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The resources available to support conservation work, whether time or money, are limited. Decision
makers need methods to help them identify the optimal allocation of limited resources to meet conser-
vation goals, and decision analysis is uniquely suited to assist with the development of such methods. In
recent years, a number of case studies have been described that examine optimal conservation decisions
under fiscal constraints; here we develop methods to look at other types of constraints, including limited
staff and regulatory deadlines. In the US, Section Seven consultation, an important component of protec-
tion under the federal Endangered Species Act, requires that federal agencies overseeing projects consult
with federal biologists to avoid jeopardizing species. A benefit of consultation is negotiation of project
modifications that lessen impacts on species, so staff time allocated to consultation supports conserva-
tion. However, some offices have experienced declining staff, potentially reducing the efficacy of consul-
tation. This is true of the US Fish and Wildlife Service’s Washington Fish and Wildlife Office (WFWO) and
its consultation work on federally-threatened bull trout (Salvelinus confluentus). To improve effectiveness,
WFWO managers needed a tool to help allocate this work to maximize conservation benefits. We used a
decision-analytic approach to score projects based on the value of staff time investment, and then iden-
tified an optimal decision rule for how scored projects would be allocated across bins, where projects in
different bins received different time investments. We found that, given current staff, the optimal deci-
sion rule placed 80% of informal consultations (those where expected effects are beneficial, insignificant,
or discountable) in a short bin where they would be completed without negotiating changes. The remain-
ing 20% would be placed in a long bin, warranting an investment of seven days, including time for nego-
tiation. For formal consultations (those where expected effects are significant), 82% of projects would be
placed in a long bin, with an average time investment of 15 days. The WFWO is using this decision-
support tool to help allocate staff time. Because workload allocation decisions are iterative, we describe
a monitoring plan designed to increase the tool’s efficacy over time. This work has general application
beyond Section Seven consultation, in that it provides a framework for efficient investment of staff time
in conservation when such time is limited and when regulatory deadlines prevent an unconstrained
approach.

Published by Elsevier Ltd.
1. Introduction

Adequate time and money are not available for all proposed
conservation work. Therefore, difficult resource allocation deci-
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sions must be made by government agencies and conservation
organizations; this fact has spawned a great deal of research
intended to support decision makers. Many efforts have involved
schemes for prioritizing geographic areas and/or species for con-
servation. Prioritization schemes have generally focused on at least
one of two general concepts: vulnerability and irreplaceability
(Brooks et al., 2006), where areas/species that are more vulnerable
(e.g., high proportionate habitat loss, IUCN threatened status) or
irreplaceable (e.g., areas with high levels of endemism, taxonomi-
cally unique species) receive higher priority.
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However, prioritization schemes have not generally involved
consideration of the efficient use of limited conservation resources
(Murdoch et al., 2007; Bottrill et al., 2008; Joseph et al., 2009) be-
cause costs are not explicitly factored into analyses (Brooks et al.,
2006). However, the allocation of scarce conservation resources
can usefully be seen as a multiple-objective decision problem
(Keeney and Raiffa, 1976) where the goal is to identify the greatest
conservation gain for the lowest cost (or more simply, for a given
budget). The decision-analytic concept, when applied to the prob-
lem of geographic area prioritization, gives rise to optimal reserve
design (examples from an extensive literature include Possingham
et al., 2000; Moilanen and Cabeza, 2002; McCarthy et al., 2005;
Moilanen et al., 2006; Wilson et al., 2006). The concept can also
be applied to species prioritization schemes, as ably demonstrated
by McCarthy et al. (2008) and Joseph et al. (2009). An analog can be
found in the application of decision analysis to the conservation of
individual species, where the goal is to identify optimal decisions
about which of several management actions should be undertaken
to conserve a single species, given resource constraints (see also
Martin et al., 2007).

Decision analysis (sensu Clemen, 1996; Possingham et al., 2001)
increases the effectiveness of decision-making through decon-
struction and analysis of the components of a decision (i.e., man-
agement objectives, alternative actions, predictive models;
Hammond et al., 1999), followed by reconstitution of those compo-
nents into a framework for identification of optimal decisions.
Decision analysis is especially effective for complex decisions that
require simultaneous consideration of multiple management
objectives and substantial uncertainty, and it recognizes that some
decision elements are informed primarily by values or policy (i.e.,
management objectives) while others are primarily the purview
of science (i.e., predictive models). Decision analysis is needed to
effectively frame conservation problems to provide information
most useful for decision makers (Possingham et al., 2001;
McCarthy et al., 2008).

In the US, the Endangered Species Act of 1973 (ESA) provides
Federal protection for threatened and endangered species. Funda-
mental to ESA protection is ensuring that Federal activities do
not jeopardize the continued existence of listed species. Federal
agencies (action agencies) undertaking or permitting projects,
including everything from transportation improvement to energy
development to habitat restoration, consult with the US Fish and
Wildlife Service (USFWS) and/or National Marine Fisheries Service
as prescribed by Section Seven of ESA. A conservation benefit of
consultation is the negotiation of changes to project design that
lessen negative impacts. Changes may include improved best man-
agement practices, modified project timing, location, or design, or
compensatory restoration actions.

The USFWS Washington Fish and Wildlife Office in Lacey,
Washington (WFWO) is responsible for consultations for a number
of threatened and endangered species. Notably, the federally-
threatened bull trout (Salvelinus confluentus) was, in recent years,
the subject of approximately 85% of WFWO consultations. How-
ever, the office has recently experienced reductions in staffing lev-
els, which have led to overruns in regulatory deadlines for
completing consultations. When overruns occur, opportunities to
negotiate changes are lost. Therefore, managers at the WFWO
wanted to develop a method to guide decision-making about staff
time allocation. Here, we describe a decision-analytic framework
(sensu Clemen, 1996) developed to help managers allocate staff
time to the WFWO bull trout consultation workload to maximize
the conservation value of consultation, while completing work
within regulatory deadlines.

