Refine Results
Topic
Species Category
Region

Chinook Salmon Results

438 results match your filter criteria.

Final Environmental Assessment for the Ruth Burnett Sport Fish Hatchery in Fairbanks, Alaska

Analysis of the potential impacts of the proposed the construction of the Ruth Burnett Sport Fish Hatchery in Fairbanks, Alaska.
May 11, 2007 - NEPA ,

Finding of No Significant Environmental Impact for the Ruth Burnett Sport Fish Hatchery in Fairbanks, Alaska

Analysis of potential impacts of Ruth Burnett Sport Fish Hatchery in Fairbanks, Alaska
May 05, 2007 - NEPA ,

Recovery Plan for Puget Sound Chinook Salmon

The goal of ESA recovery under this plan is to improve the viability of the Puget Sound Chinook salmon, and the ecosystems upon which they depend, to the point that they no longer require ESA protection.
January 19, 2007 - Recovery Plan ,

2006 Annual Survey of Juvenile Salmon and Ecologically Related Species and Environmental Factors in the Marine Waters of Southeastern Alaska

Juvenile Pacific salmon (Oncorhynchus spp.), ecologically-related species, and associated biophysical data were collected along primary marine migration corridors in the northern and southern regions of southeastern Alaska in 2006. Up to 21 stations were sampled over four time periods (39 sampling days) from May to August. This survey marks 10 consecutive years of systematic monitoring on how juvenile salmon interact in marine ecosystems, and was implemented to identify the relationships among biophysical parameters that influence the habitat use, marine growth, predation, stock interactions, and year-class strength of salmon. Typically, at each station, fish, zooplankton, surface water samples, and physical profile data were collected using a surface rope trawl, conical and bongo nets, water sampler, and a conductivity-temperature-depth profiler during daylight. Surface (3-m) temperatures and salinities ranged from 7.1 to 15.4 ºC and 15.1 to 32.0 PSU from May to August. A total of 10,641 fish and squid, representing 20 taxa, were captured in 94 rope trawl hauls from June to August. Juvenile salmon comprised about 98% of the total fish and squid catch in each region. Juvenile salmon occurred frequently in the trawl hauls, with pink (O. gorbuscha), chum (O. keta), sockeye (O. nerka), and coho salmon (O. kisutch) occurring in 52100% of the trawls in both regions, whereas, juvenile Chinook salmon (O. tshawytscha) occurred in 25% and 28% of the hauls in the southern and northern regions. Of the 10,451 salmonids caught, over 99% were juveniles. In both regions, only two non-salmonid species represented catches of >27 individuals: walleye pollock (Theragra chalcogramma) in the southern region and Pacific herring (Clupea pallasi) in the northern region. Temporal and spatial differences were observed in the catch rates, size, condition, and stock of origin of juvenile salmon species. Catch rates of juvenile salmon in both regions were generally highest in June for all species except Chinook, which had the highest catch rates in July. Size of juvenile salmon increased from June and July; mean fork lengths were: 102 and 121 mm for pink; 112 and 138 mm for chum; 110 and 131 mm for sockeye; 168 and 200 mm for coho; and 202 and 223 mm for Chinook salmon. Coded-wire tags were recovered from 13 juvenile coho salmon, two juvenile and one immature Chinook salmon; all but two were from hatchery and wild stocks of southeastern Alaska origin. The non-Alaska stocks were juvenile Chinook salmon originating from the Similkameen River and the Wells Hatchery within the Columbia River Basin. Alaska enhanced stocks were also identified by thermal otolith marks from 77% of the chum and 7% of the sockeye salmon. Onboard stomach analysis of 95 potential predators, representing 12 species, revealed one predation incident on juvenile salmon by an adult coho salmon. This research suggests that in southeastern Alaska, juvenile salmon exhibit seasonal patterns of habitat use and display species- and stock-dependent migration patterns. Long-term monitoring of key stocks of juvenile salmon, on both intra- and interannual bases, will enable researchers to understand how growth, abundance, and ecological interactions affect year-class strength and to better understand the role salmon play in North Pacific marine ecosystems.
September 24, 2006 - Survey ,

