Unsupported Browser Detected

Internet Explorer lacks support for the features of this website. For the best experience, please use a modern browser such as Chrome, Firefox, or Edge.

Model-Based Localization for Deep-Diving Cetaceans Using Towed Line Array Acoustic Data

August 12, 2021

A model-based localization approach is applied to account for errors not typically accounted for by the standard method of passive acoustic monitoring when conducting line-transect cetacean abundance surveys.

Passive acoustic monitoring using a towed line array of hydrophones is a standard method for localizing cetaceans during line-transect cetacean abundance surveys. Perpendicular distances estimated between localized whales and the trackline are essential for abundance estimation using acoustic data. Uncertainties in the acoustic data from hydrophone movement, sound propagation effects, errors in the time of arrival differences, and whale depth are not accounted for by most two-dimensional localization methods. Consequently, location and distance estimates for deep-diving cetaceans may be biased, creating uncertainty in abundance estimates. Here, a model-based localization approach is applied to towed line array acoustic data that incorporates sound propagation effects, accounts for sources of error, and localizes in three dimensions. The whale's true distance, ship trajectory, and whale movement greatly affected localization results in simulations. The localization method was applied to real acoustic data from two separate sperm whales, resulting in three-dimensional distance and depth estimates with position bounds for each whale. By incorporating sources of error, this three-dimensional model-based approach provides a method to address and integrate the inherent uncertainties in towed array acoustic data for more robust localization.


Barkley YM, Nosal EM, Oleson EM. 2021. Model-based localization for deep-diving cetaceans using towed line array acoustic data. The Journal of the Acoustical Society of America. 150(2):1120-32.  https://doi.org/10.1121/10.0005847.

Last updated by Pacific Islands Fisheries Science Center on 11/23/2021

Sperm Whale