General aspects of this framework have wide applicability both
to USFWS, and more generally to organizations interested in the
optimal allocation of scarce conservation resources, especially for
conservation actions targeted at single species. Where other alloca-
tion case studies have focused on total budget constraints, here we
focus on constraints imposed by limited staff time and regulatory
deadlines (i.e., the legal requirement to respond to all consultations
and to do so within legally-mandated timeframes). By demonstrat-
ing how the notion of constrained optimization for conservation
problems extends beyond cost constraints, we provide a fuller pic-
ture of how these methods can be broadly valuable to managers
interested in maximizing conservation returns.
2. Materials and methods

2.1. Bull trout ecology

The bull trout is federally threatened throughout its range in the
northwestern US. Bull trout are primarily a migratory species,
spawning in headwater tributaries in the fall and migrating down-
stream in the winter and early spring to forage, mature, and over-
winter (Montana Bull Trout Scientific Group, 1998; Brenkman and
Corbett, 2005). Fluvial (river migrant) and adfluvial (lake migrant)
life history forms of bull trout are represented throughout the
range. The Coastal and Puget Sound regions of western Washington
contain the only populations supporting the anadromous (marine
migrant) life history (Goetz et al., 2004; Brenkman et al., 2007)
which exhibits complex migrations between freshwater and salt-
water habitats during the life cycle (Brenkman et al., 2007).

Bull trout have more specific habitat requirements than most
salmonids (Rieman and McIntyre, 1993). Water temperatures
above 15 �C limit their distribution (Rieman and McIntyre, 1993).
Bull trout are sensitive to habitat changes that decrease water
quality and quantity, reduce habitat connectivity, increase stream
substrate embeddedness, simplify stream channel complexity,
and reduce instream habitat complexity (Montana Bull Trout Sci-
entific Group, 1998).

We focus here on the Coastal–Puget Sound population segment,
which contains 14 core areas encompassing 67 local populations
(interacting spawning groups). Core areas are planning units that
form the basis of the draft recovery plan (US Fish and Wildlife
Service, 2004), and combine core habitat (i.e., habitat that could
supply all elements for long-term viability of bull trout) and a core
population (one or more local populations). Habitat management
objectives within core areas include maintaining cold stream tem-
peratures, high water quality, complex and diverse channel charac-
teristics, and large patches of connected habitat. The anadromous
form is unique in its reliance on nearshore marine and freshwater
habitats outside of core areas for foraging and overwintering.
2.2. Decision analysis

The decision problem is how to allocate staff time to bull trout
consultation. Authority for this decision lies with the WFWO man-
agement team, and in consultation with this team, we developed a
statement of the management objective: Maximize the conserva-
tion effectiveness of bull trout consultation, while completing
work within regulatory time frames. By regulation, the duration
of consultation varies depending on the expected consequences:
30 days for projects with ‘‘insignificant or discountable” effects
(informal consultation) or 135 days when ‘‘significant” effects are
anticipated by the action agency or Services (formal consultation).

For alternative actions, we specified that each consultation
could be assigned to either a short bin or a long bin, where the
short bin consultations would be completed in a minimum amount
of time without negotiating changes with the action agency. For
long bin consultations, biologists would invest time negotiating
changes to benefit bull trout. Scaling these alternatives up to apply
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to the many consultations that arrive in the WFWO, we aimed to
develop a decision rule that identified the optimal proportion of
consultations to place in the short versus long bin, and for consul-
tations in the long bin, the optimal amount of time staff biologists
should invest in those consultations. The optimal decision rule
could then be converted into guidance whereby consultations with
a potential value score (described below) under some cutoff should
optimally be placed in the short bin, and those above the cutoff in
the long bin.

Our approach to identifying optimal allocation involves two
steps. First, each consultation is assigned a relative score that mea-
sures the potential conservation gain associated with investing
staff time to negotiate beneficial changes in the project; this is
the prioritization step, which we achieve with our potential value
(PV) model. Second, once the relative conservation value of invest-
ing time in individual projects is determined using the PV model,
our workload allocation model predicts the optimal decision rule
for the suite of projects, where alternative decision rules vary in
the proportion of projects to be placed in the long versus short
bins, and the amount of time to spend on projects in the long bins;
this is the allocation step. We describe each of these models in de-
tail below.

2.3. Working with experts

During model development, we encountered information gaps
for which empirical data were unavailable. We elicited this infor-
mation from a panel of five experts from the consultation staff of
the WFWO and the USFWS Regional Office in Portland, Oregon. Cri-
teria for selecting experts (e.g., Hart, 1986) emphasize specialized
training, knowledge, problem solving effectiveness, and communi-
cation skills. Our criteria for experts were: extensive experience
with bull trout consultation, professional recognition by peers as
an expert, and ability to work in a group setting.

We elicited information from the expert panel during a 4-day
workshop at the WFWO in October 2007, with preparation by
the panel during the preceding month. The panel was asked to pro-
vide input needed to develop the PV model, and to provide input
on how time invested in a consultation would result in increased
realization of the potential value of the project (see below). Our
elicitation technique was a modification of the Delphi process
(e.g., Vose, 1996) and included providing experts with background
materials, eliciting the conceptual model or function, portraying
individual results, reviewing and revising, and aggregation of con-
sensus results.

2.4. Potential value model

We developed the PV model for estimating the conservation va-
lue gained by investing staff time in negotiating changes to a pro-
Table 1
Description of variables included in the potential value model. Variables of two types were i
affected by the project.

Variable type Variable name Short description

Project ProjTypeScale Project type category
Prog Whether project is covered under programmatic gu
BMP Whether best management practices have been ado
DegFlex Degree of flexibility in design, timing, and location

Species LHForm The combination of life history forms expected in th

LHStage The combination of life history stages expected in th
HabUnit The habitat unit in the project area
CoreRisk The risk status of the core population in the project
HabCond The condition of habitat in the project area
ject. We assumed all projects had an inherent impact on bull trout,
which could broadly be characterized as negative, neutral, or posi-
tive. The impact of a project was viewed as falling along a contin-
uum. We defined the PV as the amount of positive movement
along this continuum anticipated from a staff biologist working
to negotiate changes to the project. In other words, we sought to
develop a measure of the potential for improving a project to fur-
ther bull trout conservation, rather than a measure of the ultimate
impact of a project.