Bering Sea/Aleutian Islands and Gulf of Alaska Harvest Specifications for 2006-2007: Environmental Assessment and Final Regulatory Flexibility Analysis

Environmental Assessment and Final Regulatory Flexibility Analysis of the Gulf of Alaska and Bering Sea and Aleutian Islands groundfish harvest specifications for 2006-2007.
January 01, 2006 - NEPA ,

2005 Annual Survey of Juvenile Salmon and Ecologically Related Species and Environmental Factors in the Marine Waters of Southeastern Alaska

Juvenile Pacific salmon (Oncorhynchus spp.), ecologically-related species, and associated biophysical data were collected by the Southeast Coastal Monitoring Project along primary marine migration corridors in the southern and northern regions of southeastern Alaska. Up to 17 stations were sampled in four time periods (40 sampling days) from May to August 2005. This survey marked the ninth consecutive year of systematic monitoring of how juvenile salmon interact in marine ecosystems, and was implemented to identify the relationships among biophysical parameters that influence the habitat use, marine growth, predation, stock interactions, and year-class strength of salmon. Typically, at each station, fish, zooplankton, physical profile data, and water samples were collected using a surface rope trawl, conical and bongo nets, a conductivity-temperature-depth profiler, and a water sampler during daylight. Surface (3-m) temperatures and salinities ranged from 9.3 to 15.7 ºC and 13.8 to 31.5 PSU over the season. A total of 6,874 fish and squid, representing 19 taxa, were captured in 92 rope trawl hauls from June to August. Juvenile salmon comprised 96% of the total fish and squid catch in each region. Juvenile salmon occurred frequently in both regions, with pink (O. gorbuscha), chum (O. keta), sockeye (O. nerka), and coho (O. kisutch) occurring in 63-86% of the trawl hauls, and juvenile Chinook salmon occurring in 20-25% of the trawl hauls. Of the 6,651 salmonids caught, over 99% were juveniles. In both regions, only two non-salmonid species represented >1% of the catch: market squid (Loligo spp.) in the southern region (2%) and crested sculpin (Blepsias bilobus) in the northern region (2%). Temporal and spatial differences were observed in the catch rates, size, condition, and stock of origin of juvenile salmon species. Catch rates of juvenile salmon were highest in June for all species except pink salmon, which had the highest catch rates in August. Size of juvenile salmon increased steadily throughout the season; mean fork lengths in June, July, and August were, respectively: 92, 127, and 170 mm for pink; 108, 124, and 191 mm for chum; 115, 123, and 180 mm for sockeye; 184, 207, and 239 mm for coho; and 205, 245, and 255 for Chinook salmon. Coded-wire tags were recovered from 17 juvenile coho, 6 juvenile Chinook, and 2 immature Chinook salmon; all but six of these fish were from hatchery and wild stocks of southeastern Alaska origin. The non-Alaska stocks were juvenile coho and Chinook salmon originating from Oregon and Washington. Alaska enhanced stocks were also identified by thermal otolith marks from 53% of the chum, 18% of the sockeye, 9% of the coho, and 50% of the Chinook salmon. Onboard stomach analysis of 63 potential predators, representing eight species, revealed one predation instance on juvenile salmon by a spiny dogfish (Squalus acanthias). Forecasting models using catch-per-unit effort (CPUE) of juvenile pink salmon in strait habitat of the northern region in 2003 and 2004 produced accurate predictions of southeastern Alaska pink salmon harvests in 2004 and 2005. However, the models using 2005 CPUE as a predictor overestimated harvest of pink salmon in 2006, indicating that CPUE alone is not sufficient to consistently predict year class strength. These results suggest that in southeastern Alaska, juvenile salmon exhibit seasonal patterns of habitat use and abundance, and display species- and stock-dependent migration patterns. Long-term monitoring of key stocks of juvenile salmon, on both intra- and interannual bases, will enable researchers to better understand ecological interactions that affect interannual variation in salmon abundance and the role that salmon play in North Pacific marine ecosystems.
September 24, 2005 - Survey ,

