Alaska Ichthyoplankton Distribution Map
North Pacific ichthyoplankton data from surveys between 1972 and 2009.
The Recruitment Processes Program's overall goal is to understand the mechanisms that determine whether or not marine organisms survive to the age of “recruitment.” Recruitment for commercially fished species occurs when they grow to the size captured or retained by the nets or gear used in the fishery. For each species or ecosystem component that we study, we attempt to learn what biotic and abiotic factors cause or contribute to the observed population fluctuations. These population fluctuations occur on many different time scales (for example, between years, between decades). The mechanistic understanding that results from our research is applied by us and by others at the Alaska Fisheries Science Center to better manage and conserve the living marine resources for which NOAA is the steward.
Our group began in the late 1970's as a team of scientists principally concerned with the early life history (eggs, larvae and early juveniles) of fish species from the North Pacific Ocean. Studies were conducted off the U.S. west coast, the Gulf of Alaska, and eastern Bering Sea off Alaska. Over the years, the Program has collected tens of thousands of ichthyoplankton (larval fish) samples. These provide an unparalleled resource for study of the distribution and abundance of a wide variety of fish, and how they relate to the ocean environment. The program has developed many new analytical methods, field observation tools, and state-of-the-art simulation models necessary to carry out these studies.
Today the program is still known for its expertise in early life history studies, but we have diversified our research interests as NOAA has shifted its focus from management of single species to stewardship of entire ecosystems. Our projects now include recruitment processes of other living marine resources (e.g. commercially valuable shellfish, marine mammals, and seabirds), as well as the study of processes that affect multiple trophic levels within an ecosystem.