It is important to note that we built the PV model to predict po-
tential value as assessed by our expert panel. That is, our model at-
tempts to replicate the judgment of our experts on the potential for
improving a project to further bull trout conservation, rather than
to directly predict how investing time in a consultation would
change biological outcomes for bull trout (e.g., as measured
through demographic parameters). We assumed that the judgment
of our experts corresponded well with on-the-ground realities for
bull trout. Though we note that more involved monitoring to ascer-
tain biological outcomes would be highly beneficial, linking our
model to these outcomes was beyond the scope of this effort. Data
directly linking consultation activities with biological responses of
bull trout are not available (in fact, we know of very little data of
this kind for any taxa listed under ESA). In the absence of such data,
we assert that expert opinion is the best source of information for
characterizing the relative value of different consultation activities,
and that this opinion should prove invaluable in developing prior-
itization schemes for consultation workloads (see Section 4).

After an orientation meeting during which the PV concept was
described, experts were provided with n = 50 project descriptions
for detailed review. We randomly selected descriptions from
1300 projects for which bull trout consultations had been com-
pleted during 2003–2006 (73 formal, 1289 informal). Because of
the greater time required for experts to review project descriptions
for formal consultations, we were able to include only 10 formal
(and 40 informal) consultations. The descriptions were provided
to each expert in a unique, random order. Experts were given
one week, and conducted their review and scoring independently.
For each project, experts provided a PV score on a scale of 0 (low)
to 20 (high).

At the workshop, we worked with experts to develop a list of
variables identified as important predictors of PV. We emphasized
the importance of selecting variables for which values could be as-
sessed with relatively little effort and high repeatability. A PV mod-
el that was time consuming to use would thwart our efforts to
increase efficiency. The variables identified fit into two categories:
variables related to the project, and variables related to the species
(Table 1).

Four project variables were identified: (1) ProjTypeScale, a
coarse categorization of 38 types of typical projects encountered
in western Washington, incorporating a size or scale component
ncluded – those relating to the project itself, and those relating to bull trout in the area

Levels

38 levels (e.g., large timber harvest)
idelines Yes, no
pted Yes, no

Low, moderate, high

e project area Anadromous, fluvial and anadromous, adfluvial and
anadromous

e project area Adult, egg and juvenile, juvenile and adult
Inside core area, freshwater outside core area, marine, other

area Low, moderate, high, outside core area
Pristine, degraded, highly degraded
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when relevant (e.g., ‘‘small pier or dock construction” is
distinguished operationally from ‘‘large pier or dock construction”);
(2) Prog, describing whether a project was subject to programmatic
recommendations, which are guidance provided to action agencies
to streamline consultation on certain project types that are fre-
quently submitted for consultation; (3) BMP, reflecting whether
recognized best management practices were adopted in project de-
sign; and (4) DegFlex, reflecting the degree of flexibility in the pro-
ject design, timing, and location.

Five species variables were identified: (1) LHForm, recording
the life history form or combinations of forms expected in a project
area; (2) LHStage, reflecting the life history stage or stages ex-
pected in a project area during the time of potential effects from
the project; (3) HabUnit, describing the habitat unit in the project
area; (4) CoreRisk, reflecting, for projects located within core areas,
the risk status of the core area based on risk assessment criteria
incorporating adult abundance, trend in adult abundance, and
number of local populations; and (5) HabCond, assessing habitat
condition in the project area.

We recognized that in some cases, when applying the PV model,
levels of species variables would occur that we had not included in
model fitting due to lack of data. For example, (1) fluvial, anadro-
mous, and adfluvial life history forms do sometimes occur in the
same area, or (2) if a project was large enough, it could be expected
to have an impact on more than one level of the HabUnit or HabC-
ond variables. In these cases, we apply the related coefficient
resulting in the highest PV score.

Using the 50 projects and our expert’s scores, we wanted to fit a
model of the form:

fPV i ¼ b̂0 þ b̂1 � V1;i þ b̂2 � V2;i þ � � � þ b̂9 � V9;i ð1Þ

(more precisely, multiple effect estimates were associated with one
variable if it was categorical). We accomplished this by fitting a lin-
ear model (Proc GLM; SAS Institute, 2003), with the mean of the ex-
perts’ PV scores for the 50 scored projects as the dependent
variable, and the values of the nine variables for those projects as
the independent variables.

However, because we did not have adequate data to fit the 38
identified project type and scale categories (ProjTypeScale), special
treatment of this variable was required before linear model fitting.
We worked with experts to associate a score for each of the 38 pro-
ject type and scale categories, with category the only information
provided to experts on which to base their score. We refer to these
as project type and scale sub-scores. We integrated the project
type and scale sub-scores into the linear model by converting the
relevant sub-score for each of the 50 projects in the dataset to a
standard normal scale. The normalized sub-score for project iðSN

i Þ
was computed as:

SN
i ¼

Si � �SffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðSi��SÞ2

n�1

r ð2Þ

where Si is the project type and scale sub-score for project i; �S is the
project type and scale sub-score averaged across the 50 projects,
and n is the sample size (i.e., 50). We then used the normalized
sub-score as the independent variable in the linear model (Proj-
TypeScale). We did this because in several cases the value of Si for
a project was greater than the mean PV score for the project pro-
vided by the panel; it was therefore necessary to rescale the sub-
scores to integrate them into the final PV model.

While the available data for fitting the PV model were limited
(50 projects), we chose to fit all nine of the variables (many of
which had multiple levels) specified by the expert panel, rather
than take a parsimonious model selection approach (sensu
Burnham and Anderson, 2002). This was because we were
primarily interested in developing a model that could grow with
the WFWO over time, where additional monitoring data could be
used to improve the fit of the model in the future.