Designation of Critical Habitat for 7 Evolutionarily Significant Units of Pacific Salmon and Steelhead in California

NOAA Fisheries issued a final rule designating critical habitat for five Evolutionarily Significant Units (ESUs) of West Coast salmon and two ESUs of steelhead listed as of the date of this designation under the Endangered Species Act (ESA) of 1973, as…
,
Published
05/18/2024

Designation of Critical Habitat for 12 Evolutionarily Significant Units of West Coast Salmon and Steelhead in Washington, Oregon, and Idaho (2005)

NOAA Fisheries issued a final rule designating critical habitat for 12 Evolutionarily Significant Units (ESUs) of West Coast salmon (chum, Oncorhynchus keta; sockeye, O. nerka; chinook, O. tshawytscha) and steelhead (O. mykiss) listed as of the date of…
,
Published
05/18/2024

2004 Survey of Juvenile Salmon and Associated Epipelagic Ichthyofauna in the Marine Waters of Southeastern Alaska

Juvenile Pacific salmon (Oncorhynchus spp.), ecologically-related species, and associated biophysical data were collected along a primary marine migration corridor in the northern region of southeastern Alaska. Thirteen stations were sampled over six time periods (31 sampling days) from May to August 2004. This survey marks the eighth consecutive year of systematic monitoring on how juvenile salmon interact in marine ecosystems, and was implemented to identify the relationships among biophysical parameters that influence the habitat use, marine growth, predation, stock interactions, and year-class strength of salmon. Habitats sampled included stations in inshore (Auke Bay and Taku Inlet), strait (four stations each in Chatham Strait and Icy Strait), and coastal (four stations off Icy Point) localities. At each station, fish, zooplankton, surface water samples, and physical profile data were collected using a surface rope trawl, conical and bongo nets, water sampler, and a conductivity-temperature-depth profiler, usually during daylight. Surface (3-m) temperatures and salinities ranged from 6.9 to 17.4 ºC and 9.5 to 31.6 PSU from May to August. A total of 13,460 fish and squid, representing 29 taxa, were captured in 75 rope trawl hauls from June to August. Juvenile salmon comprised 48% of the total catch and occurred frequently in the trawl hauls, with pink (O. gorbuscha) occurring in 75% of the trawls, sockeye (O. nerka) in 73%, chum (O. keta) in 72%, coho (O. kisutch) in 51%, and chinook salmon (O. tshawytscha) in 19%. Of the 6,552 salmonids caught, over 99% were juveniles. Walleye pollock (Theragra chalcogramma) and Pacific herring (Clupea pallasi) were the only non-salmonid species that comprised more than 1% of the total catch. Temporal and spatial differences were observed in the catch rates, size, condition, and stock of origin of juvenile salmon species. Catch rates of juvenile salmon were generally highest in June for all species except coho that had catch rates highest in August. Between habitat types, juvenile salmon catch rates were almost always highest in the strait habitat for each species and in each time period. Size of juvenile salmon increased steadily throughout the season; mean fork lengths in June, July, and August were, respectively: 98, 129, and 163 mm for pink; 104, 139, and 166 mm for chum; 111, 137, and 165 mm for sockeye; 170, 203, and 246 mm for coho; and 199, 228, and 279 for chinook salmon. Coded-wire tags were recovered from 14 juvenile coho, three juvenile and six immature chinook salmon; all but one were from hatchery and wild stocks of southeastern Alaska origin. The non-Alaska stock was a juvenile chinook originating from Oregon. Alaska hatchery stocks were also identified by thermal otolith marks from 74% of the chum, 18% of the sockeye, 9% of the coho, and 45% of the chinook salmon. Onboard stomach analysis of 199 potential predators, representing 10 species, revealed four predation instances on juvenile salmon: three by adult coho salmon and one by an immature chinook salmon. This research suggests that in southeastern Alaska, juvenile salmon exhibit seasonal patterns of habitat use synchronous with environmental change, and display species- and stock-dependent migration patterns. Long-term monitoring of key stocks of juvenile salmon, on both intra- and interannual bases, will enable researchers to understand how growth, abundance, and ecological interactions affect year-class strength and to better understand the role salmon play in North Pacific marine ecosystems.
September 24, 2004 - Survey ,

