2020 USGS Topobathy Lidar: Nisqually River Basin, WA
Data Set (DS) | OCM Partners (OCMP)GUID: gov.noaa.nmfs.inport:67100 | Updated: October 17, 2023 | Published / External
Summary
Short Citation
OCM Partners, 2024: 2020 USGS Topobathy Lidar: Nisqually River Basin, WA, https://www.fisheries.noaa.gov/inport/item/67100.
Full Citation Examples
Product: Classified LAS 1.4 files, formatted to 85 individual 1,000m x 1,000m covering the Nisqually River Basin 2020 project area.
Geographic Extent: This dataset and derived products encompass an area covering approximately 13,189 acres of Western Washington.
Dataset Description: The Nisqually River Basin 2020 Lidar project called for the planning, acquisition, and processing of topobathy Lidar data collected to Quality Level 1 (QL1) standards. Project specifications are based on the U.S. Geological Survey National Geospatial Program LIDAR Base Specification, Version 2.1. The data was developed based on the NAD83 2011 horizontal datum and the NAVD88 Geoid 18 vertical datum. Data was projected in UTM Zone 10. Lidar data was delivered as calibrated and classified LAS 1.4 files. Non-Vegetated Vertical Accuracy (NVA) was assessed using 22 check points located on bare earth in clear, unobstructed areas. Submerged Topography accuracy was assessed using 86 check points collected as feasible in depths up to 1m. Vegetated Vertical Accuracy (VVA) was assessed using 14 check points in tall grass, forest, and shrubland landcover types. Single swath nominal pulse spacing (NPS) was designed to be 9.5 points per meter squared at nadir. Aggregate Nominal Pulse Spacing (ANPS) was calculated to be 36.59 points per meter squared using all valid first return points. Derived products include: Intensity Imagery, Topbathymetric Digital Elevation Models (DEMs), Hydro-flattened Bare Earth Digital Elevation Models (DEMs), Highest Hit Digital Surface Models (DSMs), 3D waters edge breaklines, and a bathymetric coverage shape.
Ground Condition: Ground condition was free of snow and acquisition occurred free of smoke, fog and cloud cover.
This metadata supports the data entry in the NOAA Digital Coast Data Access Viewer (DAV). For this data set, the DAV is leveraging the Entwine Point Tiles (EPT) hosted by USGS on Amazon Web Services.
Distribution Information
-
Create custom data files by choosing data area, product type, map projection, file format, datum, etc. A new metadata will be produced to reflect your request using this record as a base. Change to an orthometric vertical datum is one of the many options.
-
LAS/LAZ - LASer
Bulk download of data files in LAZ format, based on a horizontal datum/projection of UTM Zone 10, NAD83(2011), meters (EPSG: 6339) and a vertical datum of NAVD88 (GEOID18) and units in meters (EPSG: 5703). This url links to the USGS copy of the files, from which the Entwine Point Tile files originated. These have not been reviewed by OCM and the link is provided here for convenience.
None
Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations.
Controlled Theme Keywords
COASTAL BATHYMETRY, elevation, TERRAIN ELEVATION
Child Items
No Child Items for this record.