2.5. Handling time curves

We also needed information on the relationship between time
spent on a consultation (i.e., handling time) and the proportion
of PV realized. For projects in the short bin, by definition, no time
would be invested by staff in negotiating changes. Therefore, the
PV realized would be 0 for all short-bin projects. Logically, these
consultations should be completed in as short a time as possible,
to avoid wasting resources where conservation improvements
are not realized. We worked with the experts to determine mini-
mum handling times necessary to complete projects in the short
bin (i.e., read the biological assessment, write the response, etc.).
We elicited an estimate of minimum handling time for both infor-
mal and formal consultations from each member of the expert pa-
nel, and by consensus, used the averages across experts.

We also elicited handling time curves by first asking each ex-
pert to draw a curve relating handling time (in units of 8-h days)
to the proportion of PV realized for both informal and formal con-
sultations. In the first round of elicitation, most experts drew a lo-
gistic-type curve, and, when the experts then discussed their
individual curves as a group, they decided unanimously that a lo-
gistic-type curve was most appropriate. Next, each expert drew
their own logistic curves by hand for both informal and formal con-
sultations. We selected four points on each curve (0% PV realized,
5%, 50%, and 95%), and used a numerical optimization technique
(separately for the formal and informal handling time curves) to
minimize the sum of squared differences between the points on
the experts’ curves and a function of the general form:

Proportion of PV realized ¼ eaþb�H

1þ eaþb�H
ð3Þ

(i.e., a logit function) where H is handling time and a and b are esti-
mated parameters. We used the ‘‘nlm” function in the R program-
ming environment (R Development Core Team, 2004) for
numerical optimization. To integrate uncertainty in the handling
time curves into the decision analysis, we extracted both the mean
estimates of the parameters and the estimated variance–covariance
matrix from the numerical optimization procedure. We then ran-
domly generated 50,000 pairs of these parameters which integrated
the uncertainty reflected in the variance–covariance matrix, as
follows:

b̂new ¼ b̂mean þ ðVT � RÞ ð4Þ

where b̂new are a randomly-generated pair of parameters a and
b; b̂mean are the fitted estimates of a and b, V is the Choleski decom-
position of the variance–covariance matrix, R is a vector composed
of two random deviates from a standard-normal distribution, and T
signifies a matrix transpose. We kept only those parameter pairs
that produced handling time curves with positive slopes (i.e.,
b > 0). These were fed into the workload allocation model, which
randomly chose one of these pairs of parameters for each simula-
tion (as described below).

2.6. Workload allocation model

A simulation model was developed (in the R programming envi-
ronment; version 2.5.1, 2007) to predict the outcome, in terms of
total PV realized, of different decision rules (i.e., levels of the man-
agement control variables). Fig. 1 provides a diagrammatic repre-
sentation of the inputs and outputs of the model. There were
four management control variables, including the amount of
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handling time to expend on (1) informal and (2) formal projects in
the long bin, and the proportion of (3) informal and (4) formal pro-
jects assigned to the long bin.

The workload model simulates a consultation workload over a
135-day period (the maximum consultation time frame) under
different levels of the control variables. While there are four
control variables, only three are independent, and the fourth is
computed by solving for it in Eq. (5), due to the constraint
that the workload must be completed in the available staff
time:

K ¼ N�p� H þ N�ð1� p Þ�H þ N�p� H þ N�ð1� p Þ�H ð5Þ
i l;i l;i i l;i s;i f l;f l;f f l;f s;f
where K is the total available staff time; Hs,i, Hl,i, Hs,f, and Hl,f are han-
dling times for short bin informal, long bin informal, short bin for-
mal, and long bin formal consultations, respectively; and pl,i and pl,f

are the proportion of informal and formal projects placed in the
long bin. To clarify, Hl,i, Hl,f, pl,i, and pl,f are the control variables,
though only three of these are independent and the last must be ob-
tained by subtraction using Eq. (5). The variables Ni and Nf are the
total number of informal and formal consultations arriving in a
135-day period. In model runs, these were sampled from distribu-
tions, which were in turn calculated from an office database that
tracks project arrival. During federal fiscal years 2003–2006, 117
(SD = 59) informal consultations and seven (SD = 3) formal consul-
tations were submitted to the WFWO, on average, during each
135-day period.

Additional inputs to the model were vectors of PV scores, calcu-
lated as the predicted values from the PV model, for a set of infor-
mal (Ui; n = 50) and formal (Uf; n = 47) projects randomly selected
from the office database (including the 50 projects used to develop
the PV model). These vectors estimate the distribution of PV scores
for arriving projects. Finally, the handling times of projects as-
signed to the short bin, both informal (Hs,i) and formal (Hs,f) were
used in the model.
The workload allocation model proceeded as follows:

1. First, particular levels of each of the three independent manage-
ment control variables (Hl,i, Hl,f, pl,i), were selected from a spec-
ified range.

2. For each simulation at the given levels of the management vari-
ables (20–1000 simulations were run during explorations of
model behavior), the numbers of informal (Ni) and formal (Nf)
projects arriving in the WFWO over a theoretical 135-day period
were sampled from normal distributions (with means and stan-
dard deviations given above; we truncated the samples to pro-
duce integers for Ni and Nf). Also, the parameters a and b
associated with the handling time curves for both informal and
formal consultations were chosen at random from randomly-
generated lists of pairs of these parameters (developed as
described above).

3. Based on the values of the management variables (Hl,i, Hl,f, pl,i),
as well as the number of projects in the simulation (Ni and
Nf), and K (the value of which was provided by office managers),
pl,f was calculated by solving Eq. (5).

4. Nivalues were randomly selected from Ui, and Nf values were
selected from Uf. These values (which formed the vectors xi

and xf) represented the PV scores for theoretical projects arriv-
ing in the WFWO over the 135-day period.

5. Informal projects for which x was greater than the (1 � pl,i)
quantile of Ui were assigned to the long bin, as were for-
mal projects with x greater than the (1 � pl,f) quantile of Uf;
all other projects were assigned to the short bin. We used
the quantiles of U, rather than x, because the decision
rule would have to be specified before the distribution of
the potential values for any 135-day time period was
known.

