IMPROVED UNDERSTANDING OF FISHERIES & ECOSYSTEMS FROM NOISY & DISPARATE DATA

Mark Scheuerell

Fish Ecology Division Northwest Fisheries Science Center Seattle, WA

@mark_scheuerell

Acknowledgments

Elizabeth Holmes, Jim Thorson, Eric Ward (NMFS)

Eric Buhle, Kevin See (Biomark)

Brice Semmens (Scripps)

Steve Katz (Washington St Univ)

Q: Do you want clean data?

A: Go into finance

The rest of us seek ways to deal with our noisy & disparate data

Methods in Ecology and Evolution

Issues per year

Lots of focus on *hierarchical models*

Hi·er·ar·chi·cal

adjective

1. Arranged in an order

A hierarchical model is simply a model within a model

Hierarchical models also masquerade as

Nested data models

Mixed models

Random-effects models

State-space models

A state-space model has 2 parts

Part 1: State model

Describes the true state of nature over time or space

States of nature might be

Animal location

Species density

Age structure

Reproductive status

Revealing the true state requires observations

Observing nature can be easy

How many sockeye are there?

Observing nature can also be hard

How many mayflies are there?

Part 2: Observation model

Data = Truth ± Errors

Part 2: Observation model

Data = Truth ± Errors

OK, but why bother?

1. Can combine many different data types

Changes in observers or sensors

Varying survey locations & effort

Direct & remote sampling

2. Missing data are easily accommodated

3. Improved accuracy & precision

Article | OPEN | Published: 08 February 2016

Joint estimation over multiple individuals improves behavioural state inference from animal movement data

lan Jonsen 🔀

Scientific Reports 6, Article number: 20625 (2016) Download Citation 🕹

4. Data-poor benefit from data-rich

5. Rather flexible

This simple model can be used for 5+ unique applications

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{w}_t \ \mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{v}_t$$

How do I actually do this?

Many software options

Canned **R** packages (dlm, vars, MARSS^{*})

Code-your-own (JAGS, Stan, greta)

^{*}Holmes, Ward, Scheuerell (2018) *Analysis of multivariate time-series using the MARSS package*

Emergence of high-dimension data

Remote sensing

Citizen Science

How can we make sense of all of this?

Classification

History

John Subert 1849 -0

Ordination

Just some combination of these

Dynamic Factor Analysis

State model

 $Trends_t = Trends_{t-1} + errors_t$ (A few)

Observation model

 $Data_t = Loadings \times Trends_t + errors_t$ (Many)

Salmon returns & productivity

Trying to understand when & where stocks covary

Stachura et al. (2014) CJFAS

Goertler et al. (2016) PLoS One

Ohlberger et al. (2016) *Ecosphere*

Jorgensen et al. (2016) Ecology & Evolution

Two declining trends

Ohlberger et al. (2016) *Ecosphere* 7:e01333

WCGBTS: West Coast Groundfish Bottom Trawl Survey 1998-2018: 20 years of dependability, efficiency & excellence

San Diego

Spatial Factor Analysis

State model

Spatial maps_i

Observation model

Data_i = Loadings × Spatial maps_i + error_i

Splitnose -	11.3	-9·4	-0·5	0.1	-0.3	- 0·5
Greenstriped -	-2·1	-9.0	-2.5	-1.0	-0·4	2.3
Stripetail -	2·9-	11-3	35.8	-1.5	-1.7	0.9
Darkblotched -	6.4	-7·2	<mark>0∙8</mark>	-1.1	1.3	<mark>0∙8</mark>
Chilipepper -	<mark>0∙6</mark>	-9.0	-7·2	- <mark>0</mark> ∙3	0.9	-0·3
Aurora -	4·9	0.1	1·6	<mark>0</mark> ∙8	1.4	-3.8
Redbanded -	4 ∙0	-4.5	0·9	0 ∙3	1.1	-0.0
Rosethorn -	-0·3	13.1	l0·8	1·8	-0·3	-0·8
Sharpchin -	1.1-	27.6	€0·4	-0·1	0·2	0.2
Shortbelly -	-0.8	13.4	19·2	0.3	-0·4	0.2
Canary -	-3.0	-5·2	-1.9	-0·9	0.9	2.1
POP	5.7	-9·2	3.9	0.1	3.3	-0.1
Bocaccio -	-0.7	-4·2	-2.7	0.7	0.3	-0·3
Yellowtail -	-2·6	-5.6	-1.5	0.4	1.0	4·2
ugheye (comb.) -	2.7	-1.6	1.7	-0·2	<mark>0∙6</mark>	1.2
Greenspotted -	-2.8	-9·1	-3·1	<mark>0</mark> ∙7	-2·4	- <mark>0</mark> ·9
,	1	2	3	4	5	6
	Factors					

Thorson et al. (2015) Meth Ecol & Evol 6:627-637

UTM Easting (km)

Thorson et al. (2015) Meth Ecol & Evol 6:627–637

Other applications of hierarchical models

Improving precision in species extinction forecasts

See & Holmes (2015) *Ecol Appl* 25:1157–1165

Other applications of hierarchical models

How do spatial patterns change over time?

Thorson et al. (2016) *Global Ecol & Biogeogr* 25:1144–1158

Other applications of hierarchical models

Relative importance of species vs spatial diversity in ecological portfolios

Thorson et al. (2018) *Proc Royal Soc B* 285:20180915

In summary

Much of our data is noisy and disparate

Hierarchical models offer a means for addressing these kinds of data

Software & hardware improvements open new doors

Slide deck

https://github.com/mdscheuerell/PSAW2/talk

Image sources

Drinking fountain: *Massachusetts Inst Tech* LIDAR: *NOAA* DNA: *fizzgig (2016)* Robin Hood: *John Escott* M Caulkin: *20th Century Fox* Carnival: *Frank Kovalchek (2010)* Snake oil: *The Register*

