Data Management Plan
GUID: gov.noaa.nmfs.inport:50163 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data
on the Quinault River Basin survey area for the Puget Sound LiDAR Consortium and
the Quinault Indian Nation. Delivery 1 of the survey area was collected on April
16th, 29th, 30th, and May 1st, 2011 and delivered on June 14th, 2011. Delivery 2
of the survey area was collected on November 6th -19th, and December 1st - 4th,
2011. This report documents the data acquisition, processing methods, accuracy
assessment, and deliverables for the first 91,162 acres of Delivery 1 data and
the final 144,033 acres of Delivery 2 data for a total of 234,394 acres. The
requested area was expanded to include a 100m buffer to ensure complete coverage
and adequate point densities around survey area boundaries. The 2012 Quinault
River Basin data (Delivery 2) were integrated with overlapping portions of the
2011 data (Delivery 1) to provide seamless models.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Process Steps:
- Acquisition. The LiDAR survey utilized a Leica ALS50-II sensor in a Cessna Caravan 208B. Depending on acquisition day, weather, and terrain, the Leica systems were set to acquire 105,000 laser pulses per second (i.e.105 kHz pulse rate) and flown at 900 meters above ground level (AGL), capturing a scan angle of +/- 14 degrees from nadir. These settings were developed to yield points with an average native pulse density of 8 pulses per square meter over terrestrial surfaces. It is not uncommon for some types of surfaces to return fewer pulses than the laser originally emitted. These discrepancies between 'native' and 'delivered' density will vary depending on terrain, land cover, and the prevalence of water bodies. All areas were surveyed with an opposing flight line side-lap of more than 60% (less than 100% overlap) to reduce laser shadowing and increase surface laser painting. The Leica laser systems allow up to four range measurements (returns) per pulse, and all discernable laser returns were processed for the output dataset. To accurately solve for laser point position (geographic coordinates x, y, z) the positional coordinates of the airborne sensor and the attitude of the aircraft were recorded continuously throughout the LiDAR data collection mission. Aircraft position was measured twice per second (2 Hz) by an onboard differential GPS unit. Aircraft attitude was measured 200 times per second (200 Hz) as pitch, roll and yaw (heading) from an onboard inertial measurement unit (IMU). To allow for post-processing correction and calibration, aircraft/sensor position and attitude data are indexed by GPS time.
- 1. Resolved kinematic corrections for aircraft position data using kinematic aircraft GPS and static ground GPS data. Software - Waypoint GPS v.8.10, Trimble Business Center 2.6 2. Developed a smoothed best estimate of trajectory (SBET) file that blends post-processed aircraft position with attitude data. Sensor head position and attitude were calculated throughout the survey. The SBET data were used extensively for laser point processing. Software - IPAS TC v.3.1 3. Calculated laser point position by associating SBET position to each laser point return time, scan angle, intensity, etc. Created raw laser point cloud data for the entire survey in *.las (ASPRS v. 1.2) format. Software - ALS Post Processing Software v.2.74, Corpscon 6 4. Imported raw laser points into manageable blocks (less than 500 MB) to perform manual relative accuracy calibration and filter for pits/birds. Ground points were then classified for individual flight lines (to be used for relative accuracy testing and calibration). Software - TerraScan v.12.004 5. Using ground classified points per each flight line, the relative accuracy was tested. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Calibrations were performed on ground classified points from paired flight lines. Every flight line was used for relative accuracy calibration. Software - TerraMatch v.12.001 6. Position and attitude data were imported. Resulting data were classified as ground and non-ground points. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data. Data were then converted to orthometric elevations (NAVD88) by applying a Geoid03 correction. Software: TerraScan v.12.004, TerraModeler v.12.002 7. Bare Earth models were created as a triangulated surface and exported as ArcInfo ASCII grids at a 3-foot pixel resolution. Highest Hit models were created for any class at 3-foot grid spacing and exported as ArcInfo ASCII grids. Software - TerraScan v.12.004, ArcMap v.10.0, TerraModeler v.12.002
- 2013-12-04 00:00:00 - The NOAA Office for Coastal Management (OCM) downloaded topographic files in LAZ format from PSLC's website. The files contained lidar easting, northing, elevation, intensity, return number, class, scan angle and GPS time measurements; the data was received in state plane Washington (in feet) and vertical coordinates were referenced to NAVD88 in feet using the Geoid03 model. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The All-Return LAZ files were checked for bad elevations 2. The laz files were converted from a Projected Coordinate System (SP 4602) to a Geographic Coordinate system (NAD83) 3. The laz files were then converted to ellipsoidal vertical units in meters using the geoid03 conversion.
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.3. Is this a one-time data collection, or an ongoing series of measurements?
- 1.4. Actual or planned temporal coverage of the data
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/2603/index.html
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
This data can be obtained on-line at the following URL:
https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=2603
;
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.