Advanced Technologies

06/19/2017

How Does NOAA Fisheries Use Technology?

Some ocean creatures are a challenge to study because they live in places that are difficult to get to or because they have complex life cycles. And to study unique creatures, sometimes scientists need to use unique tools. Our scientists use a range of advanced technologies for their research as they work to gather and analyze data and better understand the science behind healthy ecosystems and marine life.

It’s important to remember that all photos and technologies used to track and research marine animals are conducted under permits granted by NOAA Fisheries, and should not be attempted by the public.

Some of these technologies include:

  • Drones, both aerial and sail.
  • Satellite tags.
  • Remote underwater vehicles and automated underwater vehicles.
  • Acoustics.
  • Genetics.
  • Research ships.

Drones (Aerial and Sail)

NOAA Fisheries uses a number of technologies to observe ocean habitats and organisms from afar. The term "remote sensing" refers to the science of deriving information about the Earth's land and oceans from images acquired at a distance, like satellite imaging and aerial photography. Researchers use remotely sensed data captured by drones to investigate essential habitat and to determine the distribution and abundance of species in habitats that are difficult to access using traditional survey methods.

For example, scientists from NOAA's Southwest Fisheries Science Center use special unmanned aerial vehicles (the size of a hubcap) to take pictures of leopard seals in Antarctica. The drone has six helicopter rotors, allowing it to take off vertically and hover motionlessly, and a high-resolution digital camera. From these photos, scientists can measure the length and width of individual animals and then generate estimates of their weight. By monitoring weight gain among the seals, scientists hope to better understand the energetics of the species and how they structure their ecological community through predation. Working with the animals remotely, under NOAA Fisheries permits, is better and safer for both the seals and the scientists. Unmanned aerial vehicles can also be a safer way to gather data from remote islands where surveys from manned flights are ineffective and dangerous due to low cloud cover. The technology makes it possible to observe whales without disturbing them.  

Scientists from NOAA's Alaska Fisheries Science Center are using saildrones to study fish like Alaskan pollock and protected species including whales and seals. A saildrone is an unoccupied autonomous sailing craft that houses a suite of sensors and instruments for collecting data from the environment. Saildrones  can be used to study physical parameters (e.g., ocean temperature and salinity), record the abundance of fish in a given area, listen and detect the presence of whales, and track seal locations and foraging patterns. Saildrone technology opens up a whole new world of monitoring, recording, and collecting research information. The data gathered may be used to make management decisions about valuable commercial fisheries and conservation efforts for protected species.

Watch our video to learn more about saildrones:

    Satellite Tags (Tagging and Tracking)

    Tiny microprocessors and sophisticated remote sensing systems now make it possible for scientists to explore the lives of marine animals and the open ocean from the perspective of individuals equipped with "smart tags." Tags provide researchers with information about migratory routes; diving, resting and swimming patterns; and internal physiological processes such as digestion.

    These “smart tags” are especially useful in tracking:

    For example, at our Northwest Fisheries Science Center, scientists use the Argos system to tag Southern Resident killer whales and figure out where they go when they leave Puget Sound. The scientists and their collaborators use satellite tags on orcas to gather location data that can reveal details about the winter migration of this endangered species and the extent of their coastal range.

    The Argos system functions differently than the global positioning system (GPS) most people are familiar with. The transmitter on the whale emits a signal when the whale is at the surface and during the specific hours of the day when the transmitter is programmed to be on. The signal is received by System Argos receivers on NOAA's polar orbiting weather satellites. After a series of signals pass back and forth, algorithms are applied to the signal data to estimate the transmitter’s location. Signal contact for tagged killer whales typically lasts about a month, but can last more than 3 months.

    Underwater Vehicles

    Several kinds of underwater vehicles are used to study life in the ocean, including autonomous underwater vehicles (AUVs), manned submersibles, and remotely operated vehicles (ROVs). ROVs are tethered to a surface vessel, whereas AUVs operate independently. AUVs receive commands from an operator-controlled computer as to where, when, and what they sample. They also carry equipment for sampling and surveying such as cameras, sonar, and depth sensors.