6. Based on this assignment, the PV realized for each project was
calculated as follows:

a. For projects in the short bin, PV realized = 0.
b. For projects in the long bin, PV realized was calculated as:
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1þ eaþb�H
ð5Þ
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Fig. 2. Mean potential value scores (squares) provided by the five members of the
expert panel, arranged from lowest to highest, for the 50 projects used to develop
the PV model. Error bars show the ranges of the scores across the experts. Filled
squares represent projects that were informal consultations and open squares were
formal consultations.

1 For interpretation of color in Figs. 3–5, the reader is referred to the web version of
this article.
(see Eq. (3)) where H = Hl,i for informal projects and H = Hl,f for for-
mal projects, and where a and b were estimated as described
above.

7. Handling time was calculated (equal to the sum of the number of
projects in each category – short informal, long informal, short
formal, and long informal – multiplied by the handling time
for each category). If a relatively high proportion of the ran-
domly-selected projects had high PV scores (i.e., large x) it was
possible to have a total handling time that exceeded K. In this
case, to reflect the legal mandate to process all incoming consul-
tations within the required timeframes, the total PV realized in
the simulation was set to 0 (to penalize decision rules that reg-
ularly resulted in time overruns). Otherwise, the PV realized was
calculated as the sum of PV realized across all projects.

8. Total PV realized was averaged over simulations, as was the
value of pl,f from Step 3.

2.7. Optimization

We examined simulation output to determine the values of the
management variables that yielded the greatest PV realized. We
simulated over progressively narrow ranges of the management
variables to locate optimal (or near-optimal, given simulation er-
ror) values. We identified the values of the management variables
that yielded the greatest average PV realized, as well as associated
decision rules, which were specified by the values of the (1 � pl,i)
quantile of Ui, and the (1 � pl,f) quantile of Uf (where pl,f is the aver-
age calculated in Step 8 above). These quantile values specify the
minimum PV scores required to assign informal and formal pro-
jects, respectively, to the long bin.

3. Results

The average PV scores and the ranges across experts for the 50
projects used to develop the PV model are presented in Fig. 2.
While for some projects the range in scores across experts was
large, correlations between experts were high. The correlation
coefficient relating the individual scores for each expert with the
average scores for the remaining experts was greater than 0.75
in all but one case (expert 1, 0.78; 2, 0.76; 3, 0.80; 4, 0.49; 5, 0.76).

Estimated regression coefficients, standard errors (SE), and
coefficients of variation (CV) for the PV model are presented in Ta-
ble 2. Within project variables, patterns in the coefficients were as
expected. The coefficient for ProjTypeScale was positive – as the
project type and scale sub-score increased, so did the PV score.
Prog had a negative coefficient which appeared sensible as pro-
grammatic agreements determine management of standard types
of projects so time investment in these consultations should be
consequently reduced. The coefficient for the BMP variable was
negative indicating that projects with best management practices
already in place would receive lower priority. Finally, within the
DegFlex variable, high flexibility led to higher PV scores and low
flexibility to lower PV scores, reflecting the increased ability to
negotiate beneficial changes with more flexible project design.

Within species variables, patterns in the coefficients were also
generally as expected, although the estimates were in many cases
highly uncertain. Within the LHForm variable, higher PV scores ap-
plied to projects affecting multiple life history forms, with lower
scores for projects only affecting anadromous bull trout. Because
the adfluvial life history form is rare within the Coastal–Puget
Sound region, the positive coefficient for adfluvial and anadromous
relative to fluvial and anadromous was not unexpected. Within the
LHStage variable, projects affecting only adult life stages would
receive lower PV scores, which is sensible as these projects are
located outside the more sensitive spawning and early rearing
habitats that may contain eggs or juveniles. The pattern for esti-
mated HabUnit coefficients was not immediately intuitive. The
lower coefficient estimated for inside core area as compared to
freshwater outside core area and marine is counter to the life his-
tory form coefficients (i.e., only the anadromous life history form
uses habitat units outside of core areas). However, there has gener-
ally been a greater focus on and more detailed understanding of
freshwater habitat use by bull trout relative to marine habitat
use. Therefore, projects in critical freshwater areas tend to be bet-
ter designed to minimize effects on bull trout. For CoreRisk, core
areas of all risk levels had positive estimated coefficients, indicat-
ing prioritization of projects in core areas. The fact that the highest
coefficients were estimated for both low and high risk core areas
may reflect experts’ desires to protect the best core areas while
also trying to improve conditions in those at greatest risk. For
the HabCond variable, results indicated lower PV scores for pro-
jects in highly degraded or degraded areas. This may reflect greater
emphasis on negotiating changes to reduce impacts in intact hab-
itats, versus in reduced quality habitats.

The mean handling time curve (Eq. (3)) for informal consulta-
tions is presented in Fig. 3 (red line; a = �3.33, b = 0.55), along with
50 randomly generated curves reflecting uncertainty in the param-
eters.1 For formal consultations this information is shown in Fig. 4
(a = �4.00, b = 0.12). The handling time curve for informal consul-
tations is much steeper than for formal consultations. In the infor-
mal consultation handling time curve, 95% of the PV is realized by
�11 days, versus in the formal consultation handling time curve
�58 days. Minimum handling times, which were elicited from
the experts for informal and formal consultations, were 1.5 and
14.2 days, respectively (the handling time curves are truncated be-
low the minimum handling times).

Results from the workload allocation model simulations indi-
cated that the greatest total PV realized would occur with handling
times Hl,i = 7 days (informal projects), and Hl,f = 15 days (formal
projects), and with the proportion of informal projects in the long
bin (pl,i) = 20% (Fig. 5). From Eq. (5), we get pl,f � 0.82. These



Table 2
Linear model for potential value, developed by scoring projects submitted to the Washington Fish and Wildlife Office Complex for Section Seven consultation.
Results include regression coefficients, standard errors (SE), and coefficients of variation (CV). Variables of two types were included in the model – those
relating to the project itself, and those relating to bull trout in the area affected by the project. Variables are defined in the text.

