholds was made (i.e., rounding error) 20 
(identified during the Federal Agency Preview). These additional changes only resulted in minor 21 
changes to the thresholds and weighting functions. Thus, Federal Agencies were alerted to these 22 
changes prior to the public comment period and were encouraged to submit any additional 23 
comments they may have during this time.  24 
 25 
 26 
III. PUBLIC COMMENT  27 
 28 
In addition to the peer review process, NMFS recognizes the importance of feedback from action 29 
proponents/stakeholders and other members of the public. The focus of the public comment 30 
process was on both the technical aspects of the document, as well as the implementation of the 31 
science in NMFS’s policy decisions under the various applicable statutes.  32 
 33 
3.1  PUBLIC COMMENT PERIOD (SECTION TBD UNTIL CLOSE OF PUBLIC COMMENT) 34 
 35 
The 45-day public comment period was advertised via the Federal Register (NMFS 2024).  36 

3.1.1 Summary of Public Comments Received 37 
 38 
A total of xx comments were received from individuals, groups, organizations, and affiliations. XX 39 
of these were in the form of a letter, spreadsheet, or individual comment submitted by 40 

https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance
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representatives of a group/organization/affiliation (some submitted on behalf of an organization 1 
and/or as an individual).  Those commenting included:   .  Each provided substantive comments 2 
addressing technical aspects or issues relating to the implementation of thresholds, which were 3 
addressed in the Final Updated Technical Guidance or related Federal Register Notice. 4 
 5 
Specific comments can be viewed on  6 
 7 
NMFS’s responses to substantive comments made during the public comment period were 8 
published in the Federal Register located on the following web page 9 
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-10 
technical-guidance in conjunction with the Final Updated Technical Guidance. 11 

3.1.2 Changes to Updated Technical Guidance as a Result of Public Comments 12 
 13 
Public comment provided NMFS with valuable input during the development of the Updated 14 
Technical Guidance. As a result of public comments, numerous changes were incorporated in the 15 
Final Updated Technical Guidance, with the most significant being: 16 
 17 

•  18 
 19 
 20 
  21 

https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance
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APPENDIX D:  GLOSSARY 1 
 2 
95% Frequency contour percentile: Upper frequency below which 95% of total cumulative 3 
energy is contained (Charif et al. 2010). 4 
 5 
Accumulation period: The amount of time a sound accumulates for the cumulative sound 6 
exposure level (SEL) metric. 7 
 8 
Acoustic threshold: An acoustic threshold in this document identifies the level of sound, after 9 
which exceeded, NMFS anticipates a change in auditory sensitivity (temporary or permanent 10 
threshold shift).  11 
 12 
Animat: A simulated marine mammal. 13 
 14 
Anthropogenic: Originating (caused or produced by) from human activity. 15 
 16 
Audible: Heard or capable of being heard. Audibility of sounds depends on level, frequency 17 
content, and can be reduced in the presence of other sounds (Morfey 2001) 18 
 19 
Audiogram: A graph depicting hearing threshold (RMS SPL dB) as a function of frequency (ANSI 20 
1995; Yost 2007) (Figure D1). 21 
 22 

 23 
Figure D1.  Example audiogram. 24 
 25 
Auditory adaptation: Temporary decrease in hearing sensitivity occurring during the 26 
presentation of an acoustic stimulus (opposed to auditory fatigue which occurs post-stimulation) 27 
(ANSI 1995). 28 
 29 
Auditory bulla: The ear bone in odontocetes that houses the middle ear structure (Perrin et al. 30 
2009). 31 
 32 
Auditory injury (AUD INJ): Damage to the inner ear that can result in destruction of tissue, such 33 
as the loss of cochlear neuron synapses or auditory neuropathy (Houser 2021; Finneran 2024). 34 
Auditory injury includes, but is not limited to PTS. 35 
 36 
Auditory neuropathy: Auditory neuropathy is a hearing disorder in which the inner ear 37 
successfully detects sound, but has a problem with sending sound from the ear to the brain. 38 
Researchers report several causes of auditory neuropathy. In some cases, the cause may involve 39 
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damage to the inner hair cells (specialized sensory cells in the inner ear that transmit information 1 
about sounds through the nervous system to the brain). In other cases, the cause may involve 2 
