2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 1
Data Set (DS) | OCM Partners (OCMP)GUID: gov.noaa.nmfs.inport:50119 | Updated: August 9, 2022 | Published / External
Summary
Short Citation
OCM Partners, 2024: 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 1, https://www.fisheries.noaa.gov/inport/item/50119.
Full Citation Examples
TASK NAME: Louisiana Region 1 LiDAR ARRA Task Order
LiDAR Data Acquisition and Processing Production Task- Vermillion, Iberia, St. Mary, Terrebonne, and
Lafourche Parishes
USGS Contract No: G10PC00057
Task Order No: G10PD02781
Woolpert ORDER NUMBER: 70930
CONTRACTOR: Woolpert, Inc.
LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR
sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies.
The LiDAR systems collect data point clouds that are used to produce highly detailed Digital Elevation Models
(DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be
collected at a nominal pulse spacing (NPS) of 2.0 meters. The final products include first, last, and at
least one intermediate return LAS, full classified LAS and a bare earth model in separate files.
Original contact information:
Contact Org: USGS (United States Geological Survey)
Title: USGS NGTOC
Phone: (573) 308-3654
Distribution Information
-
Create custom data files by choosing data area, product type, map projection, file format, datum, etc.
-
Simple download of data files.
None
Users should be aware that temporal changes may have occurred since this data set was collected
and some parts of this data may no longer represent actual surface conditions. Users should not use
this data for critical applications without a full awareness of its limitations. These data
depict the heights at the time of the survey and are only accurate for that time.
Controlled Theme Keywords
elevation
Child Items
No Child Items for this record.
Contact Information
Point of Contact
NOAA Office for Coastal Management (NOAA/OCM)
coastal.info@noaa.gov
(843) 740-1202
https://coast.noaa.gov
Metadata Contact
NOAA Office for Coastal Management (NOAA/OCM)
coastal.info@noaa.gov
(843) 740-1202
https://coast.noaa.gov
Extents
-92.136664° W,
-90.239927° E,
29.804761° N,
29.039005° S
2011-01-22
2011-01-23
2011-01-27
2011-02-12
2011-02-13
2011-02-17
2011-02-18
2011-02-28
2011-03-01
2011-03-10
2011-03-11
2011-03-15
2011-03-16
2011-04-06
2011-04-12
Item Identification
Title: | 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 1 |
---|---|
Short Name: | usgs2011_Louisiana_Region1_m1403_metadata |
Status: | Completed |
Publication Date: | 2011-04-15 |
Abstract: |
TASK NAME: Louisiana Region 1 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Vermillion, Iberia, St. Mary, Terrebonne, and Lafourche Parishes USGS Contract No: G10PC00057 Task Order No: G10PD02781 Woolpert ORDER NUMBER: 70930 CONTRACTOR: Woolpert, Inc. LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The LiDAR systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 2.0 meters. The final products include first, last, and at least one intermediate return LAS, full classified LAS and a bare earth model in separate files. Original contact information: Contact Org: USGS (United States Geological Survey) Title: USGS NGTOC Phone: (573) 308-3654 |
Purpose: |
This task order consisted of LiDAR data acquisition and processing for Vermillion, Iberia, St. Mary, Terrebonne, and Lafourche Parishes in southeastern Louisiana. The task order area of interest encompasses approximately 6,684,759,312 square meters (2,581 square miles). The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 2.0 meters. The LiDAR data was collected to meet a vertical accuracy requirement of 12.5 cm (0.41 ft) RMSE, or better. The final LiDAR data was delivered as 1,500m x 1,500m tiles, aligned to even 1,500m coordinates. |
Notes: |
10763 |
Supplemental Information: |
The reflective surface data represents the DEM created by the laser energy reflected from the first surface encountered by the laser pulse. Some energy may continue beyond this initial surface, to be reflected by a subsequent surface as represented by the last return data. Intensity information is captured from the reflective surface pulse and indicates the relative energy returned to the sensor, as compared to the energy transmitted. The intensity image is not calibrated or normalized but indicates differences in energy absorption due to the interaction of the surface materials with laser energy, at the wavelength transmitted by the sensor. The bare earth model is created by identifying the returns that fall on the ground surface and by interpolating a surface between these points. In this manner, buildings and vegetation are removed from the bare earth model. This data set does not include bridges and overpasses in the bare earth model as the delineation point for these structures is not reliably discernible in the LiDAR data. The third-party QA report for this data set may be accessed at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/1403/supplemental/usgs2011_louisiana_region1_qa_report.pdf A footprint of this data set may be viewed in Google Earth at: https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/1403/supplemental/usgs2011_louisiana_region1_footprint.kmz |