Contact Information
Point of Contact
NOAA Office for Coastal Management (NOAA/OCM)
coastal.info@noaa.gov
(843) 740-1202
https://coast.noaa.gov
Metadata Contact
NOAA Office for Coastal Management (NOAA/OCM)
coastal.info@noaa.gov
(843) 740-1202
https://coast.noaa.gov
Extents
-122.768716° W,
-122.655393° E,
47.11291° N,
46.989727° S
2020-12-22
2020-11-08
Item Identification
Title: | 2020 USGS Topobathy Lidar: Nisqually River Basin, WA |
---|---|
Status: | Completed |
Creation Date: | 2020 |
Publication Date: | Unknown |
Abstract: |
Product: Classified LAS 1.4 files, formatted to 85 individual 1,000m x 1,000m covering the Nisqually River Basin 2020 project area. Geographic Extent: This dataset and derived products encompass an area covering approximately 13,189 acres of Western Washington. Dataset Description: The Nisqually River Basin 2020 Lidar project called for the planning, acquisition, and processing of topobathy Lidar data collected to Quality Level 1 (QL1) standards. Project specifications are based on the U.S. Geological Survey National Geospatial Program LIDAR Base Specification, Version 2.1. The data was developed based on the NAD83 2011 horizontal datum and the NAVD88 Geoid 18 vertical datum. Data was projected in UTM Zone 10. Lidar data was delivered as calibrated and classified LAS 1.4 files. Non-Vegetated Vertical Accuracy (NVA) was assessed using 22 check points located on bare earth in clear, unobstructed areas. Submerged Topography accuracy was assessed using 86 check points collected as feasible in depths up to 1m. Vegetated Vertical Accuracy (VVA) was assessed using 14 check points in tall grass, forest, and shrubland landcover types. Single swath nominal pulse spacing (NPS) was designed to be 9.5 points per meter squared at nadir. Aggregate Nominal Pulse Spacing (ANPS) was calculated to be 36.59 points per meter squared using all valid first return points. Derived products include: Intensity Imagery, Topbathymetric Digital Elevation Models (DEMs), Hydro-flattened Bare Earth Digital Elevation Models (DEMs), Highest Hit Digital Surface Models (DSMs), 3D waters edge breaklines, and a bathymetric coverage shape. Ground Condition: Ground condition was free of snow and acquisition occurred free of smoke, fog and cloud cover. This metadata supports the data entry in the NOAA Digital Coast Data Access Viewer (DAV). For this data set, the DAV is leveraging the Entwine Point Tiles (EPT) hosted by USGS on Amazon Web Services. |
Purpose: |
The purpose of the lidar data was to produce a high accuracy 3D dataset that meets all necessary standards laid out by the 3D Elevation Program and the Nisqually River Basin 2020 contract. The lidar point cloud data were used to create classified lidar LAS files, intensity images, Topobathymetric DEMs, hydroflattened DEMs, highest hit surface models, and a bathymetric coverage shape. |
Supplemental Information: |
USGS Contract No. G16PC00016 CONTRACTOR: NV5 Geospatial Ground Control Points were acquired and calibrated by NV5 Geospatial All lidar data acquisition, calibration, and follow-on processing were completed by NV5 Geospatial. </supplinf> <lidar> <ldrinfo> <ldrspec>U.S. Geological Survey National Geospatial Program LIDAR Base Specification, Version 2.1</ldrspec> <ldrsens>Riegl VQ-880-GII</ldrsens> <ldrmaxnr>15</ldrmaxnr> <ldrnps>9.5</ldrnps> <ldrdens>0.32</ldrdens> <ldranps>36.59</ldranps> <ldradens>0.17</ldradens> <ldrfltht>400</ldrfltht> <ldrfltsp>140</ldrfltsp> <ldrscana>40</ldrscana> <ldrscanr>66.3</ldrscanr> <ldrpulsr>245</ldrpulsr> <ldrpulsd>1.5</ldrpulsd> <ldrpulsw>0.45</ldrpulsw> <ldrwavel>532</ldrwavel> <ldrmpia>1</ldrmpia> <ldrbmdiv>0.7</ldrbmdiv> <ldrswatw>291</ldrswatw> <ldrswato>60</ldrswato> <ldrgeoid>Geoid 18</ldrgeoid> </ldrinfo> <ldrinfo> <ldrspec>U.S. Geological Survey National Geospatial Program LIDAR Base Specification, Version 2.1</ldrspec> <ldrsens>Riegl