Variable Type Variable Level Coefficient (SE) CV (%)

Intercept Intercept – 11.33 (4.44) 39
Project ProjTypeScale – 0.89 (0.60) 67

Prog Y �1.67 (1.28) 77
N 0.00a

BMP Y �0.48 (1.21) 251
N 0.00a

DegFlex Low �1.92 (1.17) 61
Moderate 0.00a

High 2.85 (2.52) 88

Species LHForm Anadromous �0.38 (3.36) 877
Fluvial and anadromous 0.00a

Adfluvial and anadromous 1.01 (3.92) 388
LHStage Adult �4.05 (1.87) 46

Egg and juvenile �0.34 (2.50) 724
Juvenile and adult 0.00a

HabUnit Other 0.00a

Inside core area 0.05 (3.90) 8118
Freshwater outside core area 0.51 (1.50) 293
Marine 3.01 (1.79) 60

CoreRisk Outside core area 0.00a

Moderate risk core area 0.65 (5.16) 791
Low risk core area 2.66 (4.65) 175
High risk core area 2.66 (5.26) 197

HabCond Highly degraded �1.47 (1.74) 118
Degraded �1.24 (1.64) 132
Pristine 0.00a

a For each of the class variables, a default category is estimated by the intercept (and has a coefficient value of 0) while the other category coefficients
represent the difference between the given category and the default category, i.e., ‘‘Y” in ‘‘Prog” represents the difference between ‘‘N” and ‘‘Y”.
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Fig. 3. For informal projects – the relationship between handling time and the
proportion of a project’s potential value (PV) that is realized through the
consultation process (see Eq. (3) in text). For the estimated coefficients (a = 0.176,
b = 0.907), half of the potential value is realized in 7.0 days, 95% in 10.3 days). Note
that the curve is truncated below 1.5 days, which is the minimum handling time of
formal projects. The red line is the curve at the values of the estimated coefficients,
while the black lines are curves randomly generated given the uncertainty in the
estimated coefficients; the workload allocation model uses these randomly
generated curves to account for uncertainty.
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Fig. 4. For formal projects – the relationship between handling time and the
proportion of a project’s potential value (PV) that is realized through the
consultation process (see Eq. (3) in text). For the estimated coefficients (a = 0.082,
b = 0.215), half of the potential value is realized in 33.1 days, 95% in 46.9 days. Note
that the curve is truncated below 14.2 days, which is the minimum handling time of
formal projects. The red line is the curve at the values of the estimated coefficients,
while the black lines are curves randomly generated given the uncertainty in the
estimated coefficients; the workload allocation model uses these randomly
generated curves to account for uncertainty.
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proportions produce a decision rule whereby projects with PVs
greater than 7.3 for informal projects and 3.2 for formal projects
would be placed in the long bin.

We also explored optimization under conditions of greater staff
resources; one can think of this as reframing the problem from the
standpoint of the regional office, which determines the local
office’s budget. We were interested in how the staff allocation
and expected performance might change as a function of budget.
Simulations indicated that by doubling staff time, handling time
of long informal projects would increase from seven to nine days,
proportion of informal projects in the long bin would increase from
20% to 40%, handling time of long formal projects would increase



Fig. 5. Results of workload allocation model runs with variable levels of handling
time for formal consultations (panels), handling time for informal consultations
(y-axis), and proportion of informal consultations in the long bin (x-axis). The z-axis
gives the total potential value realized, and indicates that the optimal decision rule
involves 15 days handling time for formal consultations (lower right panel), 7 days
handling time for informal consultations, and 20% of informal consultations in the
long bin.
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from 15 to 26.2 days, and proportion of formal projects in the long
bin would increase from �82% to �93%; the cumulative result of
these changes would be more than a doubling of total PV realized.
4. Discussion

Our work fits within a growing class of case studies, distributed
worldwide, concerned with the optimal allocation of conservation
resources (e.g., Moilanen and Cabeza, 2002; Marsh et al., 2007;
Martin et al., 2007; McBride et al., 2007; Murdoch et al., 2007;
Wilson et al., 2007; Bottrill et al., 2008; McCarthy et al., 2008). Many
of these investigations have concerned themselves with the opti-
mal allocation of resources, usually financial resources, to the con-
servation of multiple species. Our work can be seen as analogous,
with the allocation made across different efforts to conserve one
species, when the constraints are imposed by limited staff time
and legally-mandated regulatory timelines for all projects. Thus,
our framework shows how the application of constrained optimiza-
tion methods has an even wider applicability for conservation
management.

We note several useful points regarding the development of a
resource allocation framework. First, it is critical to begin by devel-
oping an accurate and precise statement of objectives (Keeney,
1992; Murdoch et al., 2007). The objective will, as it should, greatly
influence the optimal decision. For example, had the managers of
the WFWO asked us to minimize the time spent on bull trout con-
sultation, perhaps so they could direct those staff resources to
other species, subject to some constraint on the amount of conser-
vation achieved, our results would obviously have been very
different.

Second, uncertainty need not prevent development of a deci-
sion-analytic framework (e.g., Williams, 1997; Moilanen et al.,
2006; McBride et al., 2007). We faced serious uncertainty about
the effects of federal projects on bull trout and the potential for
consultation to affect the conservation outcome. However, we
worked with experts to develop the PV model and we integrated
uncertainty in the handling time curves into our analysis; further
monitoring will refine these components over time. Uncertainty
should not be an impediment to decision analysis of conservation
problems; rather, it should be a central feature.

Third, prioritization is not, in itself, a complete decision analysis
(Wilson et al., 2006; Murdoch et al., 2007). The follow-up step to
prioritization is allocation of resources to the prioritized list. Fur-
ther, the prioritization and allocation steps cannot be fully decou-
pled, as each has consequences for the other. Thus, a full decision
analysis of problems of this sort involves integrated analysis of
the prioritization and allocation steps.