Keywords
Theme Keywords
Thesaurus | Keyword |
---|---|
ISO 19115 Topic Category |
elevation
|
Physical Location
Organization: | Office for Coastal Management |
---|---|
City: | Charleston |
State/Province: | SC |
Data Set Information
Data Set Scope Code: | Data Set |
---|---|
Maintenance Frequency: | As Needed |
Data Presentation Form: | las |
Entity Attribute Overview: |
LiDAR points in LAS 1.2 format |
Entity Attribute Detail Citation: |
none |
Distribution Liability: |
Any conclusions drawn from the analysis of this information are not the responsibility of Woolpert, USGS, the Office for Coastal Management or its partners. |
Support Roles
Data Steward
Date Effective From: | 2011-04-15 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Distributor
Date Effective From: | 2011-04-15 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Metadata Contact
Date Effective From: | 2011-04-15 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Point of Contact
Date Effective From: | 2011-04-15 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Extents
Currentness Reference: | Ground Condition |
---|
Extent Group 1
Extent Group 1 / Geographic Area 1
W° Bound: | -92.136664 | |
---|---|---|
E° Bound: | -90.239927 | |
N° Bound: | 29.804761 | |
S° Bound: | 29.039005 |
Extent Group 1 / Time Frame 1
Time Frame Type: | Discrete |
---|---|
Start: | 2011-01-22 |
Extent Group 1 / Time Frame 2
Time Frame Type: | Discrete |
---|---|
Start: | 2011-01-23 |
Extent Group 1 / Time Frame 3
Time Frame Type: | Discrete |
---|---|
Start: | 2011-01-27 |
Extent Group 1 / Time Frame 4
Time Frame Type: | Discrete |
---|---|
Start: | 2011-02-12 |
Extent Group 1 / Time Frame 5
Time Frame Type: | Discrete |
---|---|
Start: | 2011-02-13 |
Extent Group 1 / Time Frame 6
Time Frame Type: | Discrete |
---|---|
Start: | 2011-02-17 |
Extent Group 1 / Time Frame 7
Time Frame Type: | Discrete |
---|---|
Start: | 2011-02-18 |
Extent Group 1 / Time Frame 8
Time Frame Type: | Discrete |
---|---|
Start: | 2011-02-28 |
Extent Group 1 / Time Frame 9
Time Frame Type: | Discrete |
---|---|
Start: | 2011-03-01 |
Extent Group 1 / Time Frame 10
Time Frame Type: | Discrete |
---|---|
Start: | 2011-03-10 |
Extent Group 1 / Time Frame 11
Time Frame Type: | Discrete |
---|---|
Start: | 2011-03-11 |
Extent Group 1 / Time Frame 12
Time Frame Type: | Discrete |
---|---|
Start: | 2011-03-15 |
Extent Group 1 / Time Frame 13
Time Frame Type: | Discrete |
---|---|
Start: | 2011-03-16 |
Extent Group 1 / Time Frame 14
Time Frame Type: | Discrete |
---|---|
Start: | 2011-04-06 |
Extent Group 1 / Time Frame 15
Time Frame Type: | Discrete |
---|---|
Start: | 2011-04-12 |
Spatial Information
Spatial Representation
Representations Used
Vector: | Yes |
---|
Access Information
Security Class: | Unclassified |
---|---|
Security Classification System: |
Unclassified |
Security Handling Description: |
Unclassified |
Data Access Procedure: |
This data can be obtained on-line at the following URL: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=1403 ; |
Data Access Constraints: |
None |
Data Use Constraints: |
Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. These data depict the heights at the time of the survey and are only accurate for that time. |
Distribution Information
Distribution 1
Download URL: | https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=1403 |
---|---|
Distributor: | |
File Name: | Customized Download |
Description: |
Create custom data files by choosing data area, product type, map projection, file format, datum, etc. |
Distribution 2
Download URL: | https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/1403/index.html |
---|---|
Distributor: | |
File Name: | Bulk Download |
Description: |
Simple download of data files. |
URLs
URL 1
URL: | https://coast.noaa.gov/dataviewer |
---|---|
URL Type: |
Online Resource
|
URL 2
URL: | https://coast.noaa.gov |
---|---|
URL Type: |
Online Resource
|
URL 3
URL: | https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/1403/supplemental/usgs2011_louisiana_region1_footprint.kmz |
---|---|
Name: | Browse Graphic |
URL Type: |
Browse Graphic
|
File Resource Format: | kmz |
Description: |
This graphic shows the lidar coverage for Vermillion Parish, Iberia Parish, St. Mary Parish, Terrebonne Parish and Lafourche Parish in Louisiana. |