VQ-880-GII-IR</ldrsens> <ldrmaxnr>15</ldrmaxnr> <ldrnps>9.5</ldrnps> <ldrdens>0.32</ldrdens> <ldranps>36.59</ldranps> <ldradens>0.17</ldradens> <ldrfltht>400</ldrfltht> <ldrfltsp>140</ldrfltsp> <ldrscana>42</ldrscana> <ldrscanr>Uniform Point Spacing</ldrscanr> <ldrpulsr>145</ldrpulsr> <ldrpulsd>3</ldrpulsd> <ldrpulsw>0.9</ldrpulsw> <ldrwavel>1064</ldrwavel> <ldrmpia>1</ldrmpia> <ldrbmdiv>0.2</ldrbmdiv> <ldrswatw>307</ldrswatw> <ldrswato>60</ldrswato> <ldrgeoid>Geoid 18</ldrgeoid> </ldrinfo> <ldraccur> <ldrchacc>0</ldrchacc> <rawnva>0</rawnva> <rawnvan>0</rawnvan> </ldraccur> <lasinfo> <lasver>1.4</lasver> <lasprf>6</lasprf> <laswheld>Withheld (ignore) points are identified in these files using the standard LAS Withheld bit.</laswheld> <lasolap>Swath "overage" points were identified in these files using the standard LAS overlap bit.</lasolap> <lasintr>16</lasintr> <lasclass> <clascode>1</clascode> <clasitem>Processed, but Unclassified</clasitem> </lasclass> <lasclass> <clascode>2</clascode> <clasitem>Bare earth ground</clasitem> </lasclass> <lasclass> <clascode>7</clascode> <clasitem>Low Noise</clasitem> </lasclass> <lasclass> <clascode>9</clascode> <clasitem>Water</clasitem> </lasclass> <lasclass> <clascode>17</clascode> <clasitem>Bridge Decks</clasitem> </lasclass> <lasclass> <clascode>18</clascode> <clasitem>High Noise</clasitem> </lasclass> <lasclass> <clascode>22</clascode> <clasitem>Temporal Exclusion</clasitem> </lasclass> <lasclass> <clascode>40</clascode> <clasitem>Submerged Topography</clasitem> </lasclass> <lasclass> <clascode>41</clascode> <clasitem>Water Surface</clasitem> </lasclass> <lasclass> <clascode>45</clascode> <clasitem>Water Column</clasitem> </lasclass> </lasinfo> </lidar> |
Keywords
Theme Keywords
Thesaurus | Keyword |
---|---|
Global Change Master Directory (GCMD) Science Keywords |
EARTH SCIENCE > LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION
|
Global Change Master Directory (GCMD) Science Keywords |
EARTH SCIENCE > OCEANS > BATHYMETRY/SEAFLOOR TOPOGRAPHY > BATHYMETRY > COASTAL BATHYMETRY
|
ISO 19115 Topic Category |
elevation
|
Spatial Keywords
Thesaurus | Keyword |
---|---|
Global Change Master Directory (GCMD) Location Keywords |
CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA
|
Global Change Master Directory (GCMD) Location Keywords |
CONTINENT > NORTH AMERICA > UNITED STATES OF AMERICA > WASHINGTON
|
Global Change Master Directory (GCMD) Location Keywords |
VERTICAL LOCATION > LAND SURFACE
|
Global Change Master Directory (GCMD) Location Keywords |
VERTICAL LOCATION > SEA FLOOR
|
Instrument Keywords
Thesaurus | Keyword |
---|---|
Global Change Master Directory (GCMD) Instrument Keywords |
LIDAR > Light Detection and Ranging
|
Platform Keywords
Thesaurus | Keyword |
---|---|
Global Change Master Directory (GCMD) Platform Keywords |
Airplane > Airplane
|
Physical Location
Organization: | Office for Coastal Management |
---|---|
City: | Charleston |
State/Province: | SC |
Data Set Information
Data Set Scope Code: | Data Set |
---|---|
Data Set Type: | Elevation |
Maintenance Frequency: | Unknown |
Data Presentation Form: | Model (digital) |
Distribution Liability: |
Any conclusions drawn from the analysis of this information are not the responsibility of NOAA, the Office for Coastal Management or its partners. |
Data Set Credit: | USGS |
Support Roles
Data Steward
Date Effective From: | 2022 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Distributor
Date Effective From: | 2022 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Distributor
Date Effective From: | 2021 |
---|---|
Date Effective To: | |
Contact (Organization): | U.S. Geological Survey |
Address: |
12201 Sunrise Valley Drive Reston, VA 20191 USA |
URL: | USGS Home |
Metadata Contact
Date Effective From: | 2022 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Point of Contact
Date Effective From: | 2022 |
---|---|
Date Effective To: | |
Contact (Organization): | NOAA Office for Coastal Management (NOAA/OCM) |
Address: |
2234 South Hobson Ave Charleston, SC 29405-2413 |
