Data Management Plan (Deprecated)
GUID: gov.noaa.nmfs.inport:73006 | Published / External
This is an outdated version of the NOAA Data Management Plan template. InPort now supports a dedicated Data Management Plan Catalog Item type, which is up-to-date with the latest NOAA DMP template. The ability to generate Data Management Plans from Data Sets will be discontinued in a future release. Please see the Data Management Plan Help Guide to learn more.
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
Product: These lidar data are processed Classified LAS 1.4 files, formatted to individual 3000 ft x 3000 ft tiles; used to create intensity images, 3D breaklines and hydro-flattened DEMs as necessary. The 2020 Harney - Silver Creek project is composed of legacy and new collection LiDAR data. The 2020 (new) portion of this project was acquired between July 27 and 28, 2020 and this metadata record describes that data. The legacy datasets include 2015 Harney, 2017 OLC Silver Creek, and 2018 Harney lidar data and are not part of this metadata record. Settings for LiDAR data capture produced an average resolution of at least eight pulses per square meter. Vertical accuracy was assessed and reported for newly collected data, legacy data, and combined data sources.
Geographic Extent: The dataset is located primarily in Harney County, Oregon, but small portions extend into Crook County and Grant County.
Dataset Description of the Original Data: The 2020 Harney - Silver Creek project is composed of legacy and new collection LiDAR data. The 2020 (new) portion of this project was acquired between July 27 and 28, 2020 and this metadata record describes that data. The legacy datasets include 2015 Harney, 2017 OLC Silver Creek, and 2018 Harney lidar data and are not part of this metadata record. This project called for the Planning, Acquisition, processing and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.35 meter. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.3. The native projection is Lambert Conic Conformal, units are in International feet. The native horizontal datum is North American Datum of 1983 (NAD83(2011)); the native vertical datum is North American Vertical Datum of 1988 (NAVD88); (Geoid 12B). Lidar data were delivered as processed Classified LAS 1.4 files, formatted to individual 3000 ft x 3000 ft tiles, and as tiled hydro-flattened bare earth DEMs; all tiled to the same 3000 ft x 3000 ft schema. Points that were determined to be geometrically invalid, or invalid surface returns, were removed from the data set.
Ground Conditions: 2020 Lidar was collected between July 27 and July 28, 2020, while no snow was on the ground and rivers were at or below normal levels. The Raw Swath NVA were tested with checkpoints located in bare earth and urban (non-vegetated) areas. These checkpoints were not used in the calibration or post processing of the lidar point cloud data. Quantum Spatial Inc. collected the lidar and created this dataset in partnership with the Oregon Department of Geology and Mineral Industries (DOGAMI).
This metadata record supports the data entry in the NOAA Digital Coast Data Access Viewer (DAV). For this data set, the DAV is leveraging the Entwine Point Tiles (EPT) hosted by USGS on Amazon Web Services.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Lineage Statement:
The NOAA Office for Coastal Management (OCM) ingested references to the USGS Entwine Point Tiles (EPT) hosted on Amazon Web Services (AWS) into the Digital Coast Data Access Viewer (DAV). The DAV accesses the point cloud as it resides on AWS under the usgs-lidar-public-container.
Process Steps:
- 2020-07-31 00:00:00 - 2020 Lidar data acquisition occurred between July 27, 2020 and July 28, 2020. Please see reports from the 2015 OLC Harney, 2017 OLC Silver Creek, and 2018 OLC Harney projects for acquisition details specific to those projects. The 2020 survey utilized the Riegl 1560i laser systems mounted in a Cessna 208-B Grand Caravan. Near nadir scan angles were used to increase penetration of vegetation to ground surfaces. Ground level GPS and aircraft IMU were collected during the flight. Processing.1. Airborne GPS and IMU data were merged to develop a Single Best Estimate (SBET) of the lidar system trajectory for each flight line. Flight lines and data were reviewed to ensure complete coverage of the study area and positional accuracy of the laser points. 2. Laser point return coordinates were computed using ALS Post Processor software and IPAS Pro GPS/INS software, based on independent data from the LiDAR system, IMU, and aircraft. 3. The raw LiDAR file was assembled into flight lines per return with each point having an associated x, y, and z coordinate. 4. Visual inspection of swath to swath laser point consistencies within the study area were used to perform manual refinements of system alignment. 5. Custom algorithms were designed to evaluate points between adjacent flight lines. Automated system alignment was computed based upon randomly selected swath to swath accuracy measurements that consider elevation, slope, and intensities. Specifically, refinement in the combination of system pitch, roll and yaw offset parameters optimize internal consistency. 6. Noise (e.g., pits and birds) was filtered using ALS postprocessing software, based on known elevation ranges and included the removal of any cycle slips. 7. Using TerraScan and Microstation, ground classifications utilized custom settings appropriate to the study area. 8. The corrected and filtered return points were compared to the RTK ground survey points collected to verify the vertical and horizontal accuracies. 9. Points were output as laser points, TINed and GRIDed surfaces.
- 2020-07-31 00:00:00 - Lidar Post-Processing: The calibrated and controlled lidar swaths were processed using automatic point classification routines in proprietary software. These routines operate against the entire collection (all swaths, all lifts), eliminating character differences between files. Data were then converted from Las 1.2 to Las 1.4 and lidar intensities were scaled from 8-bit to 16-bit. Time stamps were adjusted from Minutes of the Week to GPS Standard Time, and the classification scheme was adjusted to include class 9, In-land Water, in the dataset. RGB extraction of las to point cloud was performed using Terraphoto. Data were then distributed as virtual tiles to experienced lidar analysts for localized automatic classification, manual editing, and peer-based QC checks. Supervisory QC monitoring of work in progress and completed editing ensured consistency of classification character and adherence to project requirements across the entire project. All classification tags were stored in the original swath files. After completion of classification and final QC approval, the NVA and VVA for the project were calculated. Upon acceptance, the complete classified lidar swath files were delivered to the client. Points that were determined to be geometrically invalid, or invalid surface returns, were removed from the data set.
- Original point clouds in LAS/LAZ format were restructured as Entwine Point Tiles and stored on Amazon Web Services. The data were re-projected horizontally to WGS84 web mercator (EPSG 3857) and the vertical units were converted to meters (NAVD88 Geoid12B).
- 2024-06-27 00:00:00 - The NOAA Office for Coastal Management (OCM) created references to the Entwine Point Tiles (EPT) that were ingested into the NOAA Digital Coast Data Access Viewer (DAV). No changes were made to the data. The DAV will access the point cloud as it resides on Amazon Web Services (AWS) under the usgs-lidar-public container. This is the AWS URL being accessed: https://s3-us-west-2.amazonaws.com/usgs-lidar-public/OR_HarneySilver_4_2020/ept.json
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/OR_HarneySilver_2020_A20/OR_HarneySilver_4_2020/LAZ/
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
Data is available online for bulk and custom downloads.
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
Data is backed up to cloud storage.
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.