Data Management Plan
GUID: gov.noaa.nmfs.inport:67647 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
No metadata record was provided with the data. This record is populated with information from the Atlantic, Inc. technical report downloaded from the Washington Dept. of Natural Resources Washington Lidar Portal. The technical report is available for download from the link provided in the URL section of this metadata record.
The United States Forest Service, Region 6, (USFS) required leaf-on airborne LiDAR surveys to be collected over approximately 4,141 square miles of national forestry in Oregon and Washington State. This metadata record describes the 460 square mile project area called Tieton. Aerial LiDAR data for this task order was planned, acquired, processed and produced at an aggregate nominal pulse spacing (ANPS) of 0.35 meters and in compliance with USGS National Geospatial Program LiDAR Base Specification version 1.3.
In addition to these bare earth Digital Elevation Model (DEM) data, the lidar point data that these DEM data were created from, are also available. These data are available for custom download at the link provided in the URL section of this metadata record.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Lineage Statement:
The NOAA Office for Coastal Management (OCM) downloaded the GeoTiff files from the Washington Lidar Portal and processed the data to be available for custom download from the NOAA Digital Coast Data Access Viewer (DAV) and for bulk download from https.
Process Steps:
- Atlantic acquired 1588 passes of the entire AOI as a series of perpendicular and/or adjacent flight-lines executed in 44 flight missions conducted between June 29, 2018 and January 24, 2019. Onboard differential Global Navigation Satellite System (GNSS) unit(s) recorded sample aircraft positions at 2 hertz (Hz) or more frequency. LiDAR data was only acquired when a minimum of six (6) satellites were in view.
- Ninety (90) Continuously Operating Reference Stations (CORS) were used to control the LiDAR acquisition for the entire defined project area. A total of 545 ground survey points were collected in support of this project. Point cloud data accuracy was tested against a Triangulated Irregular Network (TIN) constructed from LiDAR points in clear and open areas. A clear and open area can be characterized with respect to topographic and ground cover variation such that a minimum of five (5) times the Nominal Pulse Spacing (NPS) exists with less than 1/3 of the RMSEZ deviation from a low-slope plane. Slopes that exceed ten (10) percent were avoided. Each land cover type representing ten (10) percent or more of the total project area were tested and reported with a GCP. In land cover categories other than dense urban areas, the tested points did not have obstructions forty-five (45) degrees above the horizon to ensure a satisfactory TIN surface. The GCP value is provided as a target. It is understood that in areas of dense vegetation, swamps, or extremely difficult terrain, this value may be exceeded. The GCP value is a requirement that must be met, regardless of any allowed busts in the VVA(s) for individual land cover types within the project. Checkpoints for the assessment are required to be well-distributed throughout the land cover type, for the entire project area.
- Atlantic used Leica software products to download the IPAS ABGNSS/IMU data and raw laser scan files from the airborne system. Waypoint Inertial Explorer is used to extract the raw IPAS ABGNSS/IMU data, which is further processed in combination with controlled base stations to provide the final Smoothed Best Estimate Trajectory (SBET) for each mission. The SBETs are combined with the raw laser scan files to export the LiDAR ASCII Standard (*.las) formatted swath point clouds. Departures from planarity of first returns within single swaths in non-vegetated areas were assessed at multiple locations with hard surface areas (parking lots or large rooftops) inside the project area. Each area was evaluated using signed difference rasters (maximum elevation - minimum elevation) at a cell size equal to 2 x ANPS, rounded to the next integer. Using a combination of GeoCue, TerraScan and TerraMatch; overlapping swath point clouds are corrected for any orientation or linear deviations to obtain the best fit swath-to-swath calibration. Relative calibration was evaluated using advanced plane-matching analysis and parameter corrections derived. This process was repeated interactively until residual errors between overlapping swaths, across all project missions, was reduced to less than or equal to 2 cm. A final analysis of the calibrated lidar is performed using a TerraMatch tie line report for an overall statistical model of the project area. Upon completion of the data calibration, a complete set of elevation difference intensity rasters (dZ Orthos) are produced. A user-defined color ramp is applied depicting the offsets between overlapping swaths based on project specifications. The dZ orthos provide an opportunity to review the data calibration in a qualitative manner. Atlantic assigns green to all offset values that fall below the required RMSDz requirement of the project. A yellow color is assigned for offsets that fall between the RMSDz value and 1.5x of that value. Finally, red values are assigned to all values that fall beyond 1.5x of the RMSDz requirements of the project.
- Multiple automated filtering routines are applied to the calibrated LiDAR point cloud identifying and extracting bare-earth and above ground features. GeoCue, TerraScan, and TerraModeler software was used for the initial batch processing, visual inspection and any manual editing of the LiDAR point clouds. Classified point clouds were cut to match the tile index and its corresponding tile names and delivered in .laz format.
- Bare earth Digital Elevation Models (DEMs) were derived using the bare earth (ground) LiDAR points. All DEMs were created with a grid spacing of 1 meter. DEMs were cut to match the tile index and its corresponding tile names and delivered in .img format.
- Washington DNR converted the data to US survey feet to match the state coordinate system, Washington State Plane South.
- 2022-08-10 00:00:00 - The NOAA Office for Coastal Management (OCM) downloaded 21 raster DEM files in GeoTiff format from the Washington Lidar Portal. The data were in Washington State Plane South NAD83(HARN), US survey feet coordinates and NAVD88 (Geoid12B) elevations in feet. The bare earth raster files were at a 3 feet grid spacing. No metadata record was provided with the data. This record is populated with information from the Atlantic, Inc. technical report downloaded from the Washington Dept. of Natural Resources Washington Lidar Portal. OCM performed the following processing on the data for Digital Coast storage and provisioning purposes: 1. Used an internal script to assign the EPSG codes (Horizontal EPSG: 2927 and Vertical EPSG: 6360) to the GeoTiff formatted files. 2. Copied the files to https.
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 5.2. Quality control procedures employed
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.4. Approximate delay between data collection and dissemination
- 8.3. Approximate delay between data collection and submission to an archive facility
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.us-east-1.amazonaws.com/dem/WA_Tieton_DEM_2018_9489/index.html
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
Data is available online for bulk and custom downloads.
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
Data is backed up to tape and to cloud storage.
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.