Email Address: | coastal.info@noaa.gov |
Phone: | (843) 740-1202 |
URL: | https://coast.noaa.gov |
Extents
Currentness Reference: | Ground Condition |
---|
Extent Group 1
Extent Group 1 / Geographic Area 1
W° Bound: | -122.768716 | |
---|---|---|
E° Bound: | -122.655393 | |
N° Bound: | 47.11291 | |
S° Bound: | 46.989727 |
Extent Group 1 / Time Frame 1
Time Frame Type: | Discrete |
---|---|
Start: | 2020-12-22 |
Extent Group 1 / Time Frame 2
Time Frame Type: | Discrete |
---|---|
Start: | 2020-11-08 |
Spatial Information
Spatial Resolution
Horizontal Distance: | 0.35 Meter |
---|
Spatial Representation
Representations Used
Vector: | Yes |
---|
Reference Systems
Reference System 1
Coordinate Reference System |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Reference System 2
Coordinate Reference System |
|||||||||||||||||||||||
|
Access Information
Security Class: | Unclassified |
---|---|
Data Access Procedure: |
Data is available online for bulk and custom downloads. |
Data Access Constraints: |
None |
Data Use Constraints: |
Users should be aware that temporal changes may have occurred since this data set was collected and some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. |
Distribution Information
Distribution 1
Start Date: | 2022-02-14 |
---|---|
End Date: | Present |
Download URL: | https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=9493/details/9493 |
Distributor: | NOAA Office for Coastal Management (NOAA/OCM) (2022 - Present) |
File Name: | Customized Download |
Description: |
Create custom data files by choosing data area, product type, map projection, file format, datum, etc. A new metadata will be produced to reflect your request using this record as a base. Change to an orthometric vertical datum is one of the many options. |
File Type (Deprecated): | Zip |
Compression: | Zip |
Distribution 2
Start Date: | 2022 |
---|---|
End Date: | Present |
Download URL: | https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/WA_Nisqually_TopoBathy_2020_D20/WA_Nisqually_TopoBathy_1_2020/LAZ/ |
Distributor: | U.S. Geological Survey (2021 - Present) |
File Name: | Bulk Download |
Description: |
Bulk download of data files in LAZ format, based on a horizontal datum/projection of UTM Zone 10, NAD83(2011), meters (EPSG: 6339) and a vertical datum of NAVD88 (GEOID18) and units in meters (EPSG: 5703). This url links to the USGS copy of the files, from which the Entwine Point Tile files originated. These have not been reviewed by OCM and the link is provided here for convenience. |
File Type (Deprecated): | LAZ |
Distribution Format: | LAS/LAZ - LASer |
Compression: | Zip |
URLs
URL 1
URL: | https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/metadata/WA_Nisqually_TopoBathy_2020_D20/WA_Nisqually_TopoBathy_1_2020/reports/Nisqually_River_Basin_2020_Report_Revision_1.pdf |
---|---|
Name: | Lidar Report |
URL Type: |
Online Resource
|
File Resource Format: | |
Description: |
Link to the lidar report. |
URL 2
URL: | https://s3-us-west-2.amazonaws.com/usgs-lidar-public/WA_Nisqually_TopoBathy_1_2020/ept.json |
---|---|
Name: | Entwine Point Tiles (EPT) |
URL Type: |
Online Resource
|
File Resource Format: | json |
Description: |
Entwine Point Tile (EPT) is a simple and flexible octree-based storage format for point cloud data. The data is organized in such a way that the data can be reasonably streamed over the internet, pulling only the points you need. EPT files can be queried to return a subset of the points that give you a representation of the area. As you zoom further in, you are requesting higher and higher densities. A dataset in EPT will contain a lot of files, however, the ept.json file describes all the rest. The EPT file can be used in Potree and QGIS to view the point cloud. |
URL 3
URL: | https://usgs.entwine.io/data/view.html?r=%22https://s3-us-west-2.amazonaws.com/usgs-lidar-public/WA_Nisqually_TopoBathy_1_2020%22 |
---|---|
Name: | Potree 3D View |
URL Type: |
Online Resource
|
