Data Management Plan
GUID: gov.noaa.nmfs.inport:49780 | Published / External
Data Management Plan
DMP Template v2.0.1 (2015-01-01)
Please provide the following information, and submit to the NOAA DM Plan Repository.Reference to Master DM Plan (if applicable)
As stated in Section IV, Requirement 1.3, DM Plans may be hierarchical. If this DM Plan inherits provisions from a higher-level DM Plan already submitted to the Repository, then this more-specific Plan only needs to provide information that differs from what was provided in the Master DM Plan.
1. General Description of Data to be Managed
Light Detection and Ranging (LiDAR) is a method of locating objects on the ground using aerial-borne equipment. It is similar to RADAR or SONAR in that the two-way travel time of an energy beam reflected off an object is precisely measured, but this technology uses laser light instead of radio or sound waves. This technology has proven very useful in remote sensing of the earth. It can be used for determining elevations of both the earth's surface and items (natural and man-made) on the surface. Analysis of LiDAR data is used in detailed modeling of the earth's surface for drainage and floodplain studies, determining how a new structure will affect views from various locations, shoreline erosion studies, and other reasons. This data set contains only the bare earth mass points. Bare earth points represent ground features. Features that are above ground, such as buildings, bridges, tree tops, etc., have been eliminated. Mass points may appear to have "holes" with no elevation values in areas where the surface could not be determined, such as very dense forests or urban areas.
Notes: Only a maximum of 4000 characters will be included.
Notes: Data collection is considered ongoing if a time frame of type "Continuous" exists.
Notes: All time frames from all extent groups are included.
Notes: All geographic areas from all extent groups are included.
(e.g., digital numeric data, imagery, photographs, video, audio, database, tabular data, etc.)
(e.g., satellite, airplane, unmanned aerial system, radar, weather station, moored buoy, research vessel, autonomous underwater vehicle, animal tagging, manual surveys, enforcement activities, numerical model, etc.)
2. Point of Contact for this Data Management Plan (author or maintainer)
Notes: The name of the Person of the most recent Support Role of type "Metadata Contact" is used. The support role must be in effect.
Notes: The name of the Organization of the most recent Support Role of type "Metadata Contact" is used. This field is required if applicable.
3. Responsible Party for Data Management
Program Managers, or their designee, shall be responsible for assuring the proper management of the data produced by their Program. Please indicate the responsible party below.
Notes: The name of the Person of the most recent Support Role of type "Data Steward" is used. The support role must be in effect.
4. Resources
Programs must identify resources within their own budget for managing the data they produce.
5. Data Lineage and Quality
NOAA has issued Information Quality Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information which it disseminates.
(describe or provide URL of description):
Process Steps:
- 2004-01-20 00:00:00 - LIDAR Data Acquisition. Airborne 1, using an Optec 25 MHz system, flew the project area with the LIDAR sensor. A portion of the 2003 project area included data acquisition of portions of the LIDAR 2002 project area that had incomplete coverage. Where overlaps between the two series of data occurred, the newer data was used. No attempt at blending the two datasets was made to maintain the highest data integrity. In an effort to permit correlation of the point values with tidal gauge stations, the Airborne 1 was required to fly tidal shoreline areas during the low tide cycle (slack water - low tide - slack water) as predicted by local tide stations. The LIDAR sensor collected raw data that was referenced in UTM. The specifications called for data collection during leaf-off conditions, which generally run through early to mid April. However, due to late winter snow cover, windy flight conditions and other technical obstacles, data acquisitions continued into early June 2003. In addition, a small area in the north end of the project area was acquired in July. Anticipating the trouble with leaf density, Airborne 1 modified the flight parameters to increase the laser light penetration to the ground. The flight plan on this project included the following specifications to meet the project requirements: *Single pass density - 1.696 square meters per sample; *Average area sampling density -1.272 square meters per sample; *Swath width - 996.76 meters; *Flight altitude -1371 meters (4500 ft); *Flight line spacing - 498.38 meters w/50% overlap; *Scan frequency - 21 Hz; *Firing rate - 25 kHz; *Scan angle - 20 degrees; *Ground speed - 140 knots. When complete, the raw data was delivered to Spatial Systems.
- 2004-01-20 00:00:00 - LIDAR Data Processing. Computational Consulting Systems. The First and Last Return data was delivered to CCS in large blocks of data. CCS processed the data using both the First and Last Returns, removed artifacts using automated and manual techniques, reprojected the data into the client-specified X, Y, Z text files using the 1200 meter x 1800 meter tiles, NAD 83 meters, NAVD 88 meters. CCS also generated the Intensity Imagery using the client-specified USGS 3.75' tiling scheme. The data products were delivered to SSA for quality assurance testing, formatting and final delivery.
