Data Management Plan
GUID: gov.noaa.nmfs.inport:49646 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format.
Acquired LiDAR data over an Area of Interest (AOI) entire of Orange County California. The acquisition plan entailed a nominal point spacing of 1.76 points per meter square and a side lap of 40% between flight lines. The AOI covers 696 square miles.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Process Steps:
- 2010-01-01 00:00:00 - LiDAR mass points were produced to LAS 1.2 specifications, including the following LAS classification codes: The data was processed using GeoCue and TerraScan software. The initial step is the setup of the GeoCue project, which is done by importing a project defined tile boundary index encompassing the entire project area. The acquired 3D laser point clouds, in LAS binary format, were imported into the GeoCue project and tiled according to the project tile grid. Once tiled, the laser points were classified using a proprietary routine in TerraScan. This routine classifies any obvious outliers in the dataset to class 7 and points with scan angles exceeding +/- 20 degrees to class 11. After points that could negatively affect the ground are removed from class 1, the ground layer is extracted from this remaining point cloud. The ground extraction process encompassed in this routine takes place by building an iterative surface model. This surface model is generated using three main parameters: building size, iteration angle and iteration distance. The initial model is based on low points being selected by a "roaming window" with the assumption that these are the ground points. The size of this roaming window is determined by the building size parameter. The low points are triangulated and the remaining points are evaluated and subsequently added to the model if they meet the iteration angle and distance constraints. This process is repeated until no additional points are added within iterations. A second critical parameter is the maximum terrain angle constraint, which determines the maximum terrain angle allowed within the classification model. The following fields within the LAS files are populated to the following precision: GPS Time (0.000001 second precision), Easting (0.003 meter precision), Northing (0.003 meter precision), Elevation (0.003 meter precision), Intensity (integer value - 12 bit dynamic range), Number of Returns (integer - range of 1-4), Return number (integer range of 1-4), Scan Direction Flag (integer - range 0-1), Classification (integer), Scan Angle Rank (integer), Edge of flight line (integer, range 0-1), User bit field (integer - flight line information encoded). The LAS file also contains a Variable length record in the file header that defines the projection, datums, and units.
- 2010-01-01 00:00:00 - Once the initial ground routine has been performed on the data, Dewberry creates Delta Z (DZ) orthos to check the relative accuracy of the LiDAR data. These orthos compare the elevations of LiDAR points from overlapping flight lines on a 1 meter pixel cell size basis. If the elevations of points within each pixel are within 10 cm of each other, the pixel is colored green. If the elevations of points within each pixel are between 10 cm and 20 cm of each other, the pixel is colored yellow, and if the elevations of points within each pixel are greater than 20 cm in difference, the pixel is colored red. Pixels that do not contain points from overlapping flight lines are colored according to their intensity values. DZ orthos can be created using the full point cloud or ground only points and are used to review and verify the calibration of the data is acceptable. Some areas are expected to show sections or portions of red, including terrain variations, slope changes, and vegetated areas or buildings if the full point cloud is used. However, large or continuous sections of yellow or red pixels can indicate the data was not calibrated correctly or that there were issues during acquisition that could affect the usability of the data. The DZ orthos for Orange County California showed that the data was calibrated correctly with no issues that would affect its usability. The figure below shows an example of the DZ orthos. Dewberry utilized a variety of software suites for data processing. The LAS dataset was received and imported into GeoCue task management software for processing in Terrascan. Each tile was imported into Terrascan and a surface model was created to examine the ground classification. Dewberry analysts visually reviewed the ground surface model and corrected errors in the ground classification such as vegetation, buildings, and bridges that were present following the initial processing conducted by Dewberry. Dewberry analysts employ 3D visualization techniques to view the point cloud at multiple angles and in profile to ensure that non-ground points are removed from the ground classification. After the ground classification corrections were completed, the dataset was processed through a water classification routine that utilizes breaklines compiled by dewberry to automatically classify hydro features. The water classification routine selects ground points within the breakline polygons and automatically classifies them as class 9, water. The final classification routine applied to the dataset selects ground points within a specified distance of the water breaklines and classifies them as class 10, ignored ground due to breakline proximity.
- 2015-01-10 00:00:00 - The NOAA Office for Coastal Management (OCM) received the files in laz format from USGS via an FTP online repository. The files contained lidar elevation and intensity measurements. The data were in UTM Zone 11 (meters) and NAVD88 (orthometric) heights in meters. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The data were converted from UTM coordinates to geographic coordinates. 2. The data were converted from NAVD88 (orthometric) heights in meters to GRS80 (ellipsoid) heights in feet using Geoid 09. 3. Class 11 points were reclassified to class 15 in accordance to the OCM classification scheme.
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4793/index.html
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
This data can be obtained on-line at the following URL:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=4793
The data set is dynamically generated based on user-specified parameters.;
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.