Activity Log
Activity Log 1
Activity Date/Time: | 2016-05-23 |
---|---|
Description: |
Date that the source FGDC record was last modified. |
Activity Log 2
Activity Date/Time: | 2017-11-14 |
---|---|
Description: |
Converted from FGDC Content Standards for Digital Geospatial Metadata (version FGDC-STD-001-1998) using 'fgdc_to_inport_xml.pl' script. Contact Tyler Christensen (NOS) for details. |
Activity Log 3
Activity Date/Time: | 2018-02-08 |
---|---|
Description: |
Partial upload of Positional Accuracy fields only. |
Activity Log 4
Activity Date/Time: | 2018-03-13 |
---|---|
Description: |
Partial upload to move data access links to Distribution Info. |
Technical Environment
Description: |
Microsoft Windows 2000 Version 5.2 (Build 3790) Service Pack 2; TerraSolid LTD: Terrascan Version 011.004 |
---|
Data Quality
Accuracy: |
The LiDAR collected for this task order was collected at a vertical accuracy of 12.5 cm (0.41 ft) Root Mean Squared (RMSE), or better. | Quantitative Value: 12.5 cm (0.41 ft) RMSE | Quantitative Test Explanation: Points measured will produce an error less than 12.5 cm (0.41 ft) RMSE. |
---|---|
Horizontal Positional Accuracy: |
Horizontal accuracy is +/- 3.8-foot at the 95% confidence level using RMSE(r) x 1.9600 as defined by the FGDC Geospatial Positional Accuracy Standards, Part 3: NSSDA. ; Quantitative Value: 1.16 meters, Test that produced the value: LiDAR system calibration is available in the project report. reported as 3.8 ft (116 cm) |
Vertical Positional Accuracy: |
The LiDAR data vertical accuracy RMSE is 7.0 cm (0.229 ft). The data collected under this Task Order meets the National Standard for Spatial Database Accuracy (NSSDA) accuracy standards. The NSSDA standards specify that vertical accuracy be reported at the 95 percent confidence level for data tested by an independent source of higher accuracy. (http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/index_html). The Fundamental Vertical Accuracy (FVA) of the TIN: 13.72 cm (0.45 ft) at a 95% confidence level, derived according to NSSDA, i.e., based on RMSE of 12.5 cm in the "open terrain" land cover category. ; Quantitative Value: 0.07 meters, Test that produced the value: Tested 13.72 cm (0.45 ft) vertical accuracy at 95 percent confidence level. |
Completeness Report: |
The LIDAR data is visually inspected for completeness to ensure that are no gaps between flight lines. |
Conceptual Consistency: |
All formatted data are validated using commercial GIS software to ensure proper formatting and loading prior to delivery. |
Lineage
Process Steps
Process Step 1
Description: |
Using a LH Systems ALS50 Light Detection And Ranging (LiDAR) system, 126 flight lines of high density data, at a nominal pulse spacing (NPS) of 2.0 meters, were collected over approximately 6,684,759,312 square meters (2,581 square miles) of Vermillion, Iberia, St. Mary, Terrebonne, and Lafourche Parishes in southeastern Louisiana. Multiple returns were recorded for each laser pulse along with an intensity value for each return. A total of eighteen missions were flown over a 15 day period: January 22, 2011, January 23, 2011, January 27, 2011, February 12, 2011, February 13, 2011, February 17, 2001, February 18, 2011, February 28, 2011, March 1, 2011, March 10, 2011, March 11, 2011, March 15, 2011, March 16, 2011, April 6, 2011, and April 12, 2011. A minimum of two airborne global positioning system (GPS) base stations were used in support of the LiDAR data acquisition. 22 ground control points were surveyed through static methods. The geoid used to reduce satellite derived elevations to orthometric heights was Geoid09. All data for Region 1 is referenced to UTM 15N for the area within its zone, NAD83, NAVD88, in meters. Airborne GPS data was differentially processed and integrated with the post processed IMU data to derive a smoothed best estimate of trajectory (SBET). The SBET was used to reduce the LiDAR slant range measurements to a raw reflective surface for each flight line. The coverage was classified to extract a bare earth digital elevation model (DEM) and separate last returns. In addition to the LAS deliverables, one layer of coverage was delivered in the ArcINFO ArcGrid binary format 2m cell size: bare-earth. The ArcGrid data was created using ArcMap v9.3 software. System Parameters: - Type of Scanner = LH Systems ALS50 - Data Acquisition Height = 2,377-meters AGL - Scanner Field of View = 40 degrees - Scan Frequency = 36.7 Hertz - Pulse Repetition Rate = 99.0 Kilohertz - Aircraft Speed = 140 Knots - Swath Width = 1730-meters - Number of Returns Per Pulse = Maximum of 4 - Distance Between Flight Lines = 1212-meters. |
---|---|