damage to the auditory neurons that transmit sound information from the inner hair cells to the 3 
brain (NIH 2022: https://www.nidcd.nih.gov/health/auditory-4 
neuropathy#:~:text=Auditory%20neuropathy%20is%20a%20hearing,ages%2C%20from%20infan5 
cy%20through%20adulthood).  6 
 7 
The long-term consequences of this degeneration (i.e., synaptopathy or hidden hearing loss) 8 
remain unclear, but it is believed to contribute to the inability to detect sounds in noise, tinnitus, or 9 
hyperacusis. 10 
 11 
Auditory weighting function: Auditory weighting functions take into account what is known 12 
about marine mammal hearing sensitivity and susceptibility to noise-induced hearing loss and can 13 
be applied to a sound-level measurement to account for frequency-dependent hearing (i.e.,. an 14 
expression of relative loudness as perceived by the ear)(Southall et al. 2007; Southall et al. 2019; 15 
Finneran 2024). Specifically, this function represents a specified frequency-dependent 16 
characteristic of hearing sensitivity in a particular animal, by which an acoustic quantity is 17 
adjusted to reflect the importance of that frequency dependence to that animal (ISO 2017). 18 
Similar to OSHA (2013), marine mammal auditory weighting functions in this document are used 19 
to reflect the risk of noise exposure on hearing and not necessarily capture the most sensitive 20 
hearing range of every member of the hearing group. 21 
 22 
Background noise: Total of all sources of interference in a system used for the production, 23 
detection, measurement, or recording of a signal, independent of the presence of the signal 24 
(ANSI 2013). 25 
 26 
Band-pass filter: A filter that passes frequencies within a defined range without reducing 27 
amplitude and attenuates frequencies outside that defined range (Yost 2007). 28 
 29 
Bandwidth: Bandwidth (Hz or kHz) is the range of frequencies over which a sound occurs or 30 
upper and lower limits of frequency band (ANSI 2005). Broadband refers to a source that 31 
produces sound over a broad range of frequencies (for example, seismic airguns), while 32 
narrowband or tonal sources produce sounds over a more narrow frequency range, typically  with 33 
a spectrum having a localized a peak in amplitude (for example, sonar) (ANSI 1986; ANSI 2005).  34 
 35 
Bone conduction: Transmission of sound to the inner ear primarily by means of mechanical 36 
vibration of the cranial bones (ANSI 1995). 37 
 38 
Broadband: See “bandwidth”. 39 
 40 
Cetacean: Any number of the order Cetacea of aquatic, mostly marine mammals that includes 41 
whales, dolphins, porpoises, and related forms; among other attributes they have a long tail that 42 
ends in two transverse flukes (Perrin et al. 2009). 43 
 44 
Cochlea: Spirally coiled, tapered cavity within the temporal bone, which contains the receptor 45 
organs essential to hearing (ANSI 1995). For cetaceans, based on cochlear measurements two 46 
cochlea types have been described for echolocating odontocetes (type I and II) and one cochlea 47 
type for mysticetes (type M). Cochlea type I is found in species like the harbor porpoise and 48 
Amazon river dolphin, which produce high-frequency echolocation signals. Cochlea type II is 49 
found in species producing lower frequency echolocation signals (Ketten 1992). 50 
 51 
Continuous sound: A sound whose sound pressure level remains above ambient sound during 52 
the observation period (ANSI 2005). 53 
 54 

https://www.nidcd.nih.gov/health/auditory-neuropathy#:%7E:text=Auditory%20neuropathy%20is%20a%20hearing,ages%2C%20from%20infancy%20through%20adulthood
https://www.nidcd.nih.gov/health/auditory-neuropathy#:%7E:text=Auditory%20neuropathy%20is%20a%20hearing,ages%2C%20from%20infancy%20through%20adulthood
https://www.nidcd.nih.gov/health/auditory-neuropathy#:%7E:text=Auditory%20neuropathy%20is%20a%20hearing,ages%2C%20from%20infancy%20through%20adulthood
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Critical level: The level at which damage switches from being primarily metabolic to more 1 
mechanical; e.g., short duration of impulse can be less than the ear’s integration time, leading for 2 
the potential to damage beyond level the ear can perceive (Akay 1978). 3 
 4 
Cumulative sound exposure level (SEL24h; re: 1µPa2s): Level of acoustic energy accumulated 5 
over a given period of time or event (EPA 1982) or specifically, ten times the logarithm to the 6 
base ten of the ratio of a given time integral of squared instantaneous frequency-weighted sound 7 
pressure over a stated time interval or event to the reference sound exposure (ANSI 1995; ANSI 8 
2013). Within the Updated Technical Guidance, this metric is weighted based on the document’s 9 
