Data Management Plan
GUID: gov.noaa.nmfs.inport:51960 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
This data set contains LAS v. 1.2 format all points data from the Lower Texas Coast. The data were collected in winter, 2015 using the Bureau of Economic Geology’s airborne system (Chiroptera)which can collect topographic lidar data, shallow bathymetric lidar data, and natural color/color infrared imagery. The X, Y, and Z point data are generated by combining laser range and aircraft attitude data collected using an airborne light detection and ranging (lidar) instrument with once-per-second data collected using geodetic quality (dual phase) Global Positioning System (GPS) airborne and ground-based receivers. The equipment was installed in a twin engine Partenavia P68 aircraft (tail number N300LF) owned and operated by Aspen Helicopters, Inc., and operated locally out of Aransas County Airport in Rockport, Texas.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Process Steps:
- 2015-01-29 00:00:00 - Preparation and Data acquisition Chiroptera system is installed in aircraft. GPS to laser offset values are measured using a survey grade Total Station (if first time installation). System is turned on using ground AC power connection to the aircraft for system check. Aircraft GPS receiver is turned on to start data collection. The pre-determined flight plan is uploaded to the Flight Management software. Ground GPS base stations are setup on geodetic reference points (with known precise Northing, Easting, and Elevation information) in or near the survey area. GPS receivers are set for continuous 1 second data collection rate. Aircraft GPS and Base GPS information needs to overlap each other for the duration of the survey flight. Aircraft takes off to begin the survey mission. Pilot follows the flight altitude, speed and the flight lines as directed by the flight plan. Raw laser point cloud data is collected with external solid state hard drives in the Chiroptera. High resolution raw images are collected using integrated medium format camera. VGA low resolution images are collected for operator and post-processing reference. GPS and attitude (INS) information is collected on an external storage device. Airborne survey is completed after all flight lines are flown.
- 2015-01-29 00:00:00 - Data Download and Preliminary Field Processing All laser data and raw image files are downloaded to the field computer using its internal drive enclosures. GPS and INS data are downloaded using USB3.0 connections to the field computer. Preliminary GPS processing is completed by merging base GPS receiver with the remote to create a GPS trajectory (GrafNav). The preliminary GPS trajectory is combined with attitude information in AEROoffice to create a 7-parameter (TXYZ,roll,pitch,yaw) navigation file. The navigation solution is used to reference each laser pulse return with the 7-paramater information in LSS. Laser point cloud data is output by flight line in multiple segments. Point cloud data is examined to determine quality of the data coverage (i.e. sufficient overlap of flight lines and point spacing).
- 2015-08-13 00:00:00 - Post-Processing Upon return from the survey area, all files are transferred from the field computer to an in-house server. Compute base station coordinates using National Geodetic Survey's (NGS) Online Positioning User Service (OPUS). Setup project in AEROoffice software and covert Chiroptera GPS files to binary Novatel GPS files. Convert aircraft GPS file and base station GPS files to GrafNav compatible format. Compute merged aircraft trajectory using GrafNav software. Solutions for base station coordinates and aircraft trajectories are in NAD83. Combine precise trajectories with aircraft attitude information in AEROoffice to create final precise 7-parameter navigation file (TXYZ,roll,pitch,yaw). Laser point data are generated in AHAB processing software Lidar Survey Studio (LSS) combining navigation file information and laser data. LSS also requires a calibration, processing settings, and system configuration files. Laser point data is output from LSS in LAS v1.2 format (a binary file format). A condition is set in LSS to output data in the proper UTM zone and hemisphere. The resultant points are referenced to the Geographic NAD83 horizontal datum and height above the NAD83 ellipsoid. The TerraScan utility of MicroStation was used to concatenate flight line files and to clean data of miscellaneous returns (such as clouds, reflections, long returns, etc). The LAS data files are parsed into 1x1 km tiles (plus 20m buffer) using the LAStools script lastile. This process created 68 tiles. The 2012A geoid model was used to adjust the elevation data from ellipsoidal to orthometric heights (NAVD88) using a LAStools script called lasheight. The LAS input files are classified into 2 categories 1) ground and 2) everything else (ie. vegetation, power lines, buildings, etc.) using the LAStools script lasground. Create index map shapefile and KML file representing center of each 1x1 km tile with file name for referencing.
- 2018-02-20 00:00:00 - The NOAA Office for Coastal Management (OCM) received 95 files in las format from UT BEG. The files contained elevation and intensity measurements along the coast of Texas. The data were in UTM Zone 14 NAD83 coordinates and NAVD88 (Geoid12A) elevations in meters. The data were classified as: 9 (ground), 13 (low vegetation), 14 (medium vegetation), 15 (high vegetation) . OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. The LAStools software scripts lasinfo and lasvalidate, were run on the las files to check for errors. 2. The LAStools software script las2las was run to convert the classifications of: Class 9 (ground) to Class 2 (ground) Class 13, 14, 15 (low/medium/high vegetation) to Class 1 (unclassified) - these classes were converted due to the fact that many points with these classifications were actually structures. 3. Internal OCM scripts were run on the las files to convert from UTM Zone 14 NAD83 coordinates to geographic NAD83 coordinates, from orthometric (NAVD88) elevations to ellipsoid elevations using the Geoid 12A model, to assign the geokeys, and zip the data to database and to http.
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/6291/index.html
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
Data is available online for custom or bulk downloads.
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.