- 2004-01-20 00:00:00 - LIDAR Data Post Processing. Spatial Systems Associates. SSA digitized the shoreline from the Intensity Imagery for the purposes of delineating a shoreline. Any LIDAR points that fell seaward of this shoreline were assigned the value of zero (0). In addition to the shoreline, SSA delineated upland ponds using the same technique and assigned all LIDAR points that fell within the water area the value of the lowest observed point close to the shore. The observed elevation values were not lost - a fourth field in the data file was added for the assigned value. SSA also performed a variety of QA procedures to determine if the point density was within expected ranges; that each tile was completely filled; that all tiles were accounted for, and that the tiles were named in accordance with client specifications.
- 2004-01-20 00:00:00 - LIDAR Data Check Point Surveys. NXL Construction Services. NXL was contracted to acquire the check-points in the 5 different land cover classes. SSA provided NXL with maps of each area where a check-point was to be located. The points were scattered throughout the project area. NXL was permitted the latitude to select the exact location based on field conditions, provided the points were generally within a 1 mile radius of the chosen location and that the land cover class was the same as the one specified. The land cover classes were: Grass/Ground, High Grass/Crops, Brush/Low Trees, Forest, and Urban/Pavement.
- 2004-01-20 00:00:00 - LIDAR Data Quality Assurance. Dewberry LLC was provided with the check-point and LIDAR Bare Earth Mass Points data to perform their independent quality assurance work. They performed detailed analyses to determine if the vertical accuracy with within specifications and examined the data for flight, data collection and processing inconsistencies. Neither the flight vendor (Airborne 1) nor the processing vendor (CCS) was given access to the check-point data. The entire accuracy report can be found at http://dnrweb.dnr.state.md.us/gis/data/lidar.
- 2004-05-28 00:00:00 - The NOAA Office for Coastal Management (OCM) received ASCII files containing the bare-earth elevation and intensity data from Maryland Department of Natural Resources. OCM performed the following processing on the data to make it available within the Lidar Data Retrieval Tool (LDART): 1. The data were projected from Maryland State Plane coordinates to geographic decimal degrees using the General Cartographic Transformation Package. 2. The lat, long, MODZVAL and intensity values where extracted from the ASCII files and converted to the LDART binary format. (Citation: Elevation Data - LiDAR Bare Earth Mass Points)
- 2023-10-30 00:00:00 - Data were converted to cloud optimized point cloud format and tagged as NAD83(CORS96). This is the most likely NAD83 realization, however there is no documentation to confirm that it is the correct one.
(describe or provide URL of description):
6. Data Documentation
The EDMC Data Documentation Procedural Directive requires that NOAA data be well documented, specifies the use of ISO 19115 and related standards for documentation of new data, and provides links to resources and tools for metadata creation and validation.
Missing/invalid information:
- 1.6. Type(s) of data
- 1.7. Data collection method(s)
- 3.1. Responsible Party for Data Management
- 4.1. Have resources for management of these data been identified?
- 4.2. Approximate percentage of the budget for these data devoted to data management
- 5.2. Quality control procedures employed
- 7.1. Do these data comply with the Data Access directive?
- 7.1.1. If data are not available or has limitations, has a Waiver been filed?
- 7.1.2. If there are limitations to data access, describe how data are protected
- 7.4. Approximate delay between data collection and dissemination
- 8.1. Actual or planned long-term data archive location
- 8.3. Approximate delay between data collection and submission to an archive facility
- 8.4. How will the data be protected from accidental or malicious modification or deletion prior to receipt by the archive?
(describe or provide URL of description):
7. Data Access
NAO 212-15 states that access to environmental data may only be restricted when distribution is explicitly limited by law, regulation, policy (such as those applicable to personally identifiable information or protected critical infrastructure information or proprietary trade information) or by security requirements. The EDMC Data Access Procedural Directive contains specific guidance, recommends the use of open-standard, interoperable, non-proprietary web services, provides information about resources and tools to enable data access, and includes a Waiver to be submitted to justify any approach other than full, unrestricted public access.
None
Notes: The name of the Organization of the most recent Support Role of type "Distributor" is used. The support role must be in effect. This information is not required if an approved access waiver exists for this data.
Notes: This field is required if a Distributor has not been specified.
https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/15/index.html
Notes: All URLs listed in the Distribution Info section will be included. This field is required if applicable.
This data can be obtained on-line at the following URL: https://coast.noaa.gov/dataviewer;
Notes: This field is required if applicable.
8. Data Preservation and Protection
The NOAA Procedure for Scientific Records Appraisal and Archive Approval describes how to identify, appraise and decide what scientific records are to be preserved in a NOAA archive.
(Specify NCEI-MD, NCEI-CO, NCEI-NC, NCEI-MS, World Data Center (WDC) facility, Other, To Be Determined, Unable to Archive, or No Archiving Intended)
Notes: This field is required if archive location is World Data Center or Other.
Notes: This field is required if archive location is To Be Determined, Unable to Archive, or No Archiving Intended.
Notes: Physical Location Organization, City and State are required, or a Location Description is required.
Discuss data back-up, disaster recovery/contingency planning, and off-site data storage relevant to the data collection
9. Additional Line Office or Staff Office Questions
Line and Staff Offices may extend this template by inserting additional questions in this section.