marine mammal auditory weighting functions.  10 
 11 
Deafness: A condition caused by a hearing loss that results in the inability to use auditory 12 
information effectively for communication or other daily activities (ANSI 1995).  13 
 14 
Decibel (dB): One-tenth of a bel. Unit of level when the base of the logarithm is the tenth root of 15 
ten, and the quantities concerned are proportional to power (ANSI 2013).  16 
 17 
dB/decade: This unit is typically used to describe roll-off, where a decade is a 10-times increase 18 
in frequency (roll-off can also be described as decibels per octave, where an octave is 2-times 19 
increase in frequency) 20 
 21 
Duty cycle: On/off cycle time or proportion of time signal is active (calculated by: pulse length x 22 
repetition rate). A continuous sound has a duty cycle of 1 or 100%. 23 
 24 
Dynamic range of auditory system:  Reflects the range of the auditory system from the ability 25 
to detect a sound to the amount of sound tolerated before damage occurs (i.e., the threshold of 26 
pain minus the threshold of audibility) (Yost 2007). For the purposes of this document, the intent 27 
is relating the threshold of audibility and TTS onset levels, not the threshold of pain. 28 
 29 
Effective quiet: The maximum sound pressure level that will fail to produce any significant 30 
threshold shift in hearing despite duration of exposure and amount of accumulation (Ward et al. 31 
1976; Ward 1991). 32 
 33 
Endangered Species Act (ESA): The Endangered Species Act of 1973 (16. U.S.C 1531 et. 34 
seq.) provides for the conservation of species that are endangered or threatened throughout all or 35 
a significant portion of their range, and the conservation of the ecosystems on which they 36 
depend.  37 
 38 
NOAA’s National Marine Fisheries Service and the U.S. Fish and Wildlife Service (USFWS) share 39 
responsibility for implementing the ESA.  40 
 41 
Equal Energy Hypothesis (EEH): Assumption that sounds of equal energy produce the equal 42 
risk for hearing loss (i.e., if the cumulative energy of two sources are similar, a sound from a 43 
lower level source with a longer exposure duration may have similar risks to a shorter duration 44 
exposure from a higher level source) (Henderson et al. 1991). 45 
 46 
Equal latency:  A curve that describe the frequency-dependent relationships between sound 47 
pressure level and reaction time and are similar in shape to equal loudness contours in humans 48 
(loudness perception can be studied under the assumption that sounds of equal loudness elicit 49 
equal reaction times; e.g., Liebold and Werner 2002). 50 
 51 
Equal-loudness contour: A curve or curves that show, as a function of frequency, the sound 52 
pressure level required to cause a given loudness for a listener having normal hearing, listening 53 
to a specified kind of sound in a specified manner (ANSI 2013). 54 
 55 
Fitness: Survival and lifetime reproductive success of an individual. 56 
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Frequency: The number of periods occurring over a unit of time (unless otherwise stated, cycles 1 
per second or hertz) (Yost 2007). 2 
 3 
Fundamental frequency: Frequency of the sinusoid that has the same period as the periodic 4 
quantity (Yost 2007; ANSI 2013). First harmonic of a periodic signal (Morfey 2001). 5 
 6 
Generalized hearing range: There is no standard definition of hearing arrange currently 7 
available. Southall et al. 2007 defined upper and lower limits of the hearing range as ~60-70 dB 8 
above the hearing threshold at greatest hearing sensitivity (based on human and mammalian 9 
definition of 60 dB49), and Southall et al. 2019 used 60 dB to indicate audiometry data by marine 10 
mammal species. 11 
 12 
Harmonic: A sinusoidal quantity that has a frequency which is an integral multiple of the 13 
fundamental frequency of the periodic quantity to which it is related (Yost 2007; ANSI 2013). 14 
 15 
Hearing loss growth rates: The rate of threshold shift increase (or growth) as decibel level or 16 
exposure duration increase (expressed in dB of temporary threshold shift/dB of noise).Growth 17 
rates of threshold shifts are higher for frequencies where hearing is more sensitive (Finneran and 18 
Schlundt 2010). Typically in terrestrial mammals, the magnitude of a threshold shift increases 19 
with increasing duration or level of exposure, until it becomes asymptotic (growth rate begins to 20 
level or the upper limit of TTS; Mills et al. 1979; Clark et al. 1987; Laroche et al. 1989; Yost 2007). 21 
 22 
Hertz (Hz): Unit of frequency corresponding to the number of cycles per second. One hertz 23 