Description: |
Link to view the point cloud (using the Entwine Point Tile (EPT) format) in the 3D Potree viewer. |
URL 4
URL: | https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/metadata/WA_Nisqually_TopoBathy_2020_D20/WA_Nisqually_TopoBathy_2020_D20_WP_Report.pdf |
---|---|
Name: | USGS Work Package Report |
URL Type: |
Online Resource
|
File Resource Format: | |
Description: |
This USGS report provides the project information, vertical accuracy results, list of classifications, sensor used, and work unit information. |
URL 5
URL: | https://coast.noaa.gov/dataviewer/ |
---|---|
Name: | NOAA's Office for Coastal Management (OCM) Data Access Viewer (DAV) |
URL Type: |
Online Resource
|
File Resource Format: | HTML |
Description: |
The Data Access Viewer (DAV) allows a user to search for and download elevation, imagery, and land cover data for the coastal U.S. and its territories. The data, hosted by the NOAA Office for Coastal Management, can be customized and requested for free download through a checkout interface. An email provides a link to the customized data, while the original data set is available through a link within the viewer. |
URL 6
URL: | https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/metadata/WA_Nisqually_TopoBathy_2020_D20/WA_Nisqually_TopoBathy_1_2020/ |
---|---|
Name: | USGS Additional Info |
URL Type: |
Online Resource
|
Description: |
Link to the additional information available for this data set from the USGS. This information includes reports, tile index shapefiles, and hydro breaklines. |
Data Quality
Horizontal Positional Accuracy: |
Lidar horizontal accuracy is a function of Global Navigation Satellite System (GNSS) derived positional error, flying altitude, and INS derived attitude error. The obtained RMSEr value is multiplied by a conversion factor of 1.7308 to yield the horizontal component of the National Standards for Spatial Data Accuracy (NSSDA) reporting standard where a theoretical point will fall within the obtained radius 95 percent of the time. Based on a flying altitude of 400 meters, an IMU error of 0.002 decimal degrees, and a GNSS positional error of 0.015 meters, this project was compiled to meet 0.050 m horizontal accuracy at the 95% confidence level. |
---|---|
Vertical Positional Accuracy: |
This data set was produced to meet ASPRS Positional Accuracy Standard for Digital Geospatial Data (2014) for a 10-cm RMSEz Vertical Accuracy Class. USGS Determined Vertical Accuracy Non-Vegetated Vertical Accuracy (NVA) = 2.3 cm RMSE Vegetated Vertical Accuracy (VVA) = 16.74 cm at the 95th Percentile |
Completeness Report: |
A visual qualitative assessment was performed to ensure data completeness. Bathymetric void areas have been interpolated. A bathymetric coverage shape has been provided as a separate deliverable. The raw point cloud is of good quality and data passes Non-Vegetated Vertical Accuracy specifications. |
Conceptual Consistency: |
DEM files were tested by NV5 for vertical accuracy. All data is seamless from one tile to the next, no gaps or no data areas. |
Data Management
Have Resources for Management of these Data Been Identified?: | Yes |
---|---|
Approximate Percentage of Budget for these Data Devoted to Data Management: | Unknown |
Do these Data Comply with the Data Access Directive?: | Yes |
Actual or Planned Long-Term Data Archive Location: | NCEI-CO |
How Will the Data Be Protected from Accidental or Malicious Modification or Deletion Prior to Receipt by the Archive?: |
Data is backed up to tape and to cloud storage. |
Lineage
Lineage Statement: |
The Nisqually River Basin lidar was ingested into the Data Access Viewer for custom product generation by leveraging USGS hosted Entwine Point Tiles. |
---|
Sources
Entwine Point Tiles on AWS
Contact Role Type: | Publisher |
---|---|
Contact Type: | Organization |
Contact Name: | USGS |
Citation URL: | https://usgs.entwine.io/ |
Citation URL Name: | USGS Entwine Point Cloud |
Process Steps
