Data Management Plan
GUID: gov.noaa.nmfs.inport:65632 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
These data were collected by Leading Edge Geomatics using a Riegl VQ-880-G II sensor. The data acqusition began January 20, 2019 through June 2, 2019. The data includes topobathy data in LAS 1.4 format classified as created, never classified (0); unclassified (1); ground (2); noise (7); bathymetric bottom (40); water surface (41); derived water surface (42); submerged object, not otherwise specified (e.g., wreck, rock, submerged piling) (43); International Hydrographic Organization S-57 object, not otherwise specified (44); no bottom found (bathymetric lidar point for which no detectable bottom return was received) (45); bathymetic bottom temporal changes (46) in accordance with project specifications.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Data only covers coastal area.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Process Steps:
- 2020-01-22 00:00:00 - Data for the Puerto Rico and the US Virgin Islands project was acquired by Leading Edge Geomatics using a Riegl VQ-880-G II sensor. All delivered US Virgin Islands lidar data is referenced to: Horizontal Datum-NAD83 (2011) epoch: 2010 Projection-UTM Zone 20 North Horizontal Units-meters Vertical Datum-NAD83 (2011) Vertical Units-meters Both green lidar data and NIR lidar data were acquired. Leading Edge Geomatics acquired, calibrated, and performed refraction correction for the lidar data.
- 2021-01-22 00:00:00 - Dewberry received the calibrated green and NIR data and verified complete coverage. Relative accuracy of the green swaths compared to overlapping and adjacent green swaths as well as the relative accuracy of green swaths compared to overlapping and adjacent NIR swaths was verified through the use of Delta-Z (DZ) orthos created in GeoCue software. Intraswath relative accuracy was verified using Quick Terrain Modeler. Profiles of elevated planar features, such as roofs, were used to verify horizontal alignment between overlapping swaths. Dewberry then verified absolute vertical accuracy of the swath data prior to full-scale production. Dewberry used algoritms in TerraScan to create the intial ground/submerged topography surface. Dewberry used rasterized aggregate extents of refracted points to create automated 2-D breaklines with LAStools and ArcGIS. Light travels at different speeds in air versus water and its speed and direction of travel change when it enters the water column. The refraction correction process accounts for this difference by adjusting the depth (distance traveled) and horizontal position (change of angle/direction) of the lidar points acquired within water. These breaklines delineate areas where the refraction correction was applied to the lidar data by Riegl's automated refraction correction software based on the software's detection of water. Where the automated process missed discrete water bodies that did not contain valid bathymetry (submerged topography) data, breaklines were manually drawn and added to a separate feature class to ensure the correct classification of the point cloud. Dewberry used the 2-D refraction extents and additional bathy features to classify the bathymetric bottom and ground points properly in TerraScan. All lidar data was peer-reviewed. Dewberry's QAQC also included creating void polygons for use during review. All necessary edits were applied to the dataset. GeoCue software was used to update LAS header information, including all projection and coordinate reference system information. The final lidar data are in LAS format 1.4 and point data record format 6. The final classificaton scheme is as follows: 0-Created, never classified 1-Unclassified 2-Ground 7-Noise 40-Bathymetric bottom 41-Water surface 42-Derived water surface 43-Submerged object, not otherwise specified 44-International Hydrograpic Organization (IHO) S-57 objects 45-No bottom found (bathymetric lidar point for which no detectable bottom return was received) 46-Bathymetric bottom temporal changes All data was then verified by an Independent QC department within Dewberry. The independent QC was performed by separate analysts who did not perform manual classification or editing. The independent QC involved quantitative and qualitative reviews.
- 2020-02-03 00:00:00 - Lidar data classified as ground (2) and submerged topography (40) were converted to Esri multipoint format. These multipoints were then used to generate a terrain and the terrain was converted to a raster in IMG format with 1 meter pixel resolution. The terrain and output raster were created over the full project area to reduce edge-matching issues and improve seamlessness. The raster was clipped to the tile grid and named according to project specifications to result in tiled topobathymetric DEMs. All tiled DEMs incorporate the use of the void polygons. The void polygons represent bathymetric areas with no bathymetric bottom returns and are set as NoData in the DEMs. Void polygon creation is described in the final project report and the void polygon metadata. A point density layer has been created and provided to NOAA as part of the deliverables. The point density layer is a raster product in IMG format with 1 meter square pixels. The density grid identifies the number of ground and/or bathy bottom points located within each pixel. The pixels in the point density layer align with the pixels in the topobathy DEMs so that the point density layer shows the density of ground/submerged topography points located in each cell that were used to determine elevations for each cell in the topobathy DEMs. Higher density lends itself to higher confidence. The point density layer can be displayed by unique values or classified into desired bins/ranges for analysis over larger areas. A confidence layer has been created and provided to NOAA as part of the deliverables. The confidence layer is a raster product in IMG format with 1 meter square pixels. The confidence layer provides a standard deviation value for every pixel by calculating the standard deviation of all ground and/or submerged topography lidar points that are located within a single pixel. The confidence layer pixels align to the pixels in the topobathy DEMs. The confidence layer can be displayed by unique values or classified into desired bins/ranges for analysis over larger areas.
- 2021-10-08 00:00:00 - The NOAA Office for Coastal Management (OCM) received files in IMG format. OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. Converted from IMG to TIFF
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.us-east-1.amazonaws.com/dem/NGS_USVI_Topobathy_DEM_2019_9414/
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
Data is available online for bulk or custom downloads
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
Data is backed up to tape and to cloud storage.
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.