corresponds to one cycle per second. 24 
 25 
Hyperacusis: A rare hearing disorder of loudness perception, which has been defined as a 26 
consistently exaggerated or inappropriate responses to sounds that are neither threatening nor 27 
uncomfortably loud to a typical human (Baguley 2003). 28 
 29 
Impulsive sound: Sound sources that produce sounds that are typically transient, brief (less 30 
than 1 second), broadband, and consist of high peak sound pressure with rapid rise time and 31 
rapid decay (ANSI 1986; NIOSH 1998; ANSI 2005). They can occur in repetition or as a single 32 
event. Examples of impulsive sound sources include explosives, seismic airguns, and impact pile 33 
drivers. 34 
 35 
Information Quality Guidelines (IQG): Section 515 of the Treasury and General Government 36 
Appropriations Act for Fiscal Year 2001 (Public Law 106-554), directs the Office of Management 37 
and Budget (OMB) to issue government-wide guidelines that “provide policy and procedural 38 
guidance to federal agencies for ensuring and maximizing the quality, objectivity, utility, and 39 
integrity of information (including statistical information) disseminated by federal agencies.” OMB 40 
issued guidelines directing each federal agency to issue its own guidelines. 41 
http://www.cio.noaa.gov/services_programs/IQ_Guidelines_011812.html 42 
 43 
Integration time (of the ear): For a signal to be detected by the ear, it must have some critical 44 
amount of energy. The process of summing the power to generate the required energy is 45 
completed over a particular integration time. If the duration of a signal is less than the integration 46 
time required for detection, the power of the signal must be increased for it to be detected by the 47 
ear (Yost 2007). 48 
 49 
Intermittent sound: Interrupted levels of low or no sound (NIOSH 1998) or bursts of sounds 50 
separated by silent periods (Richardson and Malme 1993). Typically, intermittent sounds have a 51 
more regular (predictable) pattern of bursts of sounds and silent periods (i.e., duty cycle).  52 
                                            
49 In humans, functional hearing is typically defined as frequencies at a threshold of 60 to 70 dB and below (Masterson et 
al. 1969; Wartzok and Ketten 1999), with normal hearing in the most sensitive hearing range considered 0 dB (i.e., 60 to 
70 dB above best hearing sensitivity).   

http://www.cio.noaa.gov/services_programs/IQ_Guidelines_011812.html
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Isopleth: A line drawn through all points having the same numerical value. In the case of sound, 1 
the line has equal sound pressure or exposure levels.  2 
 3 
Kurtosis: Statistical quantity that represents the impulsiveness (“peakedness”) of the event; 4 
specifically the ratio of fourth- order central moment to the squared second-order central moment 5 
(Hamernik et al. 2003; Davis et al. 2009). 6 
 7 
Linear interpolation: A method of constructing new data points within the range of a discrete 8 
set of known data points, with linear interpolation being a straight line between two points. 9 
 10 
Marine Mammal Protection Act (MMPA): The Marine Mammal Protection Act (16. U.S.C. 1361 11 
et. seq.)was enacted on October 21, 1972 and MMPA prohibits, with certain exceptions, the 12 
“take” of marine mammals in U.S. waters and by U.S. citizens on the high seas, and the 13 
importation of marine mammals and marine mammal products into the United States. NOAA’s 14 
National Marine Fisheries Service and the U.S. Fish and Wildlife Service (USFWS) share 15 
responsibility for implementing the MMPA.  16 
 17 
Masking: Obscuring of sounds of interest by interfering sounds, generally of the similar 18 
frequencies (Richardson et al. 1995). 19 
 20 
Mean-squared error (MSE): In statistics, this measures the average of the squares of the 21 
“errors,” that is, the difference between the estimator and what is estimated. 22 
 23 
Mean-square sound pressure: Integral over a specified time interval of squared sound 24 
pressure, divided by the duration of the time interval for a specified frequency range (ISO 2017).  25 
 26 
Multipath propagation: This phenomenon occurs whenever there is more than one propagation 27 
path between the source and receiver (i.e., direct path and paths from reflections off the surface 28 
and bottom or reflections within a surface or deep-ocean duct; Urick 1983). 29 
 30 
Mysticete: The toothless or baleen (whalebone) whales, including  the rorquals, gray whale, and 31 
right whale; the suborder of whales that includes those that bulk feed and cannot echolocate 32 
(Perrin et al. 2009). 33 
 34 