Process Date/Time: | 2011-04-15 00:00:00 |
Process Step 2
Description: |
The ALS50 calibration and system performance is verified on a periodic basis using Woolpert's calibration range. The calibration range consists of a large building and runway. The edges of the building and control points along the runway have been located using conventional survey methods. Inertial measurement unit (IMU) misalignment angles and horizontal accuracy are calculated by comparing the position of the building edges between opposing flight lines. The scanner scale factor and vertical accuracy is calculated through comparison of LiDAR data against control points along the runway. Field calibration is performed on all flight lines to refine the IMU misalignment angles. IMU misalignment angles are calculated from the relative displacement of features within the overlap region of adjacent (and opposing) flight lines. The raw LiDAR data is reduced using the refined misalignment angles. |
---|---|
Process Date/Time: | 2011-04-15 00:00:00 |
Process Step 3
Description: |
Once the data acquisition and GPS processing phases are complete, the LiDAR data was processed immediately to verify the coverage had no voids. The GPS and IMU data was post processed using differential and Kalman filter algorithms to derive a best estimate of trajectory. The quality of the solution was verified to be consistent with the accuracy requirements of the project. |
---|---|
Process Date/Time: | 2011-04-15 00:00:00 |
Process Step 4
Description: |
The individual flight lines were inspected to ensure the systematic and residual errors have been identified and removed. Then, the flight lines were compared to adjacent flight lines for any mismatches to obtain a homogeneous coverage throughout the project area. The point cloud underwent a classification process to determine bare-earth points and non-ground points utilizing "first and only" as well as "last of many" LiDAR returns. This process determined bare-earth points (Class 2), Noise (Class 7), Water (Class 9) Ignored ground (Class 10) and unclassified data (Class 1). The bare-earth (Class 2 - Ground) LiDAR points underwent a manual QA/QC step to verify that artifacts have been removed from the bare-earth surface. The surveyed ground control points are used to perform the accuracy checks and statistical analysis of the LiDAR dataset. |
---|---|
Process Date/Time: | 2011-04-15 00:00:00 |
Process Step 5
Description: |
Breaklines defining lakes, greater than two acres, and double-line streams, wider than 30.5 meters (100 feet), were compiled using digital photogrammetric techniques as part of the hydrographic flattening process and provided as ESRI Polyline Z and Polygon Z shape files. Breaklines defining water bodies and streams were compiled for this task order. The breaklines were used to perform the hydrologic flattening of water bodies, and gradient hydrologic flattening of double line streams. Lakes, reservoirs and ponds, at a nominal minimum size of two (2) acres or greater, were compiled as closed polygons. The closed water bodies were collected at a constant elevation. Rivers and streams, at a nominal minimum width of 30.5 meters (100 feet), were compiled in the direction of flow with both sides of the stream maintaining an equal gradient elevation. The draping of the polygons and double lines streams was performed using proprietary software developed by Woolpert. The hydrologic flattening of the LiDAR data was performed for inclusion in the National Elevation Dataset (NED). |
---|---|
Process Date/Time: | 2011-04-15 00:00:00 |
Process Step 6
Description: |
The NOAA Office for Coastal Management (OCM) received topographic files in LAS format. The files contained lidar elevation and intensity measurements. The data were received in UTM Zone 15 (NAD83) coordinates and were vertically referenced to NAVD88 using the Geoid09 model. The vertical units of the data were meters. OCM performed the following processing for data storage and Digital Coast provisioning purposes: 1. The topographic las files were converted from orthometric (NAVD88) heights to ellipsoidal heights using Geoid09. |
---|---|
Process Date/Time: | 2012-10-01 00:00:00 |
Catalog Details
Catalog Item ID: | 50119 |
---|---|
GUID: | gov.noaa.nmfs.inport:50119 |
Metadata Record Created By: | Anne Ball |
Metadata Record Created: | 2017-11-15 15:24+0000 |
Metadata Record Last Modified By: | SysAdmin InPortAdmin |
Metadata Record Last Modified: | 2022-08-09 17:11+0000 |
Metadata Record Published: | 2022-03-16 |
Owner Org: | OCMP |
Metadata Publication Status: | Published Externally |
Do Not Publish?: | N |
Metadata Last Review Date: | 2022-03-16 |
Metadata Review Frequency: | 1 Year |
Metadata Next Review Date: | 2023-03-16 |