    At NOAA's Northwest Fisheries Science Center, the AUV team joined scientists with National Marine Sanctuaries for a collaborative research effort to better understand the location, distribution, status, and health of deep-sea coral and sponge ecosystems. Lucillea SeaBED AUV used during these expeditions, can dive to 2,000 meters and work underwater for up to 6 hours while sending information back to scientists onboard their research vessel.

    Lucille was designed to remain stable in the ocean's pitch and roll. Three carbon fiber propellers, originally designed for use in model airplanes, provide the thrust needed to propel Lucille down to the sea floor. The thousands of pictures Lucille takes can be blended into larger “photomosaics” to provide a more complete picture of the ocean floor.

    Acoustics

    Sound is the primary way many marine animals communicate and sense information. For NOAA Fisheries, acoustic sensing is a great way to detect and characterize physical and biological features of ocean areas. Using acoustics gives us enhanced and unique scientific data on:

    • Living marine resources.
    • The make-up of marine ecosystems.
    • The effects of human-caused sound (e.g., boats and sonar) on protected species and their ecosystems

    Our science centers use sound in different ways to gather information on fish populations for fisheries management, and to detect marine mammals like turtles and whales during surveys. For example, at our Northwest Fisheries Science Center, echosounders are attached to the bottom of Pacific hake trawl ships to estimate the current and future abundance of hake. The assessments provide advice to fishery managers on future harvests. Scientists on the Center’s Fisheries Engineering and Acoustics Technologies Team also recently collaborated with a robotics group to use an echosounder combined with a solar-powered Wave Glider to survey fish populations.

    Research Ships

    NOAA Fisheries operates a wide assortment of hydrographic survey, oceanographic research, and fisheries survey vessels. These vessels are operated by NOAA's Office of Marine and Aviation Operations. The ships are run by a combination of NOAA commissioned officers and wage marine civilians. The ship's officers and crew provide mission support and assistance to scientists from various NOAA laboratories as well as the academic community.

    NOAA Fisheries research vessels:

    • Bell M. Shimadaa state-of-the-art fisheries survey vessel that studies a wide range of marine life, seabirds, and ocean conditions along the U.S. West Coast. The ship’s design allows for quieter operation and movement of the vessel through the water, giving allowing scientists to study fish and marine mammals without disturbing them.
    • Fairweathera hydrographic survey vessel that maps the ocean to support safe navigation and commerce. Fairweather’s officers, technicians, and scientists collect data used by NOAA cartographers to create and update the nation’s nautical charts with ever-increasing precision.
    • Ferdinand R. Hasslerone of the newest ships in NOAA’s fleet of research and survey vessels that map the ocean to aid maritime commerce, improve coastal resilience, and understand the marine environment. NOAA's Coast Survey uses data collected by the ship to create and update the nation’s nautical charts
    • Gordon Guntera multipurpose oceanographic research vessel that monitors the health and abundance of fisheries resources and marine mammals. The ship operates mainly in the waters of the Gulf of Mexico, Atlantic Ocean, and Caribbean Sea.
    • Henry B. Bigelowa state-of-the-art fisheries survey vessel that studies a wide range of marine life and ocean conditions along the U.S. East Coast. The ship's primary mission is to study and monitor fish stocks. The ship also conducts habitat assessments and surveys marine mammal and seabird populations.
    • Hi`ialakaia multipurpose oceanographic research vessel whose main missions include coral reef ecosystem mapping, coral reef health and fish stock studies, and maritime heritage surveys.
    • Nancy Fosterone of the most operationally diverse platforms in the NOAA fleet--supports fish habitat and population studies, seafloor mapping surveys, physical and chemical oceanography studies, and maritime heritage surveys.
    • Okeanos Explorerknown as "America's ship for ocean exploration." Dedicated to exploration and discovery, Okeanos Explorer maps the seafloor, explores shipwrecks, and characterizes largely unknown areas of the ocean.
    • Oregon IIconducts a variety of fisheries, plankton, and marine mammal surveys in the Gulf of Mexico, Atlantic Ocean, and Caribbean Sea.
    • Oscar Dysonthe first in a class of ultra-quiet fisheries survey vessels built to collect data on fish populations, conduct marine mammal and seabird surveys, and study marine ecosystems. The ship operates primarily in the Bering Sea and Gulf of Alaska.
    • Oscar Elton Settea multipurpose oceanographic research vessel that conducts fisheries assessments, physical and chemical oceanography research, and marine mammal and marine debris surveys. The ship operates throughout the central and western Pacific Ocean.
    • Piscesthe third in a class of state-of-the-art, acoustically quiet fisheries survey vessels built for a wide range of living marine resource surveys and ecosystem research projects. The ship focuses primarily on U.S. waters from the Gulf of Mexico, Caribbean, and South Atlantic to North Carolina.
    • Rainiera hydrographic survey vessel that maps the ocean.
    • Reuben Laskerthe fifth in a series of Oscar Dyson-class fisheries survey vessels and one of the most technologically advanced fisheries vessels in the world. The ship’s primary objective is to support fish, marine mammal, seabird, and turtle surveys off the U.S. West Coast and in the eastern tropical Pacific Ocean.
    • Ronald H. Browna global-class oceanographic and atmospheric research platform, and the largest vessel in the NOAA fleet. With its highly advanced instruments, the ship travels worldwide supporting scientific studies to increase our understanding of climate and the ocean.
    • Thomas Jeffersona hydrographic survey vessel that maps the ocean.