Narrowband: See “bandwidth”. 35 
 36 
National Standard 2 (NS2): The Magnuson-Stevens Fishery Conservation and Management Act 37 
(MSA) (16 U.S.C. 1801 et. seq.) is the principal law governing marine fisheries in the U.S. and 38 
includes ten National Standards to guide fishery conservation and management.  One of these 39 
standards, referred to as National Standard 2 (NS2), guides scientific integrity and states 40 
“(fishery) conservation and management measures shall be based upon the best scientific 41 
information available. 42 
 43 
Noise-induced hearing loss: Changes in normal auditory function that occur as a consequence 44 
of noise exposure, which can be temporary or permanent (Yost 2007; NIH 2022).  45 
 46 
Non-impulsive sound: Sound sources that produce sounds that can be broadband, narrowband 47 
or tonal, brief or prolonged, continuous or intermittent) and typically do not have a high peak 48 
sound pressure with rapid rise time that impulsive sounds do. Examples of non-impulsive sound 49 
sources include marine vessels, machinery operations/construction (e.g., drilling), certain active 50 
sonar (e.g. tactical), and vibratory pile drivers. 51 
 52 
Octave: The interval between two sounds having a basic frequency ratio of two (Yost 2007). For 53 
example, one octave above 400 Hz is 800 Hz. One octave below 400 Hz is 200 Hz. 54 
 55 
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Odontocete: The toothed whales, including sperm and killer whales, belugas, narwhals, dolphins 1 
and porpoises; the suborder of whales including those able to echolocate (Perrin et al. 2009). 2 
 3 
Omnidirectional: Receiving or transmitting signals in all directions (i.e., variation with direction is 4 
designed to be as small as possible). 5 
 6 
One-third octave (base 10): The frequency ratio corresponding to a decidecade or one tenth of 7 
a decade (ISO 2017). 8 
 9 
Otariid: The eared seals (sea lions and fur seals), which use their foreflippers for propulsion 10 
(Perrin et al. 2009). 11 
 12 
Peak sound pressure level (PK SPL; re: 1 µPa): The greatest magnitude of the sound 13 
pressure, which can arise from a positive or negative sound pressure, during a specified time, for 14 
a specific frequency range (ISO 2017). 15 
 16 
Perception: Perception is the translation of environmental signals to neuronal representations 17 
(Dukas 2004). 18 
 19 
Permanent threshold shift (PTS): A permanent, irreversible increase in the threshold of 20 
audibility at a specified frequency or portion of an individual’s hearing range above a previously 21 
established reference level. The amount of permanent threshold shift is customarily expressed in 22 
decibels (ANSI 1995; Yost 2007). Available data from humans and other terrestrial mammals 23 
indicate that a 40 dB threshold shift approximates PTS onset (see Ward et al. 1958, 1959; Ward 24 
1960; Kryter et al. 1966; Miller 1974; Ahroon et al. 1996; Henderson et al. 2008). 25 
 26 
Phocid: A family group within the pinnipeds that includes all of the “true” seals (i.e. the “earless” 27 
species). Generally used to refer to all recent pinnipeds that are more closely related to Phoca 28 
than to otariids or the walrus (Perrin et al. 2009). 29 
 30 
Pinniped: Seals, sea lions and fur seals (Perrin et al. 2009). 31 
 32 
Pulse duration: For impulsive sources, window that makes up 90% of total cumulative energy 33 
(5%-95%) (Madsen 2005) 34 
 35 
Propagation loss (PL) Difference between source level in a specified direction and root mean 36 
square sound pressure level at specified position (ISO 2017). Note: Propagation loss is 37 
conceptually different from transmission loss (i.e., propagation loss is associated with the source 38 
level, while transmission loss is associated with a measurement at a specified distance). 39 
 40 
Received level: The level of sound at a specified distance of interest, r, (i.e., at the animal or 41 
receiver). Note: Received level is conceptually different from source level (i.e., different quantities 42 
with different reference values). 43 
 44 
Reference pressure: See sound pressure level. 45 
 46 
Repetition rate: Number of pulses of a repeating signal in a specific time unit, normally 47 
measured in pulses per second. The inter-pulse interval is the inverse of this quantity. 48 
 49 
Rise time: The time interval a signal takes to rise from 10% to 90% of its highest peak (ANSI 50 
1986; ANSI 2013). 51 
 52 
Roll-off: Change in weighting function amplitude (-dB) with changing frequency. 53 
 54 
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Root-mean-square sound pressure level (RMS SPL; re: 1 µPa): Ten times the logarithm to the 1 