Fourth, proper decision framing is critical. As the budget-
doubling scenario (Section 3) demonstrates, a problem that can be
viewed as a constrained optimization at the level of the local man-
ager might also be viewed as an optimal budgeting question at a
higher level in the organization. That is, the staff time or office bud-
get is a constraint from the standpoint of the local manager, but it is
actually the decision variable from the standpoint of the regional of-
fice, which sets the local office’s budget. Often, the creative initiative
that turns the question of ‘‘what can we achieve with this budget?”
into ‘‘how much more could we achieve with a bigger budget?”
opens up a profoundly different approach to the problem at hand.

4.1. Value of decision-analytic process

More specifically, several insights emerged during framing this
decision problem which had not previously been obvious to the
WFWO staff. One primary insight was that the average time spent
on a consultation is strongly limited by available staff time. This
constraint (Eq. (5)) places bounds on handling times and the pro-
portion of projects in the long bin. While intuitive, formal realiza-
tion of this fact allowed managers to refocus their attention from
biological prioritization to workload allocation.

A second insight involved the role of the expected arrival rates
of consultations. Tension arises because the number of consulta-
tions exceeds staff capacity, at least if everything is put into the
long bin. With fixed staff capacity, the solution to an increasing
workload is to put more projects in the short bin, and thus reduce
realized PV. Therefore, the expected number of consultations per
time period strongly determines the optimal strategy. This sug-
gests an approach: reduce the incoming consultation rate, perhaps
as the USFWS Midwest Region has done (http://www.fws.gov/mid-
west/endangered/section7/s7process/index.html). Again, this
underscores the point that the act of framing a decision, and under-
taking preliminary analysis, can often give rise to new creative
alternatives.

A third insight came through development of the handling time
curves, which indicated that there were, past some point, dimin-
ishing returns to be gained from continued investment in consulta-
tion. While also intuitive, this was not formally recognized in the
historical approach to workload allocation, where biologists would
devote time to consultations with a view toward improving each
project as much as possible. Without the overrun problem, this
was an appropriate (and admirable) approach to consultation,
but when the workload exceeded staff capacity, this approach
exacerbated time overruns.

The shape of the handling time curves led directly to the result
that was most surprising: relatively little time should be devoted
to formal consultation. The optimal handling time identified for
informal projects in the long bin was seven days; on the handling
time curve this translates to �62% PV realized (Fig. 3). For formal
projects, the optimal handling time in the long bin was 15 days,
with �10% PV realized (Fig. 4). While optimally 82% of formal

http://www.fws.gov/midwest/endangered/section7/s7process/index.html
http://www.fws.gov/midwest/endangered/section7/s7process/index.html
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projects should be placed in the long bin (versus only 20% of infor-
mal projects) the handling time of those projects is only marginally
greater than the handling time in the short bin (i.e., 14.2 days). But
despite the higher handling time required to realize a similar pro-
portion of PV, projects resulting in formal consultations do not ap-
pear to have substantially higher PV scores, based on the PV model.
For the 97 randomly-selected projects used to estimate the PV
score distributions for informal (Ui; n = 50) and formal (Uf; n = 47)
consultations used in the Workload Allocation Model, the distribu-
tions were similar (Fig. 6) with average PV score for formal consul-
tations = 6.4 (range = 1.0–15.5) and for informal consultations = 5.1
(range = 0.52–12.3). The result is that, given the longer handling
time to exact similar benefits, the optimal solution is to expend
less effort on formal consultations. Under the optimal decision,
staff would devote about 304 staff days during each 135-day per-
iod to informal consultations (117 projects � (20% � 7 days + 80% �
1.5 days)) and only 104 staff days to formal consultations. These
specific results depend, of course, on the particular parameters of
this case study, for instance the expected arrival rate of consulta-
tions, the expected distribution of PV scores, etc. Understanding
these links can provide insight into innovative ways to approach
the problem.
4.2. Application of the decision framework

This decision-analytic framework has been adopted by the
WFWO, where the PV model and optimal decision rule help deter-
mine the importance of working on a particular consultation and
how to allocate staff time to consultations. This work has also
influenced consultation in more subtle ways. For example, there
is a new emphasis on developing strategies to allow biologists to
complete short bin consultations as quickly as possible.

We note that, while we did not build a decision framework that
is explicitly state-dependent, i.e., where decisions about how much
time to spend on a given consultation are made based on the num-
ber of projects in the office at any given time, as might be sug-
gested by queueing theory (Gross and Harris, 1998), tactical
decision-making can integrate state-dependent thinking. For
example, if the number of projects arriving in the office at a partic-
ular time is low, managers may ask biologists to spend more time
on consultations with particularly high PV. If applied judiciously,
Fig. 6. The distribution of potential value scores amongst 97 projects potentially
affecting federally-threatened bull trout, submitted to the WFWO for Section Seven
consultation. Scores were generated with the potential value model for 47 formal
consultations (solid lines) and 50 informal consultations (dashed lines).
such adjustments could serve to increase the overall conservation
value of the consultation process.

Managers are using greater care when applying the decision
rule to formal than to informal consultations because of a concern
that the optimal handling time for long bin formal consultations
may not be adequate. This may be the result of a deficiency in
the PV model (which does not predict substantially greater scores
for formal consultations) or it may suggest that additional consid-
erations are paramount when dealing with higher-profile formal
consultations.

In addition, under ESA, if the USFWS determines that a Federal
action results in ‘‘Jeopardy” to the species, the action cannot go for-
ward as proposed. Jeopardy findings only occur in formal consulta-
tions, and given that each consultation will be read by a qualified
biologist, and especially given the extra care put toward formal
consultations in the application of this decision tool, we are confi-
dent that this does not compromise the WFWO’s ability to identify
and appropriately prioritize consultations that may result in
Jeopardy.

In considering application of this tool, it is important to recog-
nize that management recommendations cannot always be carried
out as intended because of inadequate technical knowledge, phys-
ical constraints, or sociological or psychological constraints, that is,
managed systems are only partially controllable (Williams, 1997).
One particularly challenging aspect of partial control here concerns
the strong conservation ethic of the consultation staff, which
emphasizes improving each individual project as much as possible.
It is difficult to change this ethic based on the advice of a decision-
analytic model. Development and discussion of this framework has
begun to reshape the approach to consultation, but a new approach
to time allocation will require an adjustment by staff.