Process Step 1
Description: |
Lidar Pre-Processing:1. Review flight lines and data to ensure complete coverage of the study area and positional accuracy of the laser points.2. Resolve kinematic corrections for aircraft position data using kinematic aircraft GPS and static ground GPS data.3. Develop a smoothed best estimate of trajectory (SBET) file that blends post-processed aircraft position with sensor head position and attitude recorded throughout the survey.4. Calculate laser point position by associating SBET position to each laser point return time, scan angle, intensity, etc. Create raw laser point cloud data for the entire survey in *.las format. Convert data to orthometric elevations by applying a Geoid 18 correction.5. Apply refraction correct to bathymetric returns by flightline.6. Import raw laser points into manageable blocks to perform manual relative accuracy calibration and filter erroneous points. Classify ground points for individual flight lines.7. Using ground classified points per each flight line, test the relative accuracy. Perform automated line-to-line calibrations for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Calculate calibrations on ground classified points from paired flight lines and apply results to all points in a flight line. Use every flight line for relative accuracy calibration.8. Adjust the point cloud by comparing ground classified points to supplemental ground control points. |
---|---|
Process Date/Time: | 2021-03-30 00:00:00 |
Process Step 2
Description: |
Lidar Post-Processing:1. Classify data to ground and other client designated classifications using proprietary classification algorithms.2. Manually QC data classification3. After completion of classification and final QC approval, calculate final NVA, VVA, and density information for the project using ground control quality check points. |
---|---|
Process Date/Time: | 2021-03-30 00:00:00 |
Process Step 3
Description: |
Breaklines: Water boundary polygons were developed using an algorithm which weights lidar-derived slopes, intensities, and return densities to detect the water's edge. The water's edge was then manually reviewed and edited as necessary. |
---|---|
Process Date/Time: | 2021-03-30 00:00:00 |
Process Step 4
Description: |
Bathymetric Coverage Shape: Insufficiently mapped areas were identified by triangulating bathymetric bottom points with an edge length maximum of 4.56 meters. This shape was used to clip the final topobathymetric DEMs to avoid interpolation over areas lacking bathymetric returns. |
---|---|
Process Date/Time: | 2021-03-30 00:00:00 |
Process Step 5
Description: |
Original point clouds in LAS/LAZ format were restructured as Entwine Point Tiles and stored on Amazon Web Services. The data were re-projected horizontally to WGS84 Web Mercator (EPSG 3857). Vertically, the data were converted to meters and no changes were made to the vertical datum (NAVD88 GEOID18; EPSG 5703). |
---|---|
Process Contact: | U.S. Geological Survey |
Process Step 6
Description: |
References to the entwine point tiles and data reports were ingested into the Digital Coast Data Access Viewer. No changes to the data were made at this point. The Data Access Viewer will access the point cloud as it resides on AWS under the usgs-lidar-public container. |
---|---|
Process Date/Time: | 2022-05-02 00:00:00 |
Process Contact: | Office for Coastal Management (OCM) |
Catalog Details
Catalog Item ID: | 67100 |
---|---|
GUID: | gov.noaa.nmfs.inport:67100 |
Metadata Record Created By: | Rebecca Mataosky |
Metadata Record Created: | 2022-05-02 20:38+0000 |
Metadata Record Last Modified By: | SysAdmin InPortAdmin |
Metadata Record Last Modified: | 2023-10-17 16:12+0000 |
Metadata Record Published: | 2022-05-03 |
Owner Org: | OCMP |
Metadata Publication Status: | Published Externally |
Do Not Publish?: | N |
Metadata Last Review Date: | 2022-05-03 |
Metadata Review Frequency: | 1 Year |
Metadata Next Review Date: | 2023-05-03 |