base 10 of the ratio of the mean-square sound pressure to the specified reference value in 2 
decibels (ISO 2017). 3 
 4 
Sensation level (dB): The pressure level of a sound above the hearing threshold for an 5 
individual or group of individuals (ANSI 1995; Yost 2007). 6 
Sound: An alteration in pressure propagated by the action of elastic stresses in an elastic 7 
medium and that involves local compression and expansion of the medium (ISO 2017). 8 
 9 
Sound Exposure Level (SEL; re: 1µPa2s): A measure of sound level that takes into account the 10 
duration of the signal. Ten times the logarithm to the base 10 of the ratio of time-integrated 11 
squared sound pressure to the specified reference value in decibels. The time duration and 12 
frequency range should be specified (ISO 2017). 13 
 14 
Sound Pressure Level (SPL): A measure of sound level that represents only the pressure 15 
component of sound. Ten times the logarithm to the base 10 of the ratio of time-mean-square 16 
pressure of a sound in a stated frequency band to the square of the reference pressure (1 µPa in 17 
water) (ANSI 2013).  18 
 19 
Spatial: Of or relating to space or area. 20 
 21 
Spectral/spectrum: Of or relating to frequency component(s) of sound. The spectrum of a 22 
function of time is a description of its resolution into components (frequency, amplitude, etc.). The 23 
spectrum level of a signal at a particular frequency is the level of that part of the signal contained 24 
within a band of unit width and centered at a particular frequency (Yost 2007). 25 
 26 
Spectral density levels: Level of the limit, as the width of the frequency band approaches zero, 27 
of the quotient of a specified power-like quantity distributed within a frequency band, by the width 28 
of the band (ANSI 2013). 29 
 30 
Subharmonic: Sinusoidal quantity having a frequency that is an integral submultiple of the 31 
fundamental frequency of a periodic quantity to which it is related (ANSI 2013). 32 
 33 
Temporal: Of or relating to time. 34 
 35 
Temporary threshold shift (TTS): A temporary, reversible increase in the threshold of audibility 36 
at a specified frequency or portion of an individual’s hearing range above a previously established 37 
reference level. The amount of temporary threshold shift is customarily expressed in decibels 38 
(ANSI 1995, Yost 2007). Based on data from cetacean TTS measurements (see Southall et al. 39 
2019 for a review), a TTS of 6 dB is considered the minimum threshold shift clearly larger than 40 
any day-to-day or session-to-session variation in a subject’s normal hearing ability (Schlundt et al. 41 
2000; Finneran et al. 2000; Finneran et al. 2002). 42 
 43 
Threshold (of audibility): The threshold of audibility (auditory threshold) for a specified signal is 44 
the minimum effective sound pressure level of the signal that is capable of evoking an auditory 45 
sensation in a specified fraction of trials (either physiological or behavioral) (Yost 2007). It 46 
recommended that this threshold be defined as the lowest sound pressure level at which 47 
responses occur in at least 50% of ascending trials. (ANSI 2009). 48 
 49 
Threshold shift: A change, usually an increase, in the threshold of audibility at a specified 50 
frequency or portion of an individual’s hearing range above a previously established reference 51 
level. The amount of threshold shift is customarily expressed in decibels (ANSI 1995, Yost 2007). 52 
 53 
Tinnitus: Disorder resulting in ringing of the ears or other phantom sound in the ears, which no 54 
obvious source can be found (Yost 2007). 55 
 56 
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Tone: A sound wave capable of exciting an auditory sensation having pitch. A pure tone is a 1 
sound sensation characterized by a single pitch (one frequency). A complex tone is a sound 2 
sensation characterized by more than one pitch (more than one frequency) (ANSI 2013). 3 
 4 
Transmission Loss (TL): Reduction in a specified level between two specified points that are 5 
within an underwater acoustic field (ISO 2017). Note: Transmission loss is conceptually different 6 
from propagation loss (i.e., propagation loss is associated with the source level, while 7 
transmission loss is associated with a measurement at a specified distance). 8 
 9 
Uncertainty: Lack of knowledge about a parameter’s true value (Bogen and Spears 1987; Cohen 10 
et al. 1996). 11 
 12 
Variability: Differences between members of the populations that affect the magnitude of risk to 13 
an individual (Bogen and Spears 1987; Cohen et al. 1996; Gedamke et al. 2011). 14 
  15 
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