4.3. Uncertainty and monitoring

An important component of decision-analytic approaches is
recognition and treatment of uncertainty. Several types of uncer-
tainty are relevant to this modeling framework, including both ale-
atory (process variability) and epistemic (incomplete knowledge;
Regan et al., 2002). Aleatory uncertainty is represented in the mod-
el through the stochastic nature of the number of projects arriving
in the office during a simulation period, as well as the particular PV
values associated with those projects. Epistemic uncertainty is cap-
tured formally in the handling time curves.

Epistemic uncertainty in the PV model, however, is not captured
formally. Here we chose to use only the point estimates from the
PV model in predicting PV. We made this decision for several rea-
sons which can be discussed in light of the two uses we make of
the PV model. First, we built the PV model to facilitate assignment
of projects to either the short or long bin, once the optimal decision
rule was determined. For this purpose, assignment to a particular
bin would not be facilitated by including uncertainty in the PV
score. Second, we built the PV model to help us determine the opti-
mal decision rule; expected PV scores were randomly generated for
each project simulated under the Workload Allocation model and
these were used to help determine optimal cutoffs for assigning
projects to the short versus long bin. However, we expect that inte-
grating sampling uncertainty into these measures of PV would
have little impact on the outcome of the workload allocation mod-
el, because the cutoffs are derived by looking at a large number of
simulations, and the expected PV values should end up determin-
ing the outcomes. That is, we could have, in our simulations, deter-
mined the PV score for each project sampled from the vectors Ui

and Uf as not just the expected score, but from a distribution inte-
grating the sampling uncertainty around that score. However, over
many simulations, the mean results would tend to converge to the
expected score, and our optimal decision rule would not vary from
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what we determined (we confirmed this result with a small set of
simulations). In fact, sampling uncertainty in this case seems much
less important than systematic bias; that is, if we are systemati-
cally under- or over-estimating PV for particular projects, this
could result in non-optimal workload allocation. However, without
further data we cannot determine whether there is important sys-
tematic bias in the PV model. This illustrates the importance of
monitoring for improvement of the PV model over time.

In our recommended monitoring plan, data collected for refin-
ing the PV model include PV scores based on more detailed re-
views, where a team of biologists will review consultations under
guidance similar to that given to the expert panel. The score pro-
vided by the reviews can be compared to the PV score estimated
by the PV model to assess the accuracy of the model, and used in
statistical refinement of the PV model. Monitoring data for further
refining handling time curves would be provided by biologists as-
signed to consult on the projects, where, using an anonymous
reporting system, time spent on consultations and the biologist’s
assessment of the proportion of PV realized will be collected, after
guided discussions with these biologists on the concepts of PV and
proportion of PV realized.

Finally, it is important to emphasize that, through development
of the PV model, we did not link a prediction of the importance of
time investment on a particular consultation back to on-the-
ground realities of bull trout population status. Rather, we devel-
oped a model that would predict the experts’ assessments of
project importance. We assume that the experts’ assessments cor-
relate well with these realities, though this suggests the need for
larger-scale monitoring of the effects of ESA-related activities on
biological outcomes. We note, however, that monitoring to directly
evaluate the efficacy of the consultation process appears to be an
unfortunately rare component of ESA implementation (see also
Campbell et al., 2002).

There are two approaches we could take to coping with the
uncertainty about the correlation between the PV scores and on-
the-ground realities of bull trout status: a robust approach, and
an adaptive approach. The idea of a robust approach would be to
identify decisions that are most robust to failure of the assumption
of a strong correlation between the PV model and biological out-
comes, for instance, by using info-gap theory (Ben-Haim, 2001).
This approach would be called for especially if it was extremely dif-
ficult to acquire information about the relationship between PV
scores and biological outcomes; the approach instead seeks deci-
sions that perform well in the face of this uncertainty.

Under an adaptive approach, monitoring would be used to as-
sess and improve the accuracy of the PV model as measured
against biological outcomes and adapt future time-allocation deci-
sions based on this new knowledge. To do this, predicted PV values
and observed biological outcomes for projects would have to be
monitored and compared. The ultimate biological outcomes of
interest may be expected abundance and growth of the Coastal–
Puget Sound population segment (population recovery criteria;
US Fish and Wildlife Service, 2004) but more proximate metrics,
like habitat quality, quantity, or connectivity might suffice. An
adaptive approach could even be actively adaptive, using some
experimental design to accelerate learning about this uncertainty.
The ideal design, for instance, might pair similar consultations and
analyze the biological impact of differential investments of time.
We have not yet explored the details of either a robust or an adap-
tive approach, leaving those considerations to future work.

4.4. Conclusions

This decision framework formalizes a shared understanding of
the impact of staff availability on the effectiveness of ESA regula-
tion. It can be seen explicitly that, as staff size declines, time
allocated to consultations must be reduced to avoid regulatory
time overruns. Conversely, it can be seen that, with additional
funding, a greater proportion of projects could be placed in the
long bin, and more resources could be brought to bear on improv-
ing the conservation outlook for this species. However, given cur-
rent resource availability, by following this framework the
WFWO can increase the effectiveness of the consultation process
and its contribution to the recovery of bull trout.

Limited resources are a ubiquitous condition in conservation
management, necessitating smart strategies for allocating these re-
sources. A wide variety of problem framing, modeling, and optimi-
zation approaches have been described in the literature for
addressing resource allocation problems, which most typically ap-
pear as budget allocation problems. These approaches ultimately
all arise from recognition of the concepts of decision analysis
(Clemen, 1996; Possingham et al., 2001) which aims to increase
decision-making effectiveness through deconstruction, analysis,
and synthesis of the components of a decision. The framework
we have described expands this literature with a problem focused
on allocating limited staff resources in a situation where regulatory
deadlines also constrain the allocation. Our experience suggests
that this type of problem is common in conservation management,
and that the framework described can provide useful insights for
framing similar problems in conservation resource allocation
worldwide.
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