    Genetics

    Genetic researchers at NOAA Fisheries preserve small tissue and blood samples from free-ranging marine turtles, marine mammals, and fishes to identify different species. They also use molecular methods to study the hormones that indicate reproductive status, and stable isotopes to determine the geographic origins of animals.

    For example, NOAA's Southwest Fisheries Science Center in La Jolla has one of the largest marine mammal and marine turtle sample collections in the world. This research sample collection has more than 140,000 tissue samples and 60,000 DNA samples, spanning more than 100 years.

    Two state-of-the-art genetics facilities operate at the Center’s La Jolla and Santa Cruz laboratories.

    Other Interesting Technologies

    Our Southwest Fisheries Science Center in La Jolla, California, contains 38 research laboratories, including an experimental aquarium, specimen archives, electronic workshops, and a unique facility for testing new sampling technologies. Some of the state-of-the-art technologies include:

    • Ocean Technology Development Test Tank. A 2-million-liter tank controlled for both temperature and salinity that allows tank conditions to range from tropical to polar temperatures and from fresh to saltwater. Scientists can test their equipment under the broad range of conditions they might find in the field. The tank also has life support systems for a variety of marine animals; having live organisms in the tank allows scientists to calibrate their instruments for use in the field.
    • Marine Mammal and Turtle Molecular Research Sample Collection. A walk-in freezer for the genetics tissue archive, one of the largest marine mammal and marine turtle sample collections in the world. The collection has become the National Repository for marine turtle samples, as well as a highly trusted repository for marine mammal samples donated by national and international institutions. The samples are available to Center scientists and outside researchers alike.

    In Hawaii, our Pacific Islands Fisheries Science Center is a 35-acre parcel on Ford Island in Pearl Harbor. It houses exhibits, a dive center, laboratories, necropsy rooms, and technologies such as:

    • Seawater facility. This 87,000-gallon facility contains 11 separate water treatment systems, and operators can isolate various tanks for research or animal husbandry purposes..
    • Marine animal facility. The remaining outdoor tanks consists of two 24-foot-diameter tanks, a 20-foot-diameter tank with an underwater viewport, and two 8-foot-diameter tanks set up with independent life support systems that can hold sea turtles, monk seals, and other marine life.

    At our Northwest Fisheries Science Center in Seattle, the Environmental Sample Processor is an advanced biological sensing system that conducts automated collection and analysis of water samples as they occur in the field. This processor uses DNA technology to identify small organisms in plankton. It can remotely detect harmful algae and bacterial pathogens and send the results to shore in near-real time, thus providing early warning of developing harmful algal blooms or "red tides" before they contaminate shellfish.