2003 Survey of Juvenile Salmon in the Marine Waters of Southeastern Alaska

Juvenile Pacific salmon (Oncorhynchus spp.) and associated biophysical data were collected along a primary marine migration corridor in the northern region of southeastern Alaska. Thirteen stations were sampled over six time periods (32 sampling days) from May to August 2003. This survey marks the seventh consecutive year of systematic monitoring, and was implemented to identify the relationships among biophysical parameters that influence the habitat use, marine growth, predation, stock interactions, year-class strength, and ocean carrying capacity of juvenile salmon. Habitats sampled included stations in inshore (Auke Bay), strait (four stations each in Chatham Strait and Icy Strait), and coastal (four stations off Icy Point) localities. At each station, fish, zooplankton, surface water samples, and physical profile data were collected using a surface rope trawl (fish), conical and bongo nets (zooplankton), and a conductivity-temperature-depth profiler (physical data), usually during daylight. Surface (2-m) temperatures and salinities ranged from 7.6 to 15.8ΕC and 15.5 to 32.0 PSU from May to August. A total of 10,724 fish and squid, representing 23 taxa, were captured in 64 rope trawl hauls from June to August. Juvenile salmon comprised 29% of the total catch and occurred frequently in the trawl hauls, with chum (O. keta) occurring in 66% of the trawls, pink (O. gorbuscha) in 56%, coho (O. kisutch) in 55%, sockeye (O. nerka) in 50%, and chinook salmon (O. tshawytscha) in 2%. Of the 3,254 salmonids caught, 98% were juveniles. Walleye pollock (Theragra chalcogramma) and Pacific herring (Clupea pallasi) were the only non-salmonid species that comprised more than 1% of the total catch. Temporal and spatial differences were observed in the catch rates, size, condition, and stock of origin of juvenile salmon species. Catch rates of juvenile salmon were highest for chinook and sockeye salmon in June, highest for chum and pink salmon in July, and highest for coho salmon in August. By habitat type, juvenile salmon catch rates for pink, chum and sockeye were highest in the coastal habitat, whereas catch rates of coho and chinook were highest in the strait habitat. Size of juvenile salmon increased steadily throughout the season; mean fork lengths in June and early August were, respectively: 105 and 133 mm for pink, 116 and 138 mm for chum, 120 and 145 mm for sockeye, 173 and 215 mm for coho, and 169 mm (June only) for chinook salmon. Coded-wire tags were recovered from two juvenile coho and one immature chinook salmon; all were from hatchery and wild stocks of southeastern Alaska origin. Alaska hatchery stocks were also identified by thermal otolith marks from 32% of the chum, 45% of the sockeye, 11% of the coho, and 100% of the chinook salmon. Onboard stomach analysis of 248 potential predators, representing 10 species, indicated one predation instance on juvenile salmon by a spiny dogfish (Squalus acanthias) in the coastal habitat in July. This research suggests that in southeastern Alaska, juvenile salmon exhibit seasonal patterns of habitat use synchronous with environmental change, and display species- and stock-dependent migration patterns. Long-term monitoring of key stocks of juvenile salmon, on both intra- and interannual bases, will enable researchers to understand how growth, abundance, and ecological interactions affect year-class strength and ocean carrying capacity for salmon.
September